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4 Conditional expectations

Let (Ω,A, P ) be a probability space and A0 ⊂ A be a sub-σ-algebra.

1 Definitions

Definition 1.1. Let X > 0 be a r.v. A r.v. X0 > 0 is said to be (a version of) the
conditional expectation of X given A0 if

(i) X0 is A0-measurable.

(ii) E[Y0 ·X ] = E[Y0 ·X0] for all A0-measurable r.v. Y0 > 0.

Proposition 1.2. Let X and A0 be as above. Then

(i) A r.v. X0 satisfying (i) and (ii) of the previous definition exists. (see Subsection 3
below).

(ii) Any two random variables satisfying (i) and (ii) coincide P -a.s.

Notation:

X0 =: E[X |A0].

Remark 1.3. (i) “extreme cases”

E
[
X

∣
∣ {∅,Ω}

]
= E[X ] E[X |A] = X

(ii) Let X be a r.v., not necessarily nonnegative. We can decompose X = X+ −X−.
If

min
(
E[X+ |A0] , E[X− |A0]

)
<∞ P − a.s.

we define

E[X |A0] := E[X+ |A0] − E[X− |A0] .

Note that

X ∈ L
1 ⇔ E[X |A0] ∈ L

1

⇔

{

E[X+] = E
[
E[X+ | A0]

]
<∞

E[X−] = E
[
E[X− | A0]

]
<∞,
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(iii) For any A ∈ A let

P [A |A0] := E[1A |A0] .

P [A |A0] is said to be the conditional probability given A0.

(iv) discrete case Let Bi ∈ A, i ∈ N, be pairwise disjoint with Ω =
⋃

i∈N
Bi such that

A0 = σ{Bi | i ∈ N}. Then for any r.v. X > 0:

E[X |A0] =
∑

i∈N:P (Bi)>0

E[X |Bi]
︸ ︷︷ ︸

:= 1
P(Bi)

·E[X·1Bi
]

· 1Bi
.

where

E[X |Bi] =
1

P [Bi]

∫

Bi

X dP

denotes the elementary conditional expectation of X given Bi.

(v) Let (Ω′,A′) be a measurable space and Y : Ω → Ω′ be A/A′-measurable. Let
A0 := σ(Y ) and X > 0 be a r.v. on Ω. The factorization lemma then implies
that there exists a function fX : Ω′ → R̄+, such that P − a.s.

E[X |Y ] := E
[
X

∣
∣ σ(Y )

]
= fX ◦ Y

Notation:

E[X |Y = ω′] := fX(ω′) ω′ ∈ Ω′ .

(Ω,A)
A0 := σ(Y ) ⊂ A

Y
//

E[X|Y ]

��

(Ω′,A′)

fX

xxpp
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

(Ω,A)
X

// R+

In particular, Y −1(A′) ∈ A0 = σ(Y ) for all A′ ∈ A′ and

∫

Y −1(A′)

X dP
1.1(ii)
=

∫

Y −1(A′)

fX(Y ) dP =

∫

Ω

1A′(Y ) fX(Y ) dP

=

∫

A′

fX d(P ◦ Y −1),

Hence, fX is P ◦ Y −1-a.s. unique.
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2 Properties of the conditional expectation

(a) Linearity and monotonicity

E[c1X1 + c2X2 |A0] = c1 · E[X1 |A0] + c2 · E[X2 |A0]

X 6 Y P − a.s. ⇒ E[X |A0] 6 E[Y |A0] .

(b) Convergence theorems B. Levi, monotone convergence

0 6 X1 6 X2 6 . . . P − a.s. ⇒ E
[

lim
n→∞

Xn

∣
∣ A0

]
= lim

n→∞
E[Xn |A0] .

Fatou

Xn ≥ 0 ∀n ∈ N ⇒ E
[
lim inf
n→∞

Xn

∣
∣ A0

]
6 lim inf

n→∞
E[Xn |A0].

Lebesgue, dominated convergence |Xn| 6 Y ∈ L1 for all n ∈ N and Xn → X P-a.s.
Then

E
[

lim
n→∞

Xn

∣
∣ A0

]
= lim

n→∞
E[Xn |A0].

(c) contraction properties Jensen’s inequality X ∈ L1 and u concave (!) function
on R. Then

E
[
u(X)

∣
∣ A0

]
6 u

(
E[X |A0]

)
P − a.s.

contraction on Lp

In particular, for p > 1 and X ∈ Lp

∥
∥E[X |A0]

∥
∥

p
6 ‖X‖p.

It follows that the mapping

X 7→ E[X |A0]

is continuous on
(
Lp, ‖ · ‖p

)

(d) smoothing properties Let X > 0, and Y0 > 0 be A0-measurable. Then

E[Y0 ·X |A0] = Y0 · E[X |A0] P − a.s.

Tower property (in german: Projektivität)
in particular: let A0 ⊂ A1 ⊂ A be σ-algebras

⇒ E
[
E[X |A1]

∣
∣ A0

]
= E

[
E[X |A0]

∣
∣ A1

]
= E[X |A0] P − a.s.
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(e) conditional expectation and independence

Proposition 2.1. Let A1,A2 ⊂ A be σ-algebras and X ∈ L1. Let σ(A1,A2) (resp.
σ(A1, X)) be the σ-algebra generated by A1 and A2 (resp. A1 and X). Then

σ(A1, X) independent of A2

⇒ E
[
X

∣
∣ σ(A1,A2)

]
= E[X |A1] P -a.s.

In particular

X independent of A0 ⇒ E[X |A0] = E[X ].

The proof of the proposition follows from the next proposition.

Proposition 2.2. Let A1,A2 ⊂ A be σ-algebras and X ∈ L1, X ≥ 0. Then the
following statements are equivalent:

(i) E
[
X

∣
∣ σ(A1,A2)

]
= E[X |A1].

(ii)

E[X · Y |A1] = E[X |A1] · E[Y |A1].

for all Y ≥ 0 σ(A1,A2)-measurable.

(iii)

E[X ·X2 |A1] = E[X |A1] · E[X2 |A1].

for all X2 ≥ 0 A2-measurable.

Proof. Exercise.

Example 2.3 (Markov chain). Let Pµ be the distribution of a Markov chainX0, X1, . . .
on Ω = S{0,1,... } with initial distribution µ and transition probabilities p(x, dy) on

(S, S). Let An := σ(X0, . . . , Xn), Ân := σ(Xi | i > n) and ϑn be the shift by n, i.e.

ϑn((x0, x1, x2, . . .)) = (xn, xn+1, . . .)

so that in particular Xk ◦ ϑn = Xn+k. Then the Markov property, applied at time n,
implies

Eµ[ψ ◦ ϑn |An] = EXn
[ψ] (4.1)

for all ψ ≥ 0 A-measurable. It follows for X > 0, Ân-measurable, that

Eµ[X |An] = Eµ[X |Xn] .

According to Proposition 2.2 this is equivalent to say that for all An-measurable r.v.
Y > 0

Eµ[Y ·X |Xn] = Eµ[Y |Xn] · Eµ[X |Xn],

i.e., given the present σ(Xn), the “future” Ân is independent from the past An. This
is called the elementary Markov property.
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(f) Best approximation in L2. Let X ∈ L2 be a r.v. Then

E

[(
X − E[X |A0]

)2
]

6 E
[
(X − Y0)

2
]

for all Y0 ∈ L2, A0-measurable.

3 Existence

(a) Hilbert space method. Let L2 := L2/ ∼, with equivalence relation X ∼ Y
meaning that X = Y P -a.s. For given X ∈ L2, let X̄ denote the corresponding
equivalence class, i.e. Y ∈ X̄ if and only if X = Y P -a.s. Any Y ∈ X̄ is called a
representative of the equivalence class X̄. Given two equivalence classes X̄, Ȳ ∈ L2

define its scalar product by

(X̄, Ȳ ) := E[X · Y ],

where X (resp. Y ) is a representative of X̄ (resp. Ȳ ). Then
(
L2, ( , )

)
is a Hilbert

space.
Let L2

0 := L2(Ω,A0, P ) (⊂ L2) be the subspace of square-integrable r.v. that
are measurable w.r.t. the smaller σ-algebra A0. and let L2

0 := L2
0/∼. Then L2

0 is a
closed subspace of L2 (by Riesz-Fisher (see Proposition 1.8.14), because any L2-Cauchy
sequence (Xn) has a subsequence converging P -a.s., so that Xn A0-measurable for all
n implies that its L2-limit X is A0-measurable too.) According to paragraph (f) of the
preceeding subsection, we have that E[X |A0] for X ∈ L2 is a representative of the
orthogonal projection π̄(X̄) of X̄ ∈ L2 onto L2

0. Using the existence of the orthogonal
projection, we can now define the conditional expectation E[X |A0] as follows:

Step 1: For X ∈ L2 define

X0 := π(X̄)
(
:= A0-measurable representative π̄(X̄)

)

It follows for all Y0 ∈ L2
0 that

E[Y0 ·X ] = E[Y0 ·X0] + E
[
Y0 · (X −X0)

]
(4.2)

= E[Y0 ·X0] + (Ȳ0, X −X0)
︸ ︷︷ ︸

=0

.

Hence

E[Y0 ·X ] = E[Y0 ·X0]

for all Y0 ≥ 0 A0-measurable, so that

X0 = E[X |A0]

Similar to the last subsection

X 6 Y P -a.s. ⇒ π(X̄) 6 π(Ȳ ) P -a.s.
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Step 2: For generalX > 0, not necessarily in L2, considerX∧n ∈ L2. Monotonicity
implies that

Z0 := lim
n→∞

π(X ∧ n)

exists P -a.s. (A0-measurable !) Monotone convergence implies that for any Y0 > 0,
A0-measurable,

E[Y0 · Z0] = lim
n→∞

E
[
Y0 · π(X ∧ n)

]
= lim

n→∞
E[Y0 ·X ∧ n] = E[Y0 ·X ].

It follows that Z0 = E[X |A0], hence the existence of the conditional expectation.

(b) Radon-Nikodym theorem Throughout the whole paragraph let (Ω,A) be a
measurable space.

Definition 3.1. Let µ, ν be two finite measures on (Ω,A). Then ν is said to be
absolutely continuous w.r.t. µ (notation: ν ≪ µ), if

µ(N) = 0 , N ∈ A ⇒ ν(N) = 0 .

In other words: every µ-null set is a ν-null set (but not necessarily conversely!).

Example 3.2. Let µ be a finite measure on Ω and f ∈ L1, f ≥ 0. Define the (finite)
measure

ν(A) :=

∫

A

f dµ :=

∫

1Af dµ , A ∈ A . (4.3)

Then ν ≪ µ.
The theorem of Radon-Nikodym (see Proposition 3.4 below) tells us that conversely,

if ν ≪ µ there exists an A-measurable nonnegative function f : Ω → R+ satisfying
(4.3). f is µ-a.s. uniquely determined and called the density of ν w.r.t. µ (Notation:
dν
dµ

).

The Radon-Nikodym theorem will be used to obtain a second, independent proof for
the existence of the conditional expectation. We will prove the theorem in the case of
finite measures.

Lemma 3.3. Let σ and τ be finite (positive) measures on a measurable space (Ω,A)
with σ(Ω) < τ(Ω). Then there exists a measurable set Ω′ ∈ A satisfying:

(i) σ(Ω′) < τ(Ω′).

(ii) σ(A) 6 τ(A) for all A ∈ Ω′ ∩ A := {A ⊂ Ω′ |A ∈ A}.

Proof. (i) Let δ := τ − σ (i.e., δ(A) := τ(A) − σ(A) for all A ∈ A). δ is bounded
on A, since

−σ(Ω) 6 δ(A) 6 τ(Ω) .
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Define inductively sequences

(An)n∈N∪{0} , (Ωn)n∈N∪{0}

as follows:

Let A0 := ∅, Ω0 := Ω\A0 (= Ω, and, given A0, . . . , An and Ω0, . . . ,Ωn, we have
that

αn := inf
A∈Ωn∩A

δ(A) 6 0 ( since δ(∅) = 0).

If αn = 0, let An+1 := ∅ and Ωn+1 := Ωn \An+1 (= Ωn).

If αn < 0 choose An+1 ∈ Ωn∩A with δ(An+1) 6
αn

2 and let Ωn+1 := Ωn\An+1.

It follows that the An, n ∈ N, are pairwise disjoint, hence

∞∑

n=0

δ(An)

(

= τ
( ⋃

n≥0

An

)

− σ
( ⋃

n≥0

An

))

is convergent, so that

lim
n→∞

δ(An) = 0 ⇒ lim
n→∞

αn = 0.

Let

Ω′ :=
⋂

n>0

Ωn.

Since (Ωn) is decreasing, it follows that

δ(Ω′) = lim
n→∞

τ(Ωn) − lim
n→∞

σ(Ωn) = lim
n→∞

δ(Ωn) > δ(Ω)

because

δ(Ωn+1) ≥ δ(Ωn) − δ(An+1) ≥ δ(Ωn) ≥ δ(Ω0) = δ(Ω) .

This proves (i).

(ii) Let A ∈ Ω′ ∩ A. Then A ∈ Ωn ∩ A for all n, hence δ(A) > αn for all n, which
implies δ(A) > lim

n→∞
αn = 0.

Proposition 3.4 (Radon-Nikodym). Let µ and ν be finite (positive) measures on the
measurable space (Ω,A). Then the following statements are equivalent:

(i) There exists f ≥ 0 A-measurable (µ-a.s. uniquely determined) such that ν = f ·µ
(i.e., ν(A) =

∫

A
f dµ for all A ∈ A).

(ii) ν ≪ µ (i.e., µ(N) = 0 for N ∈ A implies ν(N) = 0).
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Proof. (i)⇒(ii) obvious.
(ii)⇒(i)
Let G be the collection of all A-measurable numerical functions g > 0 on Ω satisfying

g · µ 6 ν,

i.e., ν(A) >
∫

A
g dµ for all A ∈ A. Note that g ≡ 0 ∈ G. Note that G is stable under

taking sup, because for g, h ∈ G
∫

A

sup(g, h) dµ =

∫

A∩{g>h}

g dµ+

∫

A∩{g<h}

h dµ

6 ν
(
A ∩ {g > h}

)
+ ν

(
A ∩ {g < h}

)
= ν(A) ∀A ∈ A .

Let

γ := sup
g∈G

∫

g dµ
(
6 ν(Ω) <∞

)
.

Since G is sup-stable, there exists an increasing sequence (gn) of functions in G such
that (by montone integration)

γ = lim
n→∞

∫

gn dµ =

∫

lim
n→∞

gn dµ .

Let f := lim
n→∞

gn. Then

∫

A

f dµ = lim
n→∞

∫

A

gn dµ 6 ν(A) ∀A ∈ A .

Consequently, f ∈ G. In other words: f is a maximum of

g 7→

∫

g dµ on G .

We will show next that f · µ = ν. Clearly, f · µ 6 ν, since f ∈ G. Define

τ := ν − f · µ. (4.4)

τ is a positive, finite measure on A and it remains to show that τ ≡ 0.
Suppose on the contrary that τ(Ω) > 0 (so that µ(Ω) > 0). Let

β :=
1

2
·
τ(Ω)

µ(Ω)
> 0.

Then

τ(Ω) = 2β · µ(Ω) > β · µ(Ω).

Due to the previous lemma there exists a set Ω′ ∈ A satisfying

τ(Ω′) > β · µ(Ω′) and τ(A) > β · µ(A) (4.5)
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for all A ∈ Ω′∩A. Define f0 := f+β ·1Ω′ . Then f0 is A-measurable and for all A ∈ A

∫

A

f0 dµ =

∫

A

f dµ+ β · µ(A ∩ Ω′) 6

∫

A

f dµ+ τ(A) = ν(A).

It follows that f0 ∈ G. On the other hand
∫

f0 dµ =

∫

f dµ+ β · µ(Ω′) = γ + β · µ(Ω′) > γ ,

where we used the fact that ν ≪ µ implies µ(Ω′) > 0. This is a contradiction to the
fact that f is a maximum of

g 7→

∫

g dµ

on G. Consequently, τ ≡ 0.

Remark 3.5. (i) Let µ, ν be finite measures, µ≪ ν and dµ
dν

be the density. Then

ν

({
dν

dµ
= 0

})

= 0

but in general not µ
({

dν
dµ

= 0
})

= 0.

(ii) Let µ and ν be finite measures. µ and ν are said to be equivalent (notation:
µ ∼ ν) if µ ≪ ν and ν ≪ µ. It is easy to see that µ ∼ ν if and only if ν ≪ µ, hence

ν
({

dν
dµ

= 0
})

= 0, and in addition µ
({

dν
dµ

= 0
})

= 0. In this case

dµ

dν
=

(
dν

dµ

)−1

.

(iii) Let ν, µ and λ be finite measures, ν ≪ µ and µ≪ λ. Then

dν

dλ
=
dν

dµ
·
dµ

dλ
λ− a.s.

Application to the construction of the conditional expectation
Let A0 ⊂ A be a sub-σ-algebra, X ≥ 0, X ∈ L1(P )
Then

Q(A) :=

∫

A

X dP =

∫

1AX dP , A ∈ A0

defines a finite measure on (Ω,A0). Clearly, Q≪ P|A0
, hence

∃ X0 :=
dQ

dP|A0

A0- measurable .

Note that for A ∈ A0, by definition of the density,
∫

1AX dP = Q(A) =

∫

1A

dQ

dP
dP =

∫

1AX0 dP . (4.6)

Clearly, (4.6) extends to
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a) simple functions Y0 =
∑n

k=1 ak1Ak
by linearity

b) general Y0 ≥ 0, A0-measurable, by taking pointwise limits of increasing simple
functions Yn ↑ Y0

It follows that X0 = dQ
dP|A0

is a version of E[X |A0]. For general X ≥ 0 consider the

approximation X ∧ n ↑ X and use monotonicity.

4 Regular conditional probabilities

Consider the mapping

A 7→ P [A |A0]
(
:= E[1A |A0]

)
.

The following properties haven been shown in Subsection 2:

• 0 6 P [A |A0] 6 1 P -a.s.

• P [∅ |A0] = 0 and P [Ω |A0] = 1 P -a.s.

• A1 ⊂ A2 implies P [A1 |A0] 6 P [A2 |A0] P -a.s.

• An, n ∈ N, pairwise disjoint

⇒ P
[ ∞⋃

n=1

An

∣
∣
∣ A0

]

=

∞∑

n=1

P [An |A0] P -a.s.

Note that this does not yet imply that

A 7→ P [A |A0](ω), A ∈ A, (4.7)

defines a probability measure on A for P -a.e. ω ∈ Ω.
However, this is true in the discrete case and we may ask under what assumptions this

is true in the general case, i.e., under what assumptions is it possible to choose “good”
versions of P [A |A0], A ∈ A, such that (4.7) in fact defines a probability measure on
(Ω,A) at least for P -a.e. ω ∈ Ω.

Definition 4.1. A measurable space (Ω,A) is said to be a Borel space, if there exists
a Borel subset U ∈ B(R) and a bijection ϕ : Ω → U such that both ϕ and ϕ−1, are
measurable.

Proposition 4.2. Assume that (Ω,A) is a Borel space and let P be a probability
measure on (Ω,A). Let A0 ⊂ A be a sub σ-algebra. Then there exists a transition
probability from (Ω,A0) to (Ω,A) such that for all A ∈ A

KA0(ω,A) = P [A |A0](ω) P − a.s.

In other words: KA0(·, A) is a version of the conditional probability P [A |A0] for all
A ∈ A. The transition probability KA0 is called a regular conditional probability given
A0.
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KA0 is uniquely determined in the following sense: if K̃A0 is a second transition
probability from (Ω,A0) to (Ω,A) having these properties, it follows that there exists
a P -null set N ∈ A, such that for all ω ∈ Ω \N and all A ∈ A

KA0(ω,A) = K̃A0(ω,A).

For a proof see Klenke, Wahrscheinlichkeitstheorie, Satz 8.36.
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