Probability Theory

Wilhelm Stannat
Technische Universität Darmstadt
Winter Term 2007/08

Fifth part - corrected version

This text is a summary of the lecture on Probability Theory held at the TU Darmstadt in Winter Term 2007/08.

Please email all misprints and mistakes to stannat@mathematik.tu-darmstadt.de

Bibliography

1. Bauer, H., Probability theory, de Gruyter, 1996.
2. Bauer, H., Maß- und Integrationstheorie, de Gruyter, 1996.
3. Billingsley, P., Probability and Measure, Wiley, 1995.
4. Billingsley, P., Convergence of probability measures, Wiley, 1999.
5. Dudley, R.M., Real analysis and probability, Cambridge University Press, 2002.
6. Elstrodt, J., Maß- und Integrationstheorie, Springer, 2005.
7. Feller, W., An introduction to probability theory and its applications, Vol. 1 \& 2, Wiley, 1950.
8. Halmos, P.R., Measure Theory, Springer, 1974.
9. Klenke, A., Wahrscheinlichkeitstheorie, Springer, 2006.
10. Shiryaev, A.N., Probability, Springer, 1996.

4 Conditional expectations

Let (Ω, \mathcal{A}, P) be a probability space and $\mathcal{A}_{0} \subset \mathcal{A}$ be a sub- σ-algebra.

1 Definitions

Definition 1.1. Let $X \geqslant 0$ be a r.v. A r.v. $X_{0} \geqslant 0$ is said to be (a version of) the conditional expectation of X given \mathcal{A}_{0} if
(i) X_{0} is \mathcal{A}_{0}-measurable.
(ii) $\mathbb{E}\left[Y_{0} \cdot X\right]=\mathbb{E}\left[Y_{0} \cdot X_{0}\right]$ for all \mathcal{A}_{0}-measurable r.v. $Y_{0} \geqslant 0$.

Proposition 1.2. Let X and \mathcal{A}_{0} be as above. Then
(i) A r.v. X_{0} satisfying (i) and (ii) of the previous definition exists. (see Subsection 3 below).
(ii) Any two random variables satisfying (i) and (ii) coincide P-a.s.

Notation:

$$
X_{0}=: \mathbb{E}\left[X \mid \mathcal{A}_{0}\right]
$$

Remark 1.3. (i) "extreme cases"

$$
\mathbb{E}[X \mid\{\emptyset, \Omega\}]=\mathbb{E}[X] \quad \mathbb{E}[X \mid \mathcal{A}]=X
$$

(ii) Let X be a r.v., not necessarily nonnegative. We can decompose $X=X^{+}-X^{-}$. If

$$
\min \left(\mathbb{E}\left[X^{+} \mid \mathcal{A}_{0}\right], \mathbb{E}\left[X^{-} \mid \mathcal{A}_{0}\right]\right)<\infty \quad P-a . s
$$

we define

$$
\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]:=\mathbb{E}\left[X^{+} \mid \mathcal{A}_{0}\right]-\mathbb{E}\left[X^{-} \mid \mathcal{A}_{0}\right]
$$

Note that

$$
\begin{aligned}
X \in \mathcal{L}^{1} & \Leftrightarrow \quad \mathbb{E}\left[X \mid \mathcal{A}_{0}\right] \in \mathcal{L}^{1} \\
& \Leftrightarrow\left\{\begin{array}{l}
\mathbb{E}\left[X^{+}\right]=\mathbb{E}\left[\mathbb{E}\left[X^{+} \mid \mathcal{A}_{0}\right]\right]<\infty \\
\mathbb{E}\left[X^{-}\right]=\mathbb{E}\left[\mathbb{E}\left[X^{-} \mid \mathcal{A}_{0}\right]\right]<\infty
\end{array}\right.
\end{aligned}
$$

(iii) For any $A \in \mathcal{A}$ let

$$
P\left[A \mid \mathcal{A}_{0}\right]:=\mathbb{E}\left[1_{A} \mid \mathcal{A}_{0}\right]
$$

$P\left[A \mid \mathcal{A}_{0}\right]$ is said to be the conditional probability given \mathcal{A}_{0}.
(iv) discrete case Let $B_{i} \in \mathcal{A}, i \in \mathbb{N}$, be pairwise disjoint with $\Omega=\bigcup_{i \in \mathbb{N}} B_{i}$ such that $\mathcal{A}_{0}=\sigma\left\{B_{i} \mid i \in \mathbb{N}\right\}$. Then for any r.v. $X \geqslant 0$:

$$
\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]=\sum_{i \in \mathbb{N}: P\left(B_{i}\right)>0} \underbrace{\mathbb{E}\left[X \mid B_{i}\right]}_{:=\frac{1}{P\left(B_{i}\right)} \cdot \mathbb{E}\left[X \cdot 1_{B_{i}}\right]} \cdot 1_{B_{i}} .
$$

where

$$
\mathbb{E}\left[X \mid B_{i}\right]=\frac{1}{P\left[B_{i}\right]} \int_{B_{i}} X d P
$$

denotes the elementary conditional expectation of X given B_{i}.
(v) Let $\left(\Omega^{\prime}, \mathcal{A}^{\prime}\right)$ be a measurable space and $Y: \Omega \rightarrow \Omega^{\prime}$ be $\mathcal{A} / \mathcal{A}^{\prime}$-measurable. Let $\mathcal{A}_{0}:=\sigma(Y)$ and $X \geqslant 0$ be a r.v. on Ω. The factorization lemma then implies that there exists a function $f_{X}: \Omega^{\prime} \rightarrow \overline{\mathbb{R}}_{+}$, such that $P-$ a.s.

$$
\mathbb{E}[X \mid Y]:=\mathbb{E}[X \mid \sigma(Y)]=f_{X} \circ Y
$$

Notation:

$$
\mathbb{E}\left[X \mid Y=\omega^{\prime}\right]:=f_{X}\left(\omega^{\prime}\right) \quad \omega^{\prime} \in \Omega^{\prime}
$$

In particular, $Y^{-1}\left(A^{\prime}\right) \in \mathcal{A}_{0}=\sigma(Y)$ for all $A^{\prime} \in \mathcal{A}^{\prime}$ and

$$
\begin{aligned}
& \int_{Y^{-1}\left(A^{\prime}\right)} X \mathrm{~d} P \stackrel{1.1(i i)}{=} \int_{Y^{-1}\left(A^{\prime}\right)} f_{X}(Y) \mathrm{d} P=\int_{\Omega} 1_{A^{\prime}}(Y) f_{X}(Y) \mathrm{d} P \\
& \quad=\int_{A^{\prime}} f_{X} \mathrm{~d}\left(P \circ Y^{-1}\right)
\end{aligned}
$$

Hence, f_{X} is $P \circ Y^{-1}$-a.s. unique.

2 Properties of the conditional expectation

(a) Linearity and monotonicity

$$
\begin{aligned}
& \mathbb{E}\left[c_{1} X_{1}+c_{2} X_{2} \mid \mathcal{A}_{0}\right]=c_{1} \cdot \mathbb{E}\left[X_{1} \mid \mathcal{A}_{0}\right]+c_{2} \cdot \mathbb{E}\left[X_{2} \mid \mathcal{A}_{0}\right] \\
& X \leqslant Y \quad P-a . s . \quad \Rightarrow \quad \mathbb{E}\left[X \mid \mathcal{A}_{0}\right] \leqslant \mathbb{E}\left[Y \mid \mathcal{A}_{0}\right]
\end{aligned}
$$

(b) Convergence theorems B. Levi, monotone convergence

$$
0 \leqslant X_{1} \leqslant X_{2} \leqslant \ldots \quad P-a . s . \quad \Rightarrow \quad \mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n} \mid \mathcal{A}_{0}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{A}_{0}\right]
$$

Fatou

$$
X_{n} \geq 0 \quad \forall n \in \mathbb{N} \Rightarrow \mathbb{E}\left[\liminf _{n \rightarrow \infty} X_{n} \mid \mathcal{A}_{0}\right] \leqslant \liminf _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{A}_{0}\right]
$$

Lebesgue, dominated convergence $\left|X_{n}\right| \leqslant Y \in \mathcal{L}^{1}$ for all $n \in \mathbb{N}$ and $X_{n} \rightarrow X$ P-a.s. Then

$$
\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n} \mid \mathcal{A}_{0}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{A}_{0}\right]
$$

(c) contraction properties Jensen's inequality $X \in \mathcal{L}^{1}$ and u concave (!) function on \mathbb{R}. Then

$$
\mathbb{E}\left[u(X) \mid \mathcal{A}_{0}\right] \leqslant u\left(\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]\right) \quad P-\text { a.s. }
$$

contraction on \mathcal{L}^{p}
In particular, for $p \geqslant 1$ and $X \in \mathcal{L}^{p}$

$$
\left\|\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]\right\|_{p} \leqslant\|X\|_{p}
$$

It follows that the mapping

$$
X \mapsto \mathbb{E}\left[X \mid \mathcal{A}_{0}\right]
$$

is continuous on $\left(L^{p},\|\cdot\|_{p}\right)$
(d) smoothing properties Let $X \geqslant 0$, and $Y_{0} \geqslant 0$ be \mathcal{A}_{0}-measurable. Then

$$
\mathbb{E}\left[Y_{0} \cdot X \mid \mathcal{A}_{0}\right]=Y_{0} \cdot \mathbb{E}\left[X \mid \mathcal{A}_{0}\right] \quad P-\text { a.s. }
$$

Tower property (in german: Projektivität)
in particular: let $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}$ be σ-algebras

$$
\Rightarrow \quad \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{A}_{1}\right] \mid \mathcal{A}_{0}\right]=\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{A}_{0}\right] \mid \mathcal{A}_{1}\right]=\mathbb{E}\left[X \mid \mathcal{A}_{0}\right] \quad P-\text { a.s. }
$$

(e) conditional expectation and independence

Proposition 2.1. Let $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$ be σ-algebras and $X \in \mathcal{L}^{1}$. Let $\sigma\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ (resp. $\sigma\left(\mathcal{A}_{1}, X\right)$) be the σ-algebra generated by \mathcal{A}_{1} and \mathcal{A}_{2} (resp. \mathcal{A}_{1} and X). Then

$$
\begin{aligned}
& \sigma\left(\mathcal{A}_{1}, X\right) \text { independent of } \mathcal{A}_{2} \\
& \quad \Rightarrow \quad \mathbb{E}\left[X \mid \sigma\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)\right]=\mathbb{E}\left[X \mid \mathcal{A}_{1}\right] \quad \text { P-a.s. }
\end{aligned}
$$

In particular
X independent of $\mathcal{A}_{0} \quad \Rightarrow \quad \mathbb{E}\left[X \mid \mathcal{A}_{0}\right]=\mathbb{E}[X]$.
The proof of the proposition follows from the next proposition.
Proposition 2.2. Let $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$ be σ-algebras and $X \in \mathcal{L}^{1}, X \geq 0$. Then the following statements are equivalent:
(i) $\mathbb{E}\left[X \mid \sigma\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)\right]=\mathbb{E}\left[X \mid \mathcal{A}_{1}\right]$.
(ii)

$$
\mathbb{E}\left[X \cdot Y \mid \mathcal{A}_{1}\right]=\mathbb{E}\left[X \mid \mathcal{A}_{1}\right] \cdot \mathbb{E}\left[Y \mid \mathcal{A}_{1}\right]
$$

for all $Y \geq 0 \sigma\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$-measurable.
(iii)

$$
\begin{aligned}
& \qquad \mathbb{E}\left[X \cdot X_{2} \mid \mathcal{A}_{1}\right]=\mathbb{E}\left[X \mid \mathcal{A}_{1}\right] \cdot \mathbb{E}\left[X_{2} \mid \mathcal{A}_{1}\right] . \\
& \text { for all } X_{2} \geq 0 \mathcal{A}_{2} \text {-measurable. }
\end{aligned}
$$

Proof. Exercise.
Example 2.3 (Markov chain). Let P_{μ} be the distribution of a Markov chain X_{0}, X_{1}, \ldots on $\Omega=S^{\{0,1, \ldots\}}$ with initial distribution μ and transition probabilities $p(x, \mathrm{~d} y)$ on (S, S). Let $\mathcal{A}_{n}:=\sigma\left(X_{0}, \ldots, X_{n}\right), \hat{\mathcal{A}}_{n}:=\sigma\left(X_{i} \mid i \geqslant n\right)$ and ϑ^{n} be the shift by n, i.e.

$$
\vartheta^{n}\left(\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right)=\left(x_{n}, x_{n+1}, \ldots\right)
$$

so that in particular $X_{k} \circ \vartheta^{n}=X_{n+k}$. Then the Markov property, applied at time n, implies

$$
\begin{equation*}
\mathbb{E}_{\mu}\left[\psi \circ \vartheta^{n} \mid \mathcal{A}_{n}\right]=\mathbb{E}_{X_{n}}[\psi] \tag{4.1}
\end{equation*}
$$

for all $\psi \geq 0 \mathcal{A}$-measurable. It follows for $X \geqslant 0, \hat{\mathcal{A}}_{n}$-measurable, that

$$
\mathbb{E}_{\mu}\left[X \mid \mathcal{A}_{n}\right]=\mathbb{E}_{\mu}\left[X \mid X_{n}\right]
$$

According to Proposition 2.2 this is equivalent to say that for all \mathcal{A}_{n}-measurable r.v. $Y \geqslant 0$

$$
\mathbb{E}_{\mu}\left[Y \cdot X \mid X_{n}\right]=\mathbb{E}_{\mu}\left[Y \mid X_{n}\right] \cdot \mathbb{E}_{\mu}\left[X \mid X_{n}\right]
$$

i.e., given the present $\sigma\left(X_{n}\right)$, the "future" $\hat{\mathcal{A}}_{n}$ is independent from the past \mathcal{A}_{n}. This is called the elementary Markov property.
(f) Best approximation in \mathcal{L}^{2}. Let $X \in \mathcal{L}^{2}$ be a r.v. Then

$$
\mathbb{E}\left[\left(X-\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]\right)^{2}\right] \leqslant \mathbb{E}\left[\left(X-Y_{0}\right)^{2}\right]
$$

for all $Y_{0} \in \mathcal{L}^{2}, \mathcal{A}_{0}$-measurable.

3 Existence

(a) Hilbert space method. Let $L^{2}:=\mathcal{L}^{2} / \sim$, with equivalence relation $X \sim Y$ meaning that $X=Y P$-a.s. For given $X \in \mathcal{L}^{2}$, let \bar{X} denote the corresponding equivalence class, i.e. $Y \in \bar{X}$ if and only if $X=Y P$-a.s. Any $Y \in \bar{X}$ is called a representative of the equivalence class \bar{X}. Given two equivalence classes $\bar{X}, \bar{Y} \in L^{2}$ define its scalar product by

$$
(\bar{X}, \bar{Y}):=\mathbb{E}[X \cdot Y]
$$

where X (resp. Y) is a representative of \bar{X} (resp. $\bar{Y})$. Then $\left(L^{2},(),\right)$ is a Hilbert space.

Let $\mathcal{L}_{0}^{2}:=\mathcal{L}^{2}\left(\Omega, \mathcal{A}_{0}, P\right)\left(\subset \mathcal{L}^{2}\right)$ be the subspace of square-integrable r.v. that are measurable w.r.t. the smaller σ-algebra \mathcal{A}_{0}. and let $L_{0}^{2}:=\mathcal{L}_{0}^{2} / \sim$. Then L_{0}^{2} is a closed subspace of L^{2} (by Riesz-Fisher (see Proposition 1.8.14), because any L^{2}-Cauchy sequence (X_{n}) has a subsequence converging P-a.s., so that $X_{n} \mathcal{A}_{0}$-measurable for all n implies that its L^{2}-limit X is \mathcal{A}_{0}-measurable too.) According to paragraph (f) of the preceeding subsection, we have that $\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]$ for $X \in \mathcal{L}^{2}$ is a representative of the orthogonal projection $\bar{\pi}(\bar{X})$ of $\bar{X} \in L^{2}$ onto L_{0}^{2}. Using the existence of the orthogonal projection, we can now define the conditional expectation $\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]$ as follows:

Step 1: For $X \in \mathcal{L}^{2}$ define

$$
X_{0}:=\pi(\bar{X}) \quad\left(:=\mathcal{A}_{0} \text {-measurable representative } \bar{\pi}(\bar{X})\right)
$$

It follows for all $Y_{0} \in \mathcal{L}_{0}^{2}$ that

$$
\begin{align*}
\mathbb{E}\left[Y_{0} \cdot X\right] & =\mathbb{E}\left[Y_{0} \cdot X_{0}\right]+\mathbb{E}\left[Y_{0} \cdot\left(X-X_{0}\right)\right] \tag{4.2}\\
& =\mathbb{E}\left[Y_{0} \cdot X_{0}\right]+\underbrace{\left(\bar{Y}_{0}, \overline{X-X_{0}}\right)}_{=0} .
\end{align*}
$$

Hence

$$
\mathbb{E}\left[Y_{0} \cdot X\right]=\mathbb{E}\left[Y_{0} \cdot X_{0}\right]
$$

for all $Y_{0} \geq 0 \mathcal{A}_{0}$-measurable, so that

$$
X_{0}=\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]
$$

Similar to the last subsection

$$
X \leqslant Y \quad P \text {-a.s. } \quad \Rightarrow \quad \pi(\bar{X}) \leqslant \pi(\bar{Y}) \quad P \text {-a.s. }
$$

Step 2: For general $X \geqslant 0$, not necessarily in \mathcal{L}^{2}, consider $X \wedge n \in \mathcal{L}^{2}$. Monotonicity implies that

$$
Z_{0}:=\lim _{n \rightarrow \infty} \pi(\overline{X \wedge n})
$$

exists P-a.s. (\mathcal{A}_{0}-measurable !) Monotone convergence implies that for any $Y_{0} \geqslant 0$, \mathcal{A}_{0}-measurable,

$$
\mathbb{E}\left[Y_{0} \cdot Z_{0}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[Y_{0} \cdot \pi(\overline{X \wedge n})\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[Y_{0} \cdot X \wedge n\right]=\mathbb{E}\left[Y_{0} \cdot X\right]
$$

It follows that $Z_{0}=\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]$, hence the existence of the conditional expectation.
(b) Radon-Nikodym theorem Throughout the whole paragraph let (Ω, \mathcal{A}) be a measurable space.

Definition 3.1. Let μ, ν be two finite measures on (Ω, \mathcal{A}). Then ν is said to be absolutely continuous w.r.t. μ (notation: $\nu \ll \mu$), if

$$
\mu(N)=0, N \in \mathcal{A} \quad \Rightarrow \quad \nu(N)=0
$$

In other words: every μ-null set is a ν-null set (but not necessarily conversely!).
Example 3.2. Let μ be a finite measure on Ω and $f \in \mathcal{L}^{1}, f \geq 0$. Define the (finite) measure

$$
\begin{equation*}
\nu(A):=\int_{A} f d \mu:=\int 1_{A} f d \mu, \quad A \in \mathcal{A} \tag{4.3}
\end{equation*}
$$

Then $\nu \ll \mu$.
The theorem of Radon-Nikodym (see Proposition 3.4 below) tells us that conversely, if $\nu \ll \mu$ there exists an \mathcal{A}-measurable nonnegative function $f: \Omega \rightarrow \mathbb{R}_{+}$satisfying (4.3). f is μ-a.s. uniquely determined and called the density of ν w.r.t. μ (Notation: $\left.\frac{d \nu}{d \mu}\right)$.

The Radon-Nikodym theorem will be used to obtain a second, independent proof for the existence of the conditional expectation. We will prove the theorem in the case of finite measures.

Lemma 3.3. Let σ and τ be finite (positive) measures on a measurable space (Ω, \mathcal{A}) with $\sigma(\Omega)<\tau(\Omega)$. Then there exists a measurable set $\Omega^{\prime} \in \mathcal{A}$ satisfying:
(i) $\sigma\left(\Omega^{\prime}\right)<\tau\left(\Omega^{\prime}\right)$.
(ii) $\sigma(A) \leqslant \tau(A)$ for all $A \in \Omega^{\prime} \cap \mathcal{A}:=\left\{A \subset \Omega^{\prime} \mid A \in \mathcal{A}\right\}$.

Proof. (i) Let $\delta:=\tau-\sigma$ (i.e., $\delta(A):=\tau(A)-\sigma(A)$ for all $A \in \mathcal{A}$). δ is bounded on \mathcal{A}, since

$$
-\sigma(\Omega) \leqslant \delta(A) \leqslant \tau(\Omega)
$$

Define inductively sequences

$$
\left(A_{n}\right)_{n \in \mathbb{N} \cup\{0\}}, \quad\left(\Omega_{n}\right)_{n \in \mathbb{N} \cup\{0\}}
$$

as follows:
Let $A_{0}:=\emptyset, \Omega_{0}:=\Omega \backslash A_{0}\left(=\Omega\right.$, and, given A_{0}, \ldots, A_{n} and $\Omega_{0}, \ldots, \Omega_{n}$, we have that

$$
\alpha_{n}:=\inf _{A \in \Omega_{n} \cap \mathcal{A}} \delta(A) \leqslant 0(\text { since } \delta(\emptyset)=0)
$$

If $\alpha_{n}=0$, let $A_{n+1}:=\emptyset$ and $\Omega_{n+1}:=\Omega_{n} \backslash A_{n+1}\left(=\Omega_{n}\right)$.
If $\alpha_{n}<0$ choose $A_{n+1} \in \Omega_{n} \cap \mathcal{A}$ with $\delta\left(A_{n+1}\right) \leqslant \frac{\alpha_{n}}{2}$ and let $\Omega_{n+1}:=\Omega_{n} \backslash A_{n+1}$.
It follows that the $A_{n}, n \in \mathbb{N}$, are pairwise disjoint, hence

$$
\sum_{n=0}^{\infty} \delta\left(A_{n}\right) \quad\left(=\tau\left(\bigcup_{n \geq 0} A_{n}\right)-\sigma\left(\bigcup_{n \geq 0} A_{n}\right)\right)
$$

is convergent, so that

$$
\lim _{n \rightarrow \infty} \delta\left(A_{n}\right)=0 \Rightarrow \lim _{n \rightarrow \infty} \alpha_{n}=0
$$

Let

$$
\Omega^{\prime}:=\bigcap_{n \geqslant 0} \Omega_{n} .
$$

Since $\left(\Omega_{n}\right)$ is decreasing, it follows that

$$
\delta\left(\Omega^{\prime}\right)=\lim _{n \rightarrow \infty} \tau\left(\Omega_{n}\right)-\lim _{n \rightarrow \infty} \sigma\left(\Omega_{n}\right)=\lim _{n \rightarrow \infty} \delta\left(\Omega_{n}\right)>\delta(\Omega)
$$

because

$$
\delta\left(\Omega_{n+1}\right) \geq \delta\left(\Omega_{n}\right)-\delta\left(A_{n+1}\right) \geq \delta\left(\Omega_{n}\right) \geq \delta\left(\Omega_{0}\right)=\delta(\Omega)
$$

This proves (i).
(ii) Let $A \in \Omega^{\prime} \cap \mathcal{A}$. Then $A \in \Omega_{n} \cap \mathcal{A}$ for all n, hence $\delta(A) \geqslant \alpha_{n}$ for all n, which implies $\delta(A) \geqslant \lim _{n \rightarrow \infty} \alpha_{n}=0$.

Proposition 3.4 (Radon-Nikodym). Let μ and ν be finite (positive) measures on the measurable space (Ω, \mathcal{A}). Then the following statements are equivalent:
(i) There exists $f \geq 0 \mathcal{A}$-measurable (μ-a.s. uniquely determined) such that $\nu=f \cdot \mu$ (i.e., $\nu(A)=\int_{A} f d \mu$ for all $A \in \mathcal{A}$).
(ii) $\nu \ll \mu$ (i.e., $\mu(N)=0$ for $N \in \mathcal{A}$ implies $\nu(N)=0$).

Proof. (i) \Rightarrow (ii) obvious. (ii) \Rightarrow (i)

Let G be the collection of all \mathcal{A}-measurable numerical functions $g \geqslant 0$ on Ω satisfying $g \cdot \mu \leqslant \nu$,
i.e., $\nu(A) \geqslant \int_{A} g \mathrm{~d} \mu$ for all $A \in \mathcal{A}$. Note that $g \equiv 0 \in G$. Note that G is stable under taking sup, because for $g, h \in G$

$$
\begin{aligned}
\int_{A} \sup (g, h) \mathrm{d} \mu & =\int_{A \cap\{g \geqslant h\}} g \mathrm{~d} \mu+\int_{A \cap\{g<h\}} h \mathrm{~d} \mu \\
& \leqslant \nu(A \cap\{g \geqslant h\})+\nu(A \cap\{g<h\})=\nu(A) \quad \forall A \in \mathcal{A}
\end{aligned}
$$

Let

$$
\gamma:=\sup _{g \in G} \int g \mathrm{~d} \mu \quad(\leqslant \nu(\Omega)<\infty)
$$

Since G is sup-stable, there exists an increasing sequence $\left(g_{n}\right)$ of functions in G such that (by montone integration)

$$
\gamma=\lim _{n \rightarrow \infty} \int g_{n} \mathrm{~d} \mu=\int \lim _{n \rightarrow \infty} g_{n} \mathrm{~d} \mu
$$

Let $f:=\lim _{n \rightarrow \infty} g_{n}$. Then

$$
\int_{A} f \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \int_{A} g_{n} \mathrm{~d} \mu \leqslant \nu(A) \quad \forall A \in \mathcal{A}
$$

Consequently, $f \in G$. In other words: f is a maximum of

$$
g \mapsto \int g \mathrm{~d} \mu \text { on } G .
$$

We will show next that $f \cdot \mu=\nu$. Clearly, $f \cdot \mu \leqslant \nu$, since $f \in G$. Define

$$
\begin{equation*}
\tau:=\nu-f \cdot \mu \tag{4.4}
\end{equation*}
$$

τ is a positive, finite measure on \mathcal{A} and it remains to show that $\tau \equiv 0$.
Suppose on the contrary that $\tau(\Omega)>0$ (so that $\mu(\Omega)>0$). Let

$$
\beta:=\frac{1}{2} \cdot \frac{\tau(\Omega)}{\mu(\Omega)}>0
$$

Then

$$
\tau(\Omega)=2 \beta \cdot \mu(\Omega)>\beta \cdot \mu(\Omega)
$$

Due to the previous lemma there exists a set $\Omega^{\prime} \in \mathcal{A}$ satisfying

$$
\begin{equation*}
\tau\left(\Omega^{\prime}\right)>\beta \cdot \mu\left(\Omega^{\prime}\right) \quad \text { and } \quad \tau(A) \geqslant \beta \cdot \mu(A) \tag{4.5}
\end{equation*}
$$

for all $A \in \Omega^{\prime} \cap \mathcal{A}$. Define $f_{0}:=f+\beta \cdot 1_{\Omega^{\prime}}$. Then f_{0} is \mathcal{A}-measurable and for all $A \in \mathcal{A}$

$$
\int_{A} f_{0} \mathrm{~d} \mu=\int_{A} f \mathrm{~d} \mu+\beta \cdot \mu\left(A \cap \Omega^{\prime}\right) \leqslant \int_{A} f \mathrm{~d} \mu+\tau(A)=\nu(A) .
$$

It follows that $f_{0} \in G$. On the other hand

$$
\int f_{0} \mathrm{~d} \mu=\int f \mathrm{~d} \mu+\beta \cdot \mu\left(\Omega^{\prime}\right)=\gamma+\beta \cdot \mu\left(\Omega^{\prime}\right)>\gamma
$$

where we used the fact that $\nu \ll \mu$ implies $\mu\left(\Omega^{\prime}\right)>0$. This is a contradiction to the fact that f is a maximum of

$$
g \mapsto \int g \mathrm{~d} \mu
$$

on G. Consequently, $\tau \equiv 0$.
Remark 3.5. (i) Let μ, ν be finite measures, $\mu \ll \nu$ and $\frac{d \mu}{d \nu}$ be the density. Then

$$
\nu\left(\left\{\frac{d \nu}{d \mu}=0\right\}\right)=0
$$

but in general not $\mu\left(\left\{\frac{d \nu}{d \mu}=0\right\}\right)=0$.
(ii) Let μ and ν be finite measures. μ and ν are said to be equivalent (notation: $\mu \sim \nu$) if $\mu \ll \nu$ and $\nu \ll \mu$. It is easy to see that $\mu \sim \nu$ if and only if $\nu \ll \mu$, hence $\nu\left(\left\{\frac{d \nu}{d \mu}=0\right\}\right)=0$, and in addition $\mu\left(\left\{\frac{d \nu}{d \mu}=0\right\}\right)=0$. In this case

$$
\frac{d \mu}{d \nu}=\left(\frac{d \nu}{d \mu}\right)^{-1}
$$

(iii) Let ν, μ and λ be finite measures, $\nu \ll \mu$ and $\mu \ll \lambda$. Then

$$
\frac{d \nu}{d \lambda}=\frac{d \nu}{d \mu} \cdot \frac{d \mu}{d \lambda} \quad \lambda-a . s .
$$

Application to the construction of the conditional expectation

Let $\mathcal{A}_{0} \subset \mathcal{A}$ be a sub- σ-algebra, $X \geq 0, X \in \mathcal{L}^{1}(P)$
Then

$$
Q(A):=\int_{A} X d P=\int 1_{A} X d P, \quad A \in \mathcal{A}_{0}
$$

defines a finite measure on $\left(\Omega, \mathcal{A}_{0}\right)$. Clearly, $Q \ll P_{\mid \mathcal{A}_{0}}$, hence

$$
\exists \quad X_{0}:=\frac{d Q}{d P_{\mid \mathcal{A}_{0}}} \quad \mathcal{A}_{0^{-}} \text {measurable }
$$

Note that for $A \in \mathcal{A}_{0}$, by definition of the density,

$$
\begin{equation*}
\int 1_{A} X d P=Q(A)=\int 1_{A} \frac{d Q}{d P} d P=\int 1_{A} X_{0} d P \tag{4.6}
\end{equation*}
$$

Clearly, (4.6) extends to
a) simple functions $Y_{0}=\sum_{k=1}^{n} a_{k} 1_{A_{k}}$ by linearity
b) general $Y_{0} \geq 0, \mathcal{A}_{0}$-measurable, by taking pointwise limits of increasing simple functions $Y_{n} \uparrow Y_{0}$
It follows that $X_{0}=\frac{d Q}{d P_{\mid \mathcal{A}_{0}}}$ is a version of $\mathbb{E}\left[X \mid \mathcal{A}_{0}\right]$. For general $X \geq 0$ consider the approximation $X \wedge n \uparrow X$ and use monotonicity.

4 Regular conditional probabilities

Consider the mapping

$$
A \mapsto P\left[A \mid \mathcal{A}_{0}\right] \quad\left(:=\mathbb{E}\left[1_{A} \mid \mathcal{A}_{0}\right]\right)
$$

The following properties haven been shown in Subsection 2:

- $0 \leqslant P\left[A \mid \mathcal{A}_{0}\right] \leqslant 1 P$-a.s.
- $P\left[\emptyset \mid \mathcal{A}_{0}\right]=0$ and $P\left[\Omega \mid \mathcal{A}_{0}\right]=1 P$-a.s.
- $A_{1} \subset A_{2}$ implies $P\left[A_{1} \mid \mathcal{A}_{0}\right] \leqslant P\left[A_{2} \mid \mathcal{A}_{0}\right] P$-a.s.
- $A_{n}, n \in \mathbb{N}$, pairwise disjoint

$$
\Rightarrow \quad P\left[\bigcup_{n=1}^{\infty} A_{n} \mid \mathcal{A}_{0}\right]=\sum_{n=1}^{\infty} P\left[A_{n} \mid \mathcal{A}_{0}\right] P \text {-a.s. }
$$

Note that this does not yet imply that

$$
\begin{equation*}
A \mapsto P\left[A \mid \mathcal{A}_{0}\right](\omega), \quad A \in \mathcal{A} \tag{4.7}
\end{equation*}
$$

defines a probability measure on \mathcal{A} for P-a.e. $\omega \in \Omega$.
However, this is true in the discrete case and we may ask under what assumptions this is true in the general case, i.e., under what assumptions is it possible to choose "good" versions of $P\left[A \mid \mathcal{A}_{0}\right], A \in \mathcal{A}$, such that (4.7) in fact defines a probability measure on (Ω, \mathcal{A}) at least for P-a.e. $\omega \in \Omega$.

Definition 4.1. A measurable space (Ω, \mathcal{A}) is said to be a Borel space, if there exists a Borel subset $U \in \mathcal{B}(\mathbb{R})$ and a bijection $\varphi: \Omega \rightarrow U$ such that both φ and φ^{-1}, are measurable.

Proposition 4.2. Assume that (Ω, \mathcal{A}) is a Borel space and let P be a probability measure on (Ω, \mathcal{A}). Let $\mathcal{A}_{0} \subset \mathcal{A}$ be a sub σ-algebra. Then there exists a transition probability from $\left(\Omega, \mathcal{A}_{0}\right)$ to (Ω, \mathcal{A}) such that for all $A \in \mathcal{A}$

$$
K_{\mathcal{A}_{0}}(\omega, A)=P\left[A \mid \mathcal{A}_{0}\right](\omega) \quad P-\text { a.s. }
$$

In other words: $K_{\mathcal{A}_{0}}(\cdot, A)$ is a version of the conditional probability $P\left[A \mid \mathcal{A}_{0}\right]$ for all $A \in \mathcal{A}$. The transition probability $K_{\mathcal{A}_{0}}$ is called a regular conditional probability given \mathcal{A}_{0}.
$K_{\mathcal{A}_{0}}$ is uniquely determined in the following sense: if $\tilde{K}_{\mathcal{A}_{0}}$ is a second transition probability from $\left(\Omega, \mathcal{A}_{0}\right)$ to (Ω, \mathcal{A}) having these properties, it follows that there exists a P-null set $N \in \mathcal{A}$, such that for all $\omega \in \Omega \backslash N$ and all $A \in \mathcal{A}$

$$
K_{\mathcal{A}_{0}}(\omega, A)=\tilde{K}_{\mathcal{A}_{0}}(\omega, A)
$$

For a proof see Klenke, Wahrscheinlichkeitstheorie, Satz 8.36.

