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4 Conditional expectations

Let (2, A, P) be a probability space and Ay C A be a sub-o-algebra.

1 Definitions

Definition 1.1. Let X > 0 be arv. Arv. Xy > 0 is said to be (a version of) the
conditional expectation of X given Ay if

(i) Xo is Ag-measurable.
(ii) E[Yo - X] = E[Y, - Xo] for all Ap-measurable r.v. Yy > 0.
Proposition 1.2. Let X and Ay be as above. Then

(i) A r.v. Xy satisfying (i) and (ii) of the previous definition exists. (see Subsection 3
below).

(ii) Any two random variables satisfying (i) and (ii) coincide P-a.s.

Notation:
XQ = E[X |.AQ]
Remark 1.3. (i) ‘extreme cases”

E[X |{0,Q}] =E[X] E[X|A]=X

(ii) Let X be a r.v., not necessarily nonnegative. We can decompose X = X+ — X~.
If

min(E[X 1| Ag], E[X ™ |Ag]) <o P —a.s.
we define

E[X | Ag] := E[XT | Ao] — E[X ™ [ Ao].
Note that

Xel! & E[X|Ael!

{E[Xﬂ — E[E[X " | Ag]] < o0
=4
E[X~] = E[E[X~ | Ao]] < oo,
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(i) For any A € A let
P[A|.AQ] = E[lA |.A0] .
P[A|Ag] is said to be the conditional probability given Ag.

(iv) discrete case Let B; € A, i € N, be pairwise disjoint with Q = | ;. B; such that
Ao = o{B;|i € N}. Then for any r.v. X > 0:

EX A= > EXIB toe
i€EN:P(Bi)>0 _ pis ElX15,]
where
1
EX|Bi| = 5= [ XdP

denotes the elementary conditional expectation of X given B;.

(v) Let (¥, A") be a measurable space and Y : Q — Q' be A/A'-measurable. Let
Ao :=0c(Y) and X > 0 be a r.v. on (). The factorization lemma then implies
that there exists a function fx : Q' — R, such that P — a.s.

EX|Y]:=E[X |o(Y)] =fxoY

Notation:

EX|Y =u]:=fx() o' e.

(Q,A4) Y g
Ag:=0c(Y)CA (&, A7)
E[X]Y]
fx

@A) — X R,
In particular, Y ~*(A’) € Ag = o(Y) for all A’ € A’ and
1.1(ii)
[oxap™ [ pyap = [ sxv) ap
Y-1(A) Y-1(A") Q

= | fxd(Poyh)
A’

Hence, fx is P oY ~'-a.s. unique.
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2 Properties of the conditional expectation
(a) Linearity and monotonicity

]E[Cle =+ CQXQ |.A0] =C - E[Xl |.A0] + Cco - E[XQ |.A0]

X<Y P—as. = E[X|A)]<E[Y]|A.

(b) Convergence theorems B. Levi, monotone convergence
0<X1<Xo<... P—as. = E[lim X, |A] = lim E[X,|A.
Fatou

X, >0 VneN = E[liminfX, | Ao <liminfE[X, | A

n—oo

Lebesgue, dominated convergence |X,| <Y € L! foralln € N and X,, — X P-as.
Then

E[lim X, | Ao] = lim E[X, |Ag].
(c) contraction properties Jensen's inequality X € L' and u concave (!) function
on R. Then

E[u(X) | Ao] < u(E[X|Ao]) P —a.s.

contraction on LP
In particular, for p > 1 and X € LP

[ELX Ao, < 1],

It follows that the mapping
X — E[X | Ao

is continuous on (L?, || - ||,

(d) smoothing properties Let X > 0, and Yy > 0 be Ap-measurable. Then
E[Yy - X |Ag] = Yo -E[X |Ag] P —as.

Tower property (in german: Projektivitt)
in particular: let Ag C Ay C A be o-algebras

= E[E[X | A1] | Ao] =E[E[X |Ag] | A1] =E[X |A¢] P —a.s.
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(e) conditional expectation and independence

Proposition 2.1. Let Ay, Ay C A be o-algebras and X € L. Let o(A1,Az) (resp.
(A1, X)) be the o-algebra generated by Ay and Ay (resp. Ay and X ). Then

o(Ay1, X) independent of Ay
= E[X |o(A1,A2)] =E[X |A4] P-as.
In particular
X independent of Ay = E[X |Ao] = E[X].
The proof of the proposition follows from the next proposition.

Proposition 2.2. Let A,,Ay C A be o-algebras and X € L', X > 0. Then the
following statements are equivalent:

(i) E[X | o(A1,A2)] = E[X | A4].
(i)
E[X -Y | Ay] = E[X | Aj] - E[Y | Ay).
for allY > 0 o(A1,As)-measurable.
(iif)
E[X - Xo | A1] = E[X | A1] - E[X3 | A4].
for all X5 > 0 Ay-measurable.
Proof. Exercise. U

Example 2.3 (Markov chain). Let P, be the distribution of a Markov chain X, X7, ...
on Q = S10L} with initial distribution y and transition probabilities p(z,dy) on

(S,8). Let A, :=0(Xo,...,Xn), An :=c(X;|i > n) and 9" be the shift by n, i.e.

19"((330,%1,332, .. )) = (a:n,a:n+1, .. )

so that in particular X} 0 9™ = X, 1. Then the Markov property, applied at time n,
implies

Eu[¢p 09" |A,] = Ex,, [¢] (4.1)
for all » > 0 A-measurable. It follows for X > 0, fln—measurable, that
Eu[X [An] = EL[X | Xn].

According to Proposition 2.2 this is equivalent to say that for all A,,-measurable r.v.
Y >0

EulY - X | Xn] = Eu[Y | Xp] - Eu[X | X,

i.e., given the present o(X,,), the “future” fln is independent from the past A,,. This
is called the elementary Markov property.
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(f) Best approximation in £2. Let X € £? be a r.v. Then
E[(X - EIX | 40])"] <E[(X - ¥o)?]

for all Yy € L2, Ap-measurable.

3 Existence

(a) Hilbert space method. Let L? := L2/ ~, with equivalence relation X ~ Y
meaning that X = Y P-as. For given X € L2, let X denote the corresponding
equivalence class, ie. Y € X ifand only if X =Y P-as. Any Y € X is called a
representative of the equivalence class X. Given two equivalence classes X,Y € L2
define its scalar product by

(X,Y):=E[X Y],

where X (resp. Y) is a representative of X (resp. Y). Then (L2 (, )) is a Hilbert
space.

Let L% := L%(Q, Ao, P) (C L2) be the subspace of square-integrable r.v. that
are measurable w.r.t. the smaller o-algebra Ag. and let L3 := L2/ ~. Then L is a
closed subspace of L? (by Riesz-Fisher (see Proposition 1.8.14), because any L2-Cauchy
sequence (X,,) has a subsequence converging P-a.s., so that X,, Ap-measurable for all
n implies that its L2-limit X is Ag-measurable too.) According to paragraph (f) of the
preceeding subsection, we have that E[X | Ag] for X € L£? is a representative of the
orthogonal projection 7(X) of X € L? onto L2. Using the existence of the orthogonal
projection, we can now define the conditional expectation E[X | A] as follows:

Step 1: For X € L2 define

Xo:=n(X) (:=Ao-measurable representative 7(X))

It follows for all Yy € L2 that

E[Yy - X] =E[Yy - Xo] + E[Yo - (X — Xo)] (4.2)
= E[YO . Xo] + (Yo,X - Xo) .
=0
Hence

E[Y; - X] = E[Yo - Xo]
for all Yo > 0 Agp-measurable, so that
Xo =E[X [ Ao]
Similar to the last subsection

X<Y Pas = wX)<nY) P-as.
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Step 2: For general X > 0, not necessarily in £2, consider X An € £L2. Monotonicity
implies that

Zy = lim (X An)

n—oo

exists P-a.s. (Ag-measurable |) Monotone convergence implies that for any Yy > 0,
Ap-measurable,

E[Yo - Zo) = lim E[Y-n(X An)] = lim E[Y - X An] =E[Y; - X].

n—oo n—o0
It follows that Zy = E[X | Ag], hence the existence of the conditional expectation.

(b) Radon-Nikodym theorem Throughout the whole paragraph let (2,.A) be a
measurable space.

Definition 3.1. Let p, v be two finite measures on (2, A). Then v is said to be
absolutely continuous w.r.t. p (notation: v < u), if

u(N)y=0,NeA = v(N)=0.
In other words: every u-null set is a v-null set (but not necessarily conversely!).
Example 3.2. Let u be a finite measure on Q and f € L1, f > 0. Define the (finite)
measure

v(A) ::/Afd,u::/lAfdu, AecA. (4.3)

Then v < p.

The theorem of Radon-Nikodym (see Proposition 3.4 below) tells us that conversely,
if v < p there exists an A-measurable nonnegative function f : Q — R, satisfying
(4.3). f is p-a.s. uniquely determined and called the density of v w.r.t. u (Notation:
dv

)

The Radon-Nikodym theorem will be used to obtain a second, independent proof for
the existence of the conditional expectation. We will prove the theorem in the case of
finite measures.

Lemma 3.3. Let o and 7 be finite (positive) measures on a measurable space (2, A)
with o(Q) < 7(Q2). Then there exists a measurable set Q' € A satisfying:

(i) o(Q) < 7(8).
(i) o(A) < 7(A) forall Ac ' NA={ACQ|Ac A}

Proof. (i) Let 6 := 7 — o (i.e., 6(A) := 7(A) —o(A) for all A € A). ¢ is bounded
on A, since
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Define inductively sequences

(An)nenufoy > (Dn)nenu{oy

as follows:

Let Ag:=10, Qo :=Q\ Ag (=, and, given Ao, ..., A, and Qo,...,Qy,, we have
that

o o . _
O AeglnfﬂA §(A) < 0( since §(0) = 0).

If a, =0, let Apq:=0and Qup1:= Q0 \ Anp1 (= Q).
If o, < 0choose A1 € QNA with §(Ay,11) < 5 and let Q41 1= Q,\ Apyr.

It follows that the A,, n € N, are pairwise disjoint, hence

id(An) (: (U 4)-e(U An)>
n=0 n>0 n>0
is convergent, so that

lim §(4,)=0 = lim «, =0.

n—oo n—oo

Let

Q= ﬂ 0.

n=0
Since () is decreasing, it follows that

5(Q) = lim 7(Q) — lim () = lim §(Q) > 6(Q)

n—oo n—oo n—oo

because
5(Qus1) = 6(2n) = 8(Ans1) = 5(20) > 6(Q) = 5(Q).
This proves (i).
(i) Let A€ Q' NA. Then A € Q,, N A for all n, hence §(A) > a, for all n, which
implies 0(A) > 7111~>H;o oy = 0. O

Proposition 3.4 (Radon-Nikodym). Let p and v be finite (positive) measures on the
measurable space (2, A). Then the following statements are equivalent:

(i) There exists f > 0 A-measurable (ji-a.s. uniquely determined) such thatv = f-u
(ie., v(A) = [, fdu forall Ae A).

(i) v< u (i.e., u(N)=0 for N € A implies v(N) = 0).
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Proof. (i)=(ii) obvious.
(i)=(i)

Let G be the collection of all A-measurable numerical functions g > 0 on € satisfying
g P,

ie, v(A) > fA g du for all A € A. Note that g =0 € G. Note that G is stable under
taking sup, because for g,h € G

/Sup(g,h) du=/ gdu+/ h du
A An{g=h} An{g<h}

<v(An{g=h})+v(An{g<h})=v(4) VAcA.

Let

= sup/g dp (S v(Q) < o0).
geG

Since G is sup-stable, there exists an increasing sequence (g,,) of functions in G such

that (by montone integration)

~v= lim [ g, du:/ lim g, du.

n—oo

Let f:= lim g,. Then

/fdu: lim / gndu <v(A) VAcA.
A n—oo A
Consequently, f € G. In other words: f is a maximum of

g /g dpon G.
We will show next that f - = v. Clearly, f-pu < v, since f € G. Define

Ti=v—f-pn. (4.4)

T is a positive, finite measure on A and it remains to show that 7 = 0.
Suppose on the contrary that 7(Q) > 0 (so that u(£2) > 0). Let

7(©)
1(§2)

1
8= 3 > 0.
Then

T(Q) =28 p() > G- pu(Q).
Due to the previous lemma there exists a set ' € A satisfying

() > - u(@) and T(A) > - u(A) (4.5)
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forall A € Q' NA. Define fo:= f+3-1q:. Then fy is A-measurable and for all A € A
[ fodu= [ 7anss wane) < [ fausra) =ua),
A A A
It follows that fo € G. On the other hand

/foduszdu+5-u(9’)=7+[3-u(ﬂ’)>%

where we used the fact that v < p implies (") > 0. This is a contradiction to the
fact that f is a maximum of

gH/gdu

on G. Consequently, 7 = 0. O

Remark 3.5. (i) Let u, v be finite measures, i < v and ‘;—‘V‘ be the density. Then

({5 -

but in general not ({@ = O}) =0.
(ii) Let 1 and v be finite measures. p and v are said to be equivalent (notation:
pw~v)ifu<<vandv < pu. Itis easy to see that u ~ v if and only if v < p, hence

v ({g—; = 0}) =0, and in addition p ({g—; = 0}) = 0. In this case

d_ ()
dv  \du '

(iii) Let v, p and X be finite measures, v < p and < A. Then

d—y = d—y d_,u A—a.s

d\  dp  d\ o
Application to the construction of the conditional expectation
Let Ao C A be a sub-o-algebra, X >0, X € L(P)
Then

Q(A) ::/ XdP:/lAXdP7 A€ Ay
A
defines a finite measure on (2, Ag). Clearly, Q@ < P 4,, hence
dQ

3 Xo:= P Ao- measurable.

Note that for A € Ay, by definition of the density,
/1AXdP:Q(A):/lA%dP:/lAXOdP. (4.6)

Clearly, (4.6) extends to
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a) simple functions Yy = Y"7'_ | axla, by linearity

b) general Yy > 0, Ag-measurable, by taking pointwise limits of increasing simple
functions Y, T Yp

It follows that Xy = dgg is a version of E[X|Aq]. For general X > 0 consider the
0

approximation X An T X and use monotonicity.

4 Regular conditional probabilities
Consider the mapping
A PlA[Ag] (= E[l4]Ag).

The following properties haven been shown in Subsection 2:

e 0 < P[A|Ag] <1 P-as.

e P[0]|Ag] =0 and P[Q|Ag] =1 P-as.

o A; C Ay implies P[A; | Ag] < P[A2]| Ao P-as.

e A,, n €N, pairwise disjoint

= P[[j An AO] - iP[AnMO] P-as.

n=1 n=1

Note that this does not yet imply that
A P[A|Aol(w), A€A, (4.7)

defines a probability measure on A for P-a.e. w € Q.

However, this is true in the discrete case and we may ask under what assumptions this
is true in the general case, i.e., under what assumptions is it possible to choose “good”
versions of P[A|Ag], A € A, such that (4.7) in fact defines a probability measure on
(Q,A) at least for P-a.e. w € Q.

Definition 4.1. A measurable space (2, A) is said to be a Borel space, if there exists
a Borel subset U € B(R) and a bijection ¢ : Q — U such that both ¢ and ¢!, are
measurable.

Proposition 4.2. Assume that (§2,.A) is a Borel space and let P be a probability
measure on (2, A). Let Ag C A be a sub o-algebra. Then there exists a transition
probability from (€, Ag) to (2,.A) such that for all A € A

Kg,(w,A) = P[A| Ap](w) P —a.s.

In other words: K 4,(-, A) is a version of the conditional probability P[A|Ao] for all
A € A. The transition probability K 4, is called a regular conditional probability given
Ap.
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K, is uniquely determined in the following sense: if K4, is a second transition
probability from (2, Ag) to (2, A) having these properties, it follows that there exists
a P-null set N € A, such that for allw € Q\ N and all A€ A

KAO(L«.),A) = KAO(L«),A).

For a proof see Klenke, Wahrscheinlichkeitstheorie, Satz 8.36.
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