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3 Conditional probabilities

1 Elementary definitions

Let (Ω, A, P ) be a probability space.

Definition 1.1. Let B ∈ A with P (B) > 0. Then

P [A |B] :=
P (A ∩ B)

P (B)
, A ∈ A,

is said to be the conditional probability of A given B. In the case P (B) = 0 we simply
define P [A |B] := 0. The probability measure

PB := P [ · |B]

on (Ω, A) is said to be the conditional distribution given B.

Remark 1.2. (i) P (A) is called the a priori probability of A.

P [A |B] is called the a posteriori probability of A, given the information that B
occurred.

(ii) In the case of Laplace experiments

P [A |B] =
|A ∩ B|
|B| = fraction of all outcomes in A that are contained in B.

(iii) If A and B are disjoint (hence A ∩ B = ∅), then P [A |B] = 0.

(iv) If A and B are independent, then

P [A |B] =
P (A) · P (B)

P (B)
= P (A).

Example 1.3. (i) Suppose that a family has two children. Consider the following
two events: B := "at least one boy" and A := "two boys". Then P [A |B] = 1

3 ,
because

Ω =
{
(J, J), (M, J), (J, M), (M, M)

}
,

P = uniform distribution,

and thus

P [A |B] =
|A ∩ B|
|B| =

1

3
.
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(ii) Let X1, X2 be independent r.v. with Poisson distribution with parameters λ1, λ2.
Then

P [X1 = k |X1 + X2 = n] =

{

0 if k > n

? if 0 6 k 6 n.

According to Example 4.7 X1 + X2 has Poisson distribution with parameter λ :=
λ1 + λ2. Consequently,

P [X1 = k |X1 + X2 = n] =
P [X1 = k, X2 = n − k]

P [X1 + X2 = n]

=
e−λ1

λk
1

k! · e−λ2
λn−k
2

(n−k)!

e−λ λn

n!

=

(
n

k

)

·
(

λ1

λ

)k(
λ2

λ

)n−k

,

i.e., P [ · | X1 + X2 = n] is the binomial distribution with parameters n and
p = λ1

λ1+λ2
.

(iii) Consider n independent 0-1-experiments X1, . . . , Xn with success probability p ∈
]0, 1[. Let

Sn := X1 + . . . + Xn

and

Xi : Ω := {0, 1}n → {0, 1},
(x1, . . . , xn) 7→ xi.

For given (x1, . . . , xn) ∈ {0, 1}n and fixed k ∈ {0, . . . , n}

P [X1 = x1, . . . , Xn = xn |Sn = k]

=







0 if
∑

i xi 6= k
pk(1−p)n−k

(n

k)pk(1−p)n−k
=

(
n
k

)−1
otherwise

It follows that the conditional distribution P [ · |Sn = k] is the uniform distribution
on

Ωk :=
{

(x1, . . . , xn)
∣
∣
∣

n∑

i=1

xi = k
}

.

Proposition 1.4. (Formula for total probability) Let B1, . . . , Bn be disjoint, Bi ∈ A

∀ 1 ≤ i ≤ n. Then for all A ⊂ ⋃n
i=1 Bi, A ∈ A:

P (A) =

n∑

i=1

P [A |Bi] · P (Bi).
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Proof. Clearly, A = �∪i6n(A ∩ Bi). Consequently,

P (A) =

n∑

i=1

P (A ∩ Bi) =

n∑

i=1

P (A ∩ Bi) =

n∑

i=1

P (A |Bi)P (Bi) .

Example 1.5. (Simpson’s paradox)
Consider applications of male (M) and female (W ) students at a university in the

United States

Applications accepted
M 2084 1036 P [A |M ] ≈ 0.49
W 1067 349 P [A |W ] ≈ 0.33

Is this an example for discrimination of female students? A closer look to the biggest
four faculties B1, . . . , B4:

male female
Appl. acc. PM [A |Bi] Appl. acc. PW [A |Bi]

B1 826 551 0.67 108 89 0.82
B2 560 353 0.63 25 17 0.68
B3 325 110 0.34 593 219 0.37
B4 373 22 0.06 341 24 0.07

2084 1036 1067 349

It follows that for all four faculties the probability of being accepted was higher for
female students than it was for male students:

PM [A |Bi] < PW [A |Bi].

Nevertheless, the preference turns into its opposite if looking at the total probability of
admission:

PW (A) := P [A |W ] =
4∑

i=1

PW [A |Bi] · PW (Bi)

< PM (A) := P [A |M ] =

4∑

i=1

PM [A |Bi] · PM (Bi).

For an explanation consider the distributions of applications:

PM (B1) =
|B1 ∩ M |

|M | =
826

2084
≈ 4

10
, PW (B1) =

|B1 ∩ W |
|W | =

108

1067
≈ 1

10
,

etc. and observe that male students mainly applied at faculties with a high probability
of admission, whereas female students mainly applied at faculties with a low probability
of admission.
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Proposition 1.6 (Bayes’ theorem). Let B1, . . . , Bn ∈ A be disjoint with P (Bi) > 0
for i = 1, . . . , n. Let A ∈ A, A ⊂ ⋃n

i=1 Bi with P (A) > 0. Then:

P [Bi |A] =
P [A |Bi] · P (Bi)

n∑

j=1

P [A |Bj ] · P (Bj)

.

Proof.

P [Bi |A] =
P (A ∩ Bi)

P (A)

1.4
=

P [A | Bi] · P (Bi)
n∑

j=1

P [A | Bj] · P (Bj)

.

Example 1.7 (A posteriori probabilities in medical tests). Suppose that one out of 145
persons of the same age have the disease K, i.e. the a priori probability of having K is
P [K] = 1

145 .
Suppose now that a medical test for K is given which detects K in 96 % of all cases,

i.e.

P [positive |K] = 0.96 .

However, the test also is positive in 6% af the cases, where the person does not have
K, i.e.

P [positive |Kc] = 0.06 .

Suppose now that the test is positive. What is the a posteriori probability of actually
having K?

So we are interested in the conditional probability P [K | positive]:

P [K | positive] 1.6
=

P [positive |K] · P [K]

P [positive |K] · P [K] + P [positive |Kc] · P [Kc]

=
0.96 · 1

145

0.96 · 1
145 + 0.06 · 144

145

=
1

1 + 6
96 · 144

=
1

10
.

Note: in only one out of ten cases, a person with a positive result actually has K.
Another conditional probability of interest in this context is the probability of not

having K, once the test is negative, i.e., P [Kc | negative]:

P [Kc | negative] =
P [negative |Kc] · P [Kc]

P [negative |K] · P [K] + P [negative |Kc] · P [Kc]

=
0.94 · 144

145

0.04 · 1
145 + 0.94 · 144

145

=
94 · 144

4 + 94 · 144
≈ 0.9997.

Note: The two conditional probabilities interchange, if the a priori probability of not
having K is low (e.g. 1

145 ). If the risc of having K is high and one wants to test
whether or not having K, the a posteriori probability of not having K, given that the
test was negative, is only 0.1.
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Example 1.8 (computing total probabilities with conditional probabilities). Let S be a
finite set, Ω := Sn+1, n ∈ N, and P be a probability measure on Ω. Let Xi : Ω → S,
i = 0, . . . , n, be the canonical projections Xi(ω) := xi for ω = (x0, . . . , xn).

If we interpret 0, 1, . . . , n as time points, then (Xi)06i6n may be seen as a stochastic
process and

(
X0(ω), . . . , Xn(ω)

)
is said to be a sample path (or a trajectory) of the

process.

For all ω ∈ Ω we either have P ({ω}) = 0 or

P ({ω}) = P [X0 = x0, . . . , Xn = xn]

= P [X0 = x0, . . . , Xn−1 = xn−1]

· P [Xn = xn |X0 = x0, . . . , Xn−1 = xn−1]

...

= P [X0 = x0]

· P [X1 = x1 |X0 = x0]

· P [X2 = x2 |X0 = x0, X1 = x1]

· · ·
· P [Xn = xn |X0 = x0, . . . , Xn−1 = xn−1].

Note: P ({ω}) 6= 0 implies P [X0 = x0, . . . , Xk = xk] 6= 0 for all k ∈ {0, . . . , n}.
Conclusion: A probability measure P on Ω is uniquely determined by the following:

Initial distribution: µ := P ◦ X−1
0

Transition probabilities: the conditional distributions

P [Xk = xk |X0 = x0, . . . , Xk−1 = xk−1]

for any k ∈ {1, . . . , n} and (x0, . . . , xk) ∈ S(k+1).

Existence of P for given initial distribution and given transition probabilities is shown
in Section 3.3.

Example 1.9. A stochastic process is called a Markov chain, if P [Xk = xk |X0 =
x0, . . . , Xk−1 = xk−1] = P [Xk = xk |Xk−1 = xk−1], i.e., if the transition probabilities
for Xk only depend on Xk−1.

If we denote by Xk−1 the “present”, by Xk the “future” and by “X0, . . . , Xk−2” the
past, then we can state the Markov property as: given the “present”, the “future” of the
Markov chain is independent of the “past”.

2 Transition probabilities and Fubini’s theorem

Let (S1, S1) and (S2, S2) be measurable spaces.
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Definition 2.1. A mapping

K : S1 × S2 → [0, 1]

(x1, A2) 7→ K(x1, A2)

is said to be a transition probabilities (from (S1, S1) to (S2, S2)), if

(i) ∀x1 ∈ S1: K(x1, · ) is a probability measure on (S2, S2).

(ii) ∀A2 ∈ S2: K( · , A2) is S1-measurable.

Example 2.2. (i) For given probability measure µ on (S2, S2) define

K(x1, · ) := µ ∀x1 ∈ S1 no coupling!

(ii) Let T : S1 → S2 be a S1/S2-measurable mapping, and

K(x1, · ) := δT (x1) ∀x1 ∈ S1 .

(iii) Stochastic matrices Let S1, S2 be countable and Si = P(Si), i = 1, 2. In this
case, any transition probability from (S1, S1) to (S2, S2) is given by

K(x1, x2) := K
(
x1, {x2}

)
, x1 ∈ S1, x2 ∈ S2,

where K : S1×S2 → [0, 1] is a mapping, such that for all x1 ∈ S1

∑

x2∈S2
K(x1, x2) =

1. Consequently, K can be identified with a stochastic matrix, or a transition ma-
trix, i.e. a matrix with nonnegative entries and row sums equal to one.

Example 2.3. (i) Transition probabilities of the random walk on Z
d

S1 = S2 = S := Z
d with S := P(Zd)

K(x, · ) :=
1

2d

∑

y∈N(x)

δy , x ∈ Z
d ,

with

N(x) :=
{
y ∈ Z

d
∣
∣ ‖x − y‖ = 1

}

denotes the set of nearest neighbours of x.

(ii) Ehrenfest model Consider a box containing N balls. The box is divided into two
parts ("left" and "right"). A ball is selected randomly and put into the other half.

"microscopic level" the state space is S := {0, 1}N with x = (x1, . . . , xN ) ∈ S
defined by

xi :=

{

1 if the ith ball is contained in the "left" half

0 if the ith ball is contained in the "right" half

the transition probability is given by

K(x, · ) :=
1

N

N∑

i=1

δ(x1,...,xi−1,1−xi,xi+1,...,xN ).
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"macroscopic level" the state space is S := {0, . . . , N}, where j ∈ S denotes
the number of balls contained in the left half. The transition probabilities
are given by

K(j, · ) :=
N − j

N
· δj+1 +

j

N
· δj−1.

(iii) Transition probabilities of the Ornstein-Uhlenbeck process S = S1 = S2 =
R, K(x, · ) := N(αx, σ2) with α ∈ R, σ2 > 0.

We now turn to Fubini’s theorem. To this end, let µ1 be a probability measure on
(S1, S1) and K( · , · ) be a transition probability from (S1, S1) to (S2, S2).
Our aim is to construct a probability measure P (:= µ1 ⊗ K) on the product space
(Ω, A), where

Ω := S1 × S2

A := S1 ⊗ S2 := σ(X1, X2)
!
= σ

(
{A1 × A2 |A1 ∈ S1, A2 ∈ S2}

)
,

and

Xi : Ω = S1 × S2 → Si,

(x1, x2) 7→ xi,

i = 1, 2,

satisfying

P (A1 × A2) =

∫

A1

K(x1, A2) µ1(dx1)

for all A1 ∈ S1 and A2 ∈ S2.

Proposition 2.4 (Fubini). Let µ1 be a probability measure on (S1, S1), K a transition
probability from (S1, S1) to (S2, S2), and

Ω := S1 × S2, (3.1)

A := σ
(
{A1 × A2 |Ai ∈ Si}

)
=: S1 ⊗ S2 . (3.2)

Then there exists a probability measure P (=: µ1 ⊗ K) on (Ω, A), such that for all
A-measurable functions f > 0

∫

Ω

f dP =

∫ (∫

f(x1, x2) K(x1, dx2)

)

µ1(dx1), (3.3)

in particular, for all A ∈ A

P (A) =

∫

K(x1, Ax1
) µ1(dx1) . (3.4)

Here

Ax1
= {x2 ∈ S2 | (x1, x2) ∈ A}
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S1x1

S2

x2

A

A
(1)
x2

A
(2)
x2

A
(1)
x1

A
(2)
x1

A
(3)
x1

Note

Ax1
= A(1)

x1
∪ A(2)

x1
∪ A(3)

x1
and Ax2

= A(1)
x2

∪ A(2)
x2

.

is called the section of A by x1. In particular, for A1 ∈ S1, A2 ∈ S2:

P (A1 × A2) =

∫

A1

K(x1, A2) µ1(dx1). (3.5)

P is uniquely determined by (3.5).

Proof. Uniqueness: Clearly, the collection of cylindrical sets A1 × A2 with Ai ∈ Si is
stable under intersections and generates A, so that the uniqueness now follows from
Proposition 1.11.5.

Existence: For given x1 ∈ S1 let

ϕx1
(x2) := (x1, x2) .

ϕx1
: S2 → Ω is measurable, because for A1 ∈ S1, A2 ∈ S2

ϕ−1
x1

(A1 × A2) =

{

∅ if x1 /∈ A1

A2 if x1 ∈ A1 .
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It follows that for any f : Ω → R A-measurable and any x1 ∈ S1, the mapping

fx1
:= f ◦ ϕx1

: S2 → R , x2 7→ f(x1, x2)

is S2/B(R)-measurable.

Suppose now that f > 0 or bounded. Then

x1 7→
∫

f(x1, x2) K(x1, dx2)

(

=

∫

fx1
(x2) K(x1, dx2)

)

(3.6)

is well-defined.

We will show in the following that this function is S1-measurable. We will prove the
assertion for f = 1A, A ∈ A first. For general f the measurability then follows by
measure-theoretic induction.

Note that for f = 1A we have that

∫

1A(x1, x2)
︸ ︷︷ ︸

=1Ax1
(x2)

K(x1, dx2) = K(x1, Ax1
).

Hence, in the following we consider

D :=
{
A ∈ A

∣
∣ x1 7→ K(x1, Ax1

) S1-measurable
}
.

D is a Dynkin system (!) and contains all cylindrical sets A = A1 × A2 with Ai ∈ Si,
because

K
(
x1, (A1 × A2)x1

)
= 1A1

(x1) · K(x1, A2) .

Since measurable cylindrical sets are stable under intersections, we conclude that D =
A.

It follows that for all nonnegative or bounded A-measurable functions f : Ω → R,
the integral

∫ (∫

f(x1, x2) K(x1, dx2)

)

µ(dx1)

is well-defined.

For all A ∈ A we can now define

P (A) :=

∫ (∫

1A(x1, x2)
︸ ︷︷ ︸

=1Ax1
(x2)

K(x1, dx2)

)

µ(dx1) =

∫

K(x1, Ax1
) µ(dx1).

P is a probability measure on (Ω, A), because

P (Ω) =

∫

K(x1, S2) µ(dx1) =

∫

1 µ(dx1) = 1.
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For the proof of the σ-additivity, let A1, A2, . . . be pairwise disjoint subsets in A. It
follows that for all x1 ∈ S1 the subsets (A1)x1

, (A2)x1
, . . . are pairwise disjoint too,

hence

P
( �⋃

n∈N

An

)

=

∫

K

(

x1,
( �⋃

n∈N

An

)

x1

)

µ(dx1)

=

∫ ∞∑

n=1

K
(
x1, (An)x1

)
µ(dx1)

=

∞∑

n=1

∫

K
(
x1, (An)x1

)
µ(dx1) =

∞∑

n=1

P (An).

In the second equality we used that K(x1, ·) is a probability measure for all x1 and in
the third equality we used monotone integration.

Finally, (3.3) follows from measure-theoretic induction.

2.1 Examples and Applications

Remark 2.5. The classical Fubini theorem is a particular case of Proposition 2.4:
K(x1, · ) = µ2. In this case, the measure µ1 ⊗ K, constructed in Fubini’s theorem, is
called the product measure of µ1 and µ2 and is denoted by µ1 ⊗ µ2. Moreover, in this
case

∫

f dP =

∫ (∫

f(x1, x2) µ2(dx2)

)

µ1(dx1).

Remark 2.6 (Marginal distributions). Let Xi : Ω → Si, i = 1, 2, be the natural
projections Xi

(
(x1, x2)

)
:= xi. The distributions of Xi under the measure µ1 ⊗K are

called the marginal distributions and they are given by

(P ◦ X−1
1 )(A1) = P [X1 ∈ A1] = P (A1 × S2)

=

∫

A1

K(x1, S2)
︸ ︷︷ ︸

=1

µ1(dx1) = µ1(A1)

and

(P ◦ X−1
2 )(A2) = P [X2 ∈ A2] = P (S1 × A2)

=

∫

K(x1, A2) µ1(dx1) =: (µ1K)(A2).

So, the marginal distributions are

P ◦ X−1
1 = µ1 P ◦ X−1

2 = µ1K .

Definition 2.7. Let S1 = S2 = S and S1 = S2 = S. A probability measure µ on (S, S)
is said to be an equilibrium distribution for K (or invariant distribution under K) if
µ = µK.
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Example 2.8. (i) Ehrenfest model (macroscopic) Let S = {0, 1, . . . , N} and

K(y, · ) =
y

N
· δy−1 +

N − y

N
· δy+1.

In this case, the binomial distribution µ with parameter N, 1
2 is an equilibirum

distribution, because

(µK)({x}) =
∑

y∈S

µ({y}) · K(y, x)

= µ({x + 1}) · x + 1

N
+ µ({x − 1}) · N − (x − 1)

N

= 2−N

(
N

x + 1

)

· x + 1

N
+ 2−N

(
N

x − 1

)

· N − (x − 1)

N

= 2−N

[(
N − 1

x

)

+

(
N − 1

x − 1

)]

= 2−N ·
(

N

x

)

= µ({x}).

(ii) Ornstein-Uhlenbeck process Let S = R and K(x, · ) = N(αx, σ2) with |α| < 1.
Then

µ = N

(

0,
σ2

1 − α2

)

is an equilibrium distribution. (Exercise.)

We now turn to the converse problem: Given a probability measure P on the product
space (Ω, A). Can we "disintegrate" P , i.e., can we find a probability measure µ1 on
(S1, S1) and a transition probability from S1 to S2 such that

P = µ1 ⊗ K ?

Answer: In most cases - yes, e.g. if S1 and S2 are Polish spaces (i.e., a topological
space having a countable basis, whose topology is induced by some complete metric),
using conditional expectations (see below).

Example 2.9. In the particular case, when S1 is countable (and S1 = P(S1)), we can
disintegrate P explicitly as follows: Necessarily, µ1 has to be the distribution of the
projection X1 onto the first coordinate. To define the kernel K, let ν be any probability
measure on (S2, S2) and define

K(x1, A2) :=







P [X2 ∈ A2 |X1 = x1] if µ1({x1})
︸ ︷︷ ︸

=P [X1=x1]

> 0

ν(A2) if µ1({x1}) = 0.
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Then

P (A1 × A2) = P [X1 ∈ A1, X2 ∈ A2] =
∑

x1∈A1

P [X1 = x1, X2 ∈ A2]

=
∑

x1∈A1,
µ1({x1})>0

P [X1 = x1] · P [X2 ∈ A2 |X1 = x1]

=
∑

x1∈A1

µ1({x1}) · K(x1, A2) =

∫

A1

K(x1, A2) µ1(dx1)

= (µ1 ⊗ K)(A1 × A2),

hence P = µ1 ⊗ K.

In the next proposition we are interested in an explicit formula for the disintegration
in the case of absolute continuous probability measures.

Note: If P is a probability measure on (Ω, A) and ϕ : Ω → R+ is A-measurable with
∫

ϕ dP = 1. Then

(ϕP )(A) :=

∫

A

ϕ dP

defines another probability measure on (Ω, A).
For a given transition probability K from S1 to S2 and a function ϕ : Ω → R+,

A-measurable, let

Kϕ(x) :=

∫

K(x, dy) ϕ(x, y) , x ∈ S1 .

Proposition 2.10. Let P = µ ⊗ K and P̃ := ϕP . Then P̃ = µ̃ ⊗ K̃ with

µ̃ = (Kϕ)µ und K̃(x, dy) :=
ϕ(x, y)

Kϕ(x)
· K(x, dy)

for all x ∈ S1 with Kϕ(x) > 0 (and K̃(x, · ) = ν, ν any probability measure on (S2, S2)
if x ∈ S2 is such that Kϕ(x) = 0).

Proof. (i) Let µ̃ be the distribution of X1 under P̃ . Then for all A ∈ S1

µ̃(A) = P̃ (A × S2) =

∫

A×S2

ϕ(x, y) dP

=

∫

1A(x)

(∫

ϕ(x, y) K(x, dy)

)

µ(dx) =

∫

A

(Kϕ)(x) µ(dx),

hence µ̃ = (Kϕ)µ. In particular, µ̃-a.s. Kϕ > 0, because

µ̃(Kϕ = 0) =

∫

{Kϕ=0}

(Kϕ)(x)µ(dx) = 0 .
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(ii) Let K̃ be as above. Clearly, K̃ is a transition probability, because

∫

ϕ(x, y) K(x, dy) = Kϕ(x) , so that K̃(x, S2) = 1 ∀x ∈ S1 .

For all A ∈ S1 and B ∈ S2 we then have

P̃ (A × B) =

∫ (∫

1A×B(x, y) · ϕ(x, y) K(x, dy)

︸ ︷︷ ︸

6Kϕ(x)

)

µ(dx)

=

∫

{Kϕ>0}

(∫

1A×B(x, y) · ϕ(x, y) K(x, dy)

)

µ(dx)

=

∫

A

Kϕ(x) K̃(x, B) µ(dx) =

∫

A

K̃(x, B) µ̃(dx)

= (µ̃ ⊗ K̃)(A × B).

3 The canonical model for the evolution of a

stochastic system in discrete time

Consider the following situation: suppose we are given

• measurable spaces (Si, S1), i = 0, 1, 2, . . . and we define

Sn := S0 × S1 × · · · × Sn

S
n := S0 ⊗ S1 ⊗ · · · ⊗ Sn = σ

(
{A0 × · · · × An |Ai ∈ Si}

)
.

• – an initial distribution µ0 on (S0, S0)

– transition probabilities

Kn

(
(x0, . . . , xn−1), dxn

)

from (Sn−1, Sn−1) to (Sn, Sn), n = 1, 2, . . ..

Using Fubini’s theorem, we can then define probability measures Pn on Sn, n =
0, 1, 2, . . . as follows:

P 0 := µ0 on S0,

Pn := Pn−1 ⊗ Kn on Sn = Sn−1 × Sn

15



Note that Fubini’s theorem (see Proposition 2.4) implies that for any Sn-measurable
function f : Sn → R+:

∫

f dPn

=

∫

Pn−1
(
d(x0, . . . , xn−1)

)
∫

Kn

(
(x0, . . . , xn−1), dxn

)
f(x0, . . . , xn−1, xn)

= · · ·

=

∫

µ0(dx0)

∫

K1(x0, dx1) · · ·
∫

Kn

(
(x0, . . . , xn−1), dxn

)
f(x0, . . . , xn).

3.1 The canonical model

Let Ω := S0 × S1 × . . . be the set of all paths (or trajectories) ω = (x0, x1, . . . ) with
xi ∈ Si, and

Xn(ω) := xn (projection onto nth-coordinate),

An := σ(X0, . . . , Xn)
(
⊂ A

)
,

A := σ(X0, X1, . . . ) = σ
( ∞⋃

n=1

An

)

.

Our main goal in this section is to construct a probability measure P on (Ω, A) satisfying
∫

f(X0, . . . , Xn) dP =

∫

f dPn ∀n = 1, 2, . . .

In other words, the "finite dimensional distributions" of P , i.e., the joint distributions
of (X0, . . . , Xn) under P , are given by Pn.

Proposition 3.1 (Ionescu-Tulcea). There exists a unique probability measure P on
(Ω, A) such that for all n > 0 und all Sn-measurable functions f : Sn → R+:

∫

Sn

f dP(X0,...,Xn) =

∫

Ω

f(X0, . . . , Xn) dP =

∫

Sn

f dPn. (3.7)

In other words: there exists a unique P such that Pn = P ◦ (X0, . . . , Xn)−1.

Proof. Uniqueness: Obvious, because the collection of finite cylindrical subsets

E :=
{ n⋂

i=0

{Xi ∈ Ai}
∣
∣
∣ n > 0, Ai ∈ Si

}

is closed under intersections and generates A.
Existence: Let A ∈ An, hence

A = (X0, . . . , Xn)−1(An) for some An ∈ S
n, 1A = 1An(X0, . . . , Xn)

16



In order to have (3.7) we thus have to define

P (A) := Pn(An) . (3.8)

We have to check that P is well-defined. To this end note that A ∈ An ⊂ An+1 implies

A = An × Sn+1 × Sn+2 × · · · = An+1 × Sn+2 × · · · ,

hence An+1 = An × Sn+1. Consequently,

Pn+1(An+1) = Pn+1(An × Sn+1)

=

∫

An

Kn+1

(
(x0, . . . , xn), Sn+1

)

︸ ︷︷ ︸

=1

dPn = Pn(An) .

It follows that P is well-defined by (3.8) on B =
⋃∞

n+1 A. B is an algebra (i.e., a
collection of subsets of Ω containing Ω, that is closed under complements and finite
(!) unions), and P is finitely additive on B, since P is (σ-) additive on An for every
n. To extend P to a σ-additive probability measure on A = σ(B) with the help of
Caratheodory’s extension theorem, it suffices now to show that P is ∅-continuous, i.e.,
the following condition is satisfied:

Bn ∈ B , Bn ց ∅ ⇒ P (Bn)
n→∞−−−−→ 0 .

(For Caratheodory’s extension theorem see text books on measure theory, or Satz 1.41
in Klenke.)

W.l.o.g. B0 = Ω and Bn ∈ An (if Bn ∈ Am, just repeat Bn−1 m-times!). Then

Bn = An × Sn+1 × Sn+2 × . . .

with
An+1 ⊂ An × Sn+1

and we have to show that

(
P (Bn) =

)
Pn(An)

n→∞−−−−→ 0

(i.e., infn Pn(An) = 0).
Suppose on the contrary that

inf
n∈N

Pn(An) > 0 .

We have to show that this implies

∞⋂

n=0

Bn 6= ∅ .

Note that

Pn(An) =

∫

µ0(dx0) f0,n(x0)

17



with

f0,n(x0) :=

∫

K1(x0, dx1) · · ·
∫

Kn

(
(x0, . . . , xn−1), dxn

)
1An(x0, . . . , xn).

It is easy to see that the sequence (f0,n)n∈N is decreasing, because

∫

Kn+1

(
(x0, . . . , xn), dxn+1

)
1An+1(x0, . . . , xn+1)

6

∫

Kn+1

(
(x0, . . . , xn), dxn+1

)
1An×Sn+1

(x0, . . . , xn+1)

= 1An(x0, . . . , xn) ,

hence

f0,n+1(x0) =

∫

K1(x0, dx1) · · ·
∫

Kn+1

(
(x0, . . . , xn), dxn+1

)
1An+1(x0, . . . , xn+1)

≤
∫

K1(x0, dx1) · · ·
∫

Kn

(
(x0, . . . , xn−1), dxn

)
1An(x0, . . . , xn) = f0,n(x0) .

In particular,

∫

inf
n∈N

f0,n dµ0 = inf
n∈N

∫

f0,n dµ0 = inf
n∈N

Pn(An) > 0 .

Therefore we can find some x̄0 ∈ S0 with

inf
n∈N

f0,n(x̄0) > 0 .

On the other hand we can write

f0,n(x̄0) =

∫

K1(x̄0, dx1) f1,n(x1)

with

f1,n(x1) :=

∫

K2

(
(x̄0, x1), dx2

)

· · ·
∫

Kn

(
(x̄0, x1, . . . , xn−1), dxn

)
IAn(x̄0, x1, . . . , xn) .

Using the same argument as above (with µ1 = K1(x̄0, ·)) we can find some x̄1 ∈ S1

with

inf
n∈N

f1,n(x̄1) > 0 .

Iterating this procedure, we find for any i = 0, 1, . . . some x̄i ∈ Si such that for all

18



m > 0

inf
n∈N

∫

Km

(
(x̄0, . . . , x̄m−1), dxm

)

· · ·
∫

Kn

(
(x̄0, . . . , x̄m−1, xm, . . . , xn−1), dxn

)

1An(x̄0, . . . , x̄m−1, xm, . . . , xn)

> 0.

In particular, if m = n

0 <

∫

Km

(
(x̄0, . . . , x̄m−1), dxm

)
1Am(x̄0, . . . , x̄m−1, xm)

6 1Am−1(x̄0, . . . x̄m−1) ,

so that

(x̄0, . . . , x̄m−1) ∈ Am−1 and ω̄ := (x̄0, x̄1, . . . ) ∈ Bm−1
︸ ︷︷ ︸

=Am−1×Sm×Sm+1×···

for all m ≥ 1, i.e.,

ω̄ ∈
∞⋂

m=0

Bm .

Hence the assertion is proven.

Definition 3.2. Suppose that (Si, Si) = (S, S) for all i = 0, 1, 2, . . .. Then (Xn)n>0 on
(Ω, A, P ) (with P as in the previous proposition is said to be a stochastic process (in
discrete time) with state space (S, S), initial distribution µ0 and transition probabilities
(
Kn( · , · )

)

n∈N
.

3.2 Examples

1) Infinite product measures
Let

Kn

(
(x0, . . . , xn−1), ·

)
= µn ,

independent of (x0, . . . , xn−1): Then

P =:

∞⊗

n=0

µn

is said to be the product measure associated with µ0, µ1, . . . .
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For all n > 0 and A0, . . . , An ∈ S we have that

P [X0 ∈ A0, . . . , Xn ∈ An]
I.-T.
= Pn(A0 × · · · × An)

=

∫

µ0(dx0)

∫

µ1(dx1) · · ·
∫

µn(dxn) IA0×···×An
(x0, . . . , xn)

= µ0(A0) · µ1(A1) · · ·µn(An).

In particular, PXn
= µn for all n, and the natural projections X0, X1, . . . are indepen-

dent. We thus have the following:

Proposition 3.3. Let (µn) be a sequence of probability measures on a measurable
space (S, S). Then there exists a probability space (Ω, A, P ) and a sequence (Xn) of
independent r.v. with PXn

= µn for all n.

We have thus proven in particular the existence of a probability space modelling
infinitely many independent 0 − 1-experiments!

2) Markov chains

Kn

(
(x0, . . . , xn−1), ·

)
= K̃n(xn−1, · )

time-homogeneous, if K̃n = K for all n.
For given initial distribution µ and transition probabilities K there exists a unique

probability measure P on (Ω, A), which is said to be the canonical model for the time
evolution of a Markov chain.

Example 3.4. Let S = R, β > 0, x0 ∈ R \ {0}, µ0 = δx0
and K(x, · ) = N(0, βx2)

(K(0, · ) = δ0)
For which β does the sequence (Xn) converge and what is its limit?
For n > 1

E[X2
n]

I.-T.
=

∫

x2
n Pn

(
d(x0, . . . , xn)

)

=

∫ ( ∫

x2
n K(xn−1, dxn)

︸ ︷︷ ︸

=βx2
n−1,

K(xn−1,dxn)=N(0,βx2
n−1)

)

Pn−1(dx0, . . . , dxn−1)

= β · E[X2
n−1] = · · · = βnx2

0 .

If β < 1 it follows that

E

[ ∞∑

n=1

X2
n

]

=

∞∑

n=1

E[X2
n] =

∞∑

n=1

βnx2
0 < ∞,

hence
∞∑

n=1
X2

n < ∞ P -a.s., and therefore

lim
n→∞

Xn = 0 P -a.s.
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A similar calculation as above for the first absolute moment yields

E
[
|Xn|

]
= · · · =

√

2

π
· β · E

[
|Xn−1|

]
= · · · =

(
2

π
· β

)n
2

· E
(
|X0|

)

︸ ︷︷ ︸

=|x0|

,

because
∫

|Xn| K(xn−1, dxn) =

√

2

π
· σ =

√

2

π
· β |xn−1| .

Consequently,

E

[ ∞∑

n=1

|Xn|
]

=

∞∑

n=1

(
2

π
· β

) n
2

· |x0| ,

so that also for β < π
2 :

lim
n→∞

Xn = 0 P -a.s.

In fact, if we define

β0 := exp

(

− 4√
2π

∫ ∞

0

log x · e− x2

2 dx

)

= 2eC ≈ 3.56,

where

C := lim
n→∞

( n∑

k=1

1

k
− log n

)

≈ 0.577

denotes the Euler-Mascheroni constant, it follows that

∀ β < β0 : Xn
n→∞−−−−→ 0 P -a.s. with exp. rate

∀ β > β0 : |Xn| n→∞−−−−→ ∞ P -a.s. with exp. rate.

Proof. It is easy to see that for all n: Xn 6= 0 P -a.s. For n ∈ N we can then define

Yn :=

{
Xn

Xn−1
on {Xn−1 6= 0}

0 on {Xn−1 = 0}.

Then Y1, Y2, . . . are independent r.v. with distribution N(0, β), because for all mea-
surable functions f : R

n → R+

∫

f(Y1, . . . , Yn) dP
I.-T.
=

∫

f

(
x1

x0
, . . . ,

xn

xn−1

)

·
(

1

2πβ

)n
2

·
(

1

x2
0 · · ·x2

n−1

) 1
2

· exp

(

− x2
1

2βx2
0

− · · · − x2
n

2βx2
n−1

)

dx1 . . .dxn

=

∫

f(y1, . . . , yn) ·
(

1

2πβ

) n
2

· exp

(

−y2
1 + · · · + y2

n

2β

)

dy1 . . . dyn .
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Note that

|Xn| = |x0| · |Y1| · · · |Yn|

and thus

1

n
· log|Xn| =

1

n
· log|x0| +

1

n

n∑

i=1

log|Yi| .

Note that (log|Yi|)i∈N are independent and identically distributed with

E
[
log|Yi|

]
= 2 · 1√

2πβ

∫ ∞

0

log x · e− x2

2β dx .

Kolmogorov’s law of large numbers now implies that

lim
n→∞

1

n
· log|Xn| =

2√
2πβ

∫ ∞

0

log x · e− x2

2β dx P -a.s.

Consequently,

|Xn| n→∞−−−−→ 0 with exp. rate, if

∫

· · · < 0,

|Xn| n→∞−−−−→ ∞ with exp. rate, if

∫

· · · > 0.

Note that

2√
2πβ

∫ ∞

0

log x · e− x2

2β dx
y= x

√

β

=
2√
2π

∫ ∞

0

log(
√

βy) · e−y2

2 dy

=
1

2
· log β +

2√
2π

∫ ∞

0

log y · e−y2

2 dy

< 0 ⇔ β < β0.

It remains to check that

− 4√
2π

∫ ∞

0

log x · e− x2

2 dx = log 2 + C

where C is the Euler-Mascheroni constant (Exercise!)

Example 3.5. Consider independent 0-1-experiments with success probability p ∈ [0, 1]
but suppose that p ist unknown. In the canonical model:

Si := {0, 1}, i ∈ N; Ω := {0, 1}N,

Xi : Ω → {0, 1}, i ∈ N, projections,

µi := pε1 + (1 − p)ε0, i ∈ N; Pp :=

∞⊗

i=1

µi
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An and A are defined as above.

Since p is unknown, we choose an a priori distribution µ on
(
[0, 1], B([0, 1])

)
(as a

distribution for the unknown parameter p).

Claim: K(p, · ) := Pp( · ) is a transition probability from
(
[0, 1], B([0, 1])

)
to (Ω, A).

Proof. We only need to show that for given A ∈ A the mapping p 7→ Pp(A) is mea-
surable on [0, 1]. To this end define

D :=
{
A ∈ A

∣
∣ p 7→ Pp(A) is B([0, 1])-measurable

}

Then D is a Dynkin system and contains all finite cylindrical sets

{X1 = x1, . . . , Xn = xn}, n ∈ N, x1, . . . , xn ∈ {0, 1} ,

because

Pp(X1 = x1, . . . , Xn = xn) = p
Pn

i=1
xi(1 − p)n−

Pn
i=1

xi

is measurable (even continuous) in p!

The claim now follows from the fact, that the finite cylindrical sets are closed under
intersections and generate A.

Let P̄ := µ ⊗ K on Ω̄ := [0, 1] × Ω with B([0, 1]) ⊗ A. Using Remark 2.6 it follows
that P̄ has marginal distributions µ and

P ( · ) :=

∫

Pp( · ) µ(dp) (3.9)

on (Ω, A). The integral can be seen as mixture of Pp according to the a priori distri-
bution µ.

Note: The Xi are no longer independent under P !

We now calculate the initial distribution PX1
and the transition probabilities in the

particular case where µ is the Lebesgue measure (i.e., the uniform distribution on the
unknown parameter p):

P ◦ X−1
1 =

∫
(
pε1 + (1 − p)ε0

)
( · ) µ(dp)

=

∫

p µ(dp) · ε1 +

∫

(1 − p) µ(dp) · ε0 =
1

2
· ε1 +

1

2
· ε0.
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For given n ∈ N and x1, . . . , xn ∈ {0, 1} with k :=
∑n

i=1 xi it follows that

P [Xn+1 = 1 |X1 = x1, . . . , Xn = xn]

=
P [Xn+1 = 1, Xn = xn, . . . , X1 = x1]

P [Xn = xn, . . . , X1 = x1]

(3.9)
=

∫

pk+1(1 − p)n−k µ(dp)
∫

pk(1 − p)n−k µ(dp)

=
Γ(k + 2)Γ(n − k + 1)

Γ(n + 3)

Γ(n + 2)

Γ(k + 1)Γ(n − k + 1)
=

k + 1

n + 2

=

(

1 − n

n + 2

)

· 1

2
+

n

n + 2
· k

n
︸ ︷︷ ︸

convex combination

.

Proposition 3.6. Let P be a probability measure on (Ω, A) ("canonical model"), and

µn := P ◦ X−1
n , n ∈ N0.

Then:

Xn, n ∈ N, independent ⇔ P =
∞⊗

n=0

µn.

Proof. Let P̃ :=
⊗∞

n=0 µn. Then

P = P̃

if and only if for all n ∈ N0 and all A0 ∈ S0, . . . , An ∈ Sn

P [X0 ∈ A0, . . . , Xn ∈ An] = P̃ [X0 ∈ A0, . . . , Xn ∈ An]

=

n∏

i=0

µi(Ai) =

n∏

i=0

P [Xi ∈ Ai],

which is the case if and only if Xn, n ∈ N0, are independent.

Definition 3.7. Let Si := S, i ∈ N0, (Ω, A) be the canonical model and P be a
probability measure on (Ω, A). In particular, (Xn)n>0 is a stochastich process in the
sense of Definition 3.2. Let J ⊂ N0, |J | < ∞. Then the distribution of (Xj)j∈J under
P

µJ := P ◦ (Xi)
−1
i∈J

is said to be the finite dimensional distribution (w.r.t. J) on (SJ , SJ).

Remark 3.8. P is uniquely determined by its finite-dimensional distributions resp. by

µ{0,...,n}, n ∈ N .

24



4 Stationarity

Let (S, S) be a measurable space, Ω = SN0 and (Ω, A) be the associated canonical
model. Let P be a probability measure on (Ω, A).

Definition 4.1. The mapping T : Ω → Ω, defined by

ω = (x0, x1, . . . ) 7→ Tω := (x1, x2, . . . )

is called the shift-operator on Ω.

Remark 4.2. For all n ∈ N0, A0, . . . , An ∈ S

T−1
(
{X0 ∈ A0, . . . , Xn ∈ An}

)
= {X1 ∈ A0, . . . , Xn+1 ∈ An}.

In particular: T is A/A-measurable

Definition 4.3. The measure P is said to be stationary (or shift-invariant) if

P ◦ T−1 = P .

Proposition 4.4. The measure P is stationary if and only if for all k, n ∈ N0:

µ{0,...,n} = µ{k,...,k+n}.

Proof.

P ◦ T−1 = P

⇔ P ◦ T−k = P ∀k ∈ N0

3.8⇔ (P ◦ T−k) ◦ (X0, . . . , Xn)−1 = P ◦ (X0, . . . , Xn)−1 ∀ k, n ∈ N0

⇔ µ{k,...,n+k} = µ{0,...,n}.

Remark 4.5. (i) The last proposition implies in the particular case

P =
∞⊗

i=1

µn with µn := P ◦ X−1
n

that

P stationary ⇔ µn = µ0 ∀ n ∈ N.

(ii) If P =
⊗

µn as in (i), hence X0, X1, X2, . . . independent, Kolmogorov’s zero-one
law implies that P = 0 − 1 on the tail-field

A
∗ :=

⋂

n>0

σ(Xn, Xn+1, . . . )
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Proposition 4.6. Let P =
⊗∞

n=0 µn, µn := P ◦X−1
n , n ∈ N0. Then P is ergodic, i.e.

P = 0 − 1 on I := {A ∈ A |T−1(A) = A} .

I is called the σ-algebra of shift-invariant sets.

Proof. Using part (ii) of the previous remark, it suffices to show that I ⊂ A∗. But

A ∈ I ⇒ A = T−n(A) ∈ σ(Xn, Xn+1, . . . ) ∀ n ∈ N

⇒ A ∈ A
∗.
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