Probability Theory

Wilhelm Stannat Technische Universität Darmstadt Winter Term 2007/08

This text is a summary of the lecture on Probability Theory held at the TU Darmstadt in Winter Term 2007/08.

Please email all misprints and mistakes to stannat@mathematik.tu-darmstadt.de

Bibliography

- 1. Bauer, H., Probability theory, de Gruyter, 1996.
- 2. Bauer, H., Maß- und Integrationstheorie, de Gruyter, 1996.
- 3. Billingsley, P., Probability and Measure, Wiley, 1995.
- 4. Billingsley, P., Convergence of probability measures, Wiley, 1999.
- 5. Dudley, R.M., Real analysis and probability, Cambridge University Press, 2002.
- 6. Elstrodt, J., Maß- und Integrationstheorie, Springer, 2005.
- 7. Feller, W., An introduction to probability theory and its applications, Vol. 1 & 2, Wiley, 1950.
- 8. Halmos, P.R., Measure Theory, Springer, 1974.
- 9. Klenke, A., Wahrscheinlichkeitstheorie, Springer, 2006.
- 10. Shiryaev, A.N., Probability, Springer, 1996.

3 Conditional probabilities

1 Elementary definitions

Let (Ω, \mathcal{A}, P) be a probability space.

Definition 1.1. Let $B \in \mathcal{A}$ with P(B) > 0. Then

$$P[A \mid B] := \frac{P(A \cap B)}{P(B)}, \quad A \in \mathcal{A},$$

is said to be the *conditional probability of* A *given* B. In the case P(B) = 0 we simply define P[A | B] := 0. The probability measure

 $P_B := P[\cdot \mid B]$

on (Ω, \mathcal{A}) is said to be the *conditional distribution given* B.

Remark 1.2. (i) P(A) is called the a priori probability of A.

 $P[A \mid B]$ is called the a posteriori probability of A, given the information that B occurred.

(ii) In the case of Laplace experiments

$$P[A | B] = \frac{|A \cap B|}{|B|}$$
 = fraction of all outcomes in A that are contained in B.

- (iii) If A and B are disjoint (hence $A \cap B = \emptyset$), then P[A | B] = 0.
- (iv) If A and B are independent, then

$$P[A | B] = \frac{P(A) \cdot P(B)}{P(B)} = P(A).$$

Example 1.3. (i) Suppose that a family has two children. Consider the following two events: B := "at least one boy" and A := "two boys". Then $P[A | B] = \frac{1}{3}$, because

$$\Omega = \{ (J, J), (M, J), (J, M), (M, M) \},\$$

P =uniform distribution,

and thus

$$P[A \mid B] = \frac{|A \cap B|}{|B|} = \frac{1}{3}.$$

(ii) Let X_1, X_2 be independent r.v. with Poisson distribution with parameters λ_1, λ_2 . Then

$$P[X_1 = k | X_1 + X_2 = n] = \begin{cases} 0 & \text{if } k > n \\ ? & \text{if } 0 \leq k \leq n \end{cases}$$

According to Example 4.7 X_1+X_2 has Poisson distribution with parameter $\lambda:=\lambda_1+\lambda_2.$ Consequently,

$$P[X_1 = k | X_1 + X_2 = n] = \frac{P[X_1 = k, X_2 = n - k]}{P[X_1 + X_2 = n]}$$
$$= \frac{e^{-\lambda_1} \frac{\lambda_1^k}{k!} \cdot e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!}}{e^{-\lambda} \frac{\lambda_n^n}{n!}} = \binom{n}{k} \cdot \left(\frac{\lambda_1}{\lambda}\right)^k \left(\frac{\lambda_2}{\lambda}\right)^{n-k},$$

i.e., $P[\cdot \mid X_1+X_2=n]$ is the binomial distribution with parameters n and $p=\frac{\lambda_1}{\lambda_1+\lambda_2}.$

(iii) Consider n independent 0-1-experiments X_1, \ldots, X_n with success probability $p \in]0, 1[$. Let

$$S_n := X_1 + \ldots + X_n$$

and

$$\begin{array}{rcl} X_i: & \Omega:=\{0,1\}^n & \rightarrow & \{0,1\}, \\ & & (x_1,\ldots,x_n) & \mapsto & x_i. \end{array}$$

For given $(x_1, \ldots, x_n) \in \{0, 1\}^n$ and fixed $k \in \{0, \ldots, n\}$

$$P[X_1 = x_1, \dots, X_n = x_n | S_n = k] = \begin{cases} 0 & \text{if } \sum_i x_i \neq k \\ \frac{p^k (1-p)^{n-k}}{\binom{n}{k} p^k (1-p)^{n-k}} = \binom{n}{k}^{-1} & \text{otherwise} \end{cases}$$

It follows that the conditional distribution $P[\,\cdot\mid S_n=k]$ is the uniform distribution on

$$\Omega_k := \left\{ (x_1, \dots, x_n) \mid \sum_{i=1}^n x_i = k \right\}.$$

Proposition 1.4. (Formula for total probability) Let B_1, \ldots, B_n be disjoint, $B_i \in A$ $\forall 1 \leq i \leq n$. Then for all $A \subset \bigcup_{i=1}^n B_i$, $A \in A$:

$$P(A) = \sum_{i=1}^{n} P[A | B_i] \cdot P(B_i).$$

Proof. Clearly, $A = \bigcup_{i \leq n} (A \cap B_i)$. Consequently,

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i).$$

Example 1.5. (Simpson's paradox)

Consider applications of male (M) and female (W) students at a university in the United States

	Applications		
M	2084	1036	$P[A M] \approx 0.49$
W	1067	349	$P[A \mid W] \approx 0.33$

Is this an example for discrimination of female students? A closer look to the biggest four faculties B_1, \ldots, B_4 :

	male			fem	ale	
	Appl.	acc.	$P_M[A B_i]$	Appl.	acc.	$P_W[A B_i]$
B_1	826	551	0.67	108	89	0.82
B_2	560	353	0.63	25	17	0.68
B_3	325	110	0.34	593	219	0.37
B_4	373	22	0.06	341	24	0.07
	2084	1036		1067	349	

It follows that for all four faculties the probability of being accepted was higher for female students than it was for male students:

 $P_M[A \mid B_i] < P_W[A \mid B_i].$

Nevertheless, the preference turns into its opposite if looking at the total probability of admission:

$$P_W(A) := P[A | W] = \sum_{i=1}^{4} P_W[A | B_i] \cdot P_W(B_i)$$

< $P_M(A) := P[A | M] = \sum_{i=1}^{4} P_M[A | B_i] \cdot P_M(B_i).$

For an explanation consider the distributions of applications:

$$P_M(B_1) = \frac{|B_1 \cap M|}{|M|} = \frac{826}{2084} \approx \frac{4}{10}, \quad P_W(B_1) = \frac{|B_1 \cap W|}{|W|} = \frac{108}{1067} \approx \frac{1}{10},$$

etc. and observe that male students mainly applied at faculties with a high probability of admission, whereas female students mainly applied at faculties with a low probability of admission. **Proposition 1.6** (Bayes' theorem). Let $B_1, \ldots, B_n \in A$ be disjoint with $P(B_i) > 0$ for $i = 1, \ldots, n$. Let $A \in A$, $A \subset \bigcup_{i=1}^n B_i$ with P(A) > 0. Then:

$$P[B_i | A] = \frac{P[A | B_i] \cdot P(B_i)}{\sum_{j=1}^{n} P[A | B_j] \cdot P(B_j)}.$$

Proof.

$$P[B_i \mid A] = \frac{P(A \cap B_i)}{P(A)} \stackrel{1.4}{=} \frac{P[A \mid B_i] \cdot P(B_i)}{\sum_{j=1}^n P[A \mid B_j] \cdot P(B_j)}.$$

Example 1.7 (A posteriori probabilities in medical tests). Suppose that one out of 145 persons of the same age have the disease K, i.e. the a priori probability of having K is $P[\mathsf{K}] = \frac{1}{145}$.

Suppose now that a medical test for K is given which detects K in 96 % of all cases, i.e.

P[positive | K] = 0.96.

However, the test also is positive in 6% af the cases, where the person does not have $K, \, {\rm i.e.}$

$$P[\text{positive} | K^c] = 0.06$$
.

Suppose now that the test is positive. What is the a posteriori probability of actually having K?

So we are interested in the conditional probability P[K | positive]:

$$\begin{split} P[K \mid \texttt{positive}] \stackrel{1.6}{=} & \frac{P[\texttt{positive} \mid K] \cdot P[K]}{P[\texttt{positive} \mid K] \cdot P[K] + P[\texttt{positive} \mid K^c] \cdot P[K^c]} \\ &= \frac{0.96 \cdot \frac{1}{145}}{0.96 \cdot \frac{1}{145} + 0.06 \cdot \frac{144}{145}} = \frac{1}{1 + \frac{6}{96} \cdot 144} = \frac{1}{10}. \end{split}$$

Note: in only one out of ten cases, a person with a positive result actually has K.

Another conditional probability of interest in this context is the probability of not having K, once the test is negative, i.e., $P[K^c | negative]$:

$$\begin{split} P[K^c \,|\, \texttt{negative}] &= \frac{P[\texttt{negative} \,|\, K^c] \cdot P[K^c]}{P[\texttt{negative} \,|\, K] \cdot P[K] + P[\texttt{negative} \,|\, K^c] \cdot P[K^c]} \\ &= \frac{0.94 \cdot \frac{144}{145}}{0.04 \cdot \frac{1}{145} + 0.94 \cdot \frac{144}{145}} = \frac{94 \cdot 144}{4 + 94 \cdot 144} \approx 0.9997. \end{split}$$

Note: The two conditional probabilities interchange, if the a priori probability of not having K is low (e.g. $\frac{1}{145}$). If the risc of having K is high and one wants to test whether or not having K, the a posteriori probability of not having K, given that the test was negative, is only 0.1.

Example 1.8 (computing total probabilities with conditional probabilities). Let S be a finite set, $\Omega := S^{n+1}$, $n \in \mathbb{N}$, and P be a probability measure on Ω . Let $X_i : \Omega \to S$, $i = 0, \ldots, n$, be the canonical projections $X_i(\omega) := x_i$ for $\omega = (x_0, \ldots, x_n)$.

If we interpret $0, 1, \ldots, n$ as time points, then $(X_i)_{0 \le i \le n}$ may be seen as a *stochastic* process and $(X_0(\omega), \ldots, X_n(\omega))$ is said to be a *sample path* (or a *trajectory*) of the process.

For all $\omega \in \Omega$ we either have $P(\{\omega\}) = 0$ or

$$P(\{\omega\}) = P[X_0 = x_0, \dots, X_n = x_n]$$

= $P[X_0 = x_0, \dots, X_{n-1} = x_{n-1}]$
 $\cdot P[X_n = x_n | X_0 = x_0, \dots, X_{n-1} = x_{n-1}]$
 \vdots
= $P[X_0 = x_0]$
 $\cdot P[X_1 = x_1 | X_0 = x_0]$
 $\cdot P[X_2 = x_2 | X_0 = x_0, X_1 = x_1]$
 \cdots
 $\cdot P[X_n = x_n | X_0 = x_0, \dots, X_{n-1} = x_{n-1}].$

Note: $P(\{\omega\}) \neq 0$ implies $P[X_0 = x_0, \dots, X_k = x_k] \neq 0$ for all $k \in \{0, \dots, n\}$.

Conclusion: A probability measure P on Ω is uniquely determined by the following:

Initial distribution: $\mu := P \circ X_0^{-1}$

Transition probabilities: the conditional distributions

$$P[X_k = x_k \,|\, X_0 = x_0, \dots, X_{k-1} = x_{k-1}]$$

for any $k \in \{1, ..., n\}$ and $(x_0, ..., x_k) \in S^{(k+1)}$.

Existence of P for given initial distribution and given transition probabilities is shown in Section 3.3.

Example 1.9. A stochastic process is called a *Markov chain*, if $P[X_k = x_k | X_0 = x_0, \ldots, X_{k-1} = x_{k-1}] = P[X_k = x_k | X_{k-1} = x_{k-1}]$, i.e., if the transition probabilities for X_k only depend on X_{k-1} .

If we denote by X_{k-1} the "present", by X_k the "future" and by " X_0, \ldots, X_{k-2} " the past, then we can state the Markov property as: given the "present", the "future" of the Markov chain is independent of the "past".

2 Transition probabilities and Fubini's theorem

Let (S_1, S_1) and (S_2, S_2) be measurable spaces.

Definition 2.1. A mapping

$$\begin{array}{rccc} K: & S_1 \times \mathbb{S}_2 & \to & [0,1] \\ & & (x_1,A_2) & \mapsto & K(x_1,A_2) \end{array}$$

is said to be a *transition probabilities* (from (S_1, S_1) to (S_2, S_2)), if

- (i) $\forall x_1 \in S_1$: $K(x_1, \cdot)$ is a probability measure on (S_2, S_2) .
- (ii) $\forall A_2 \in S_2$: $K(\cdot, A_2)$ is S_1 -measurable.

Example 2.2. (i) For given probability measure μ on (S_2, S_2) define

 $K(x_1, \cdot) := \mu \qquad \forall x_1 \in S_1 \text{ no coupling!}$

(ii) Let $T:S_1 \to S_2$ be a S_1/S_2 -measurable mapping, and

$$K(x_1, \cdot) := \delta_{T(x_1)} \qquad \forall x_1 \in S_1.$$

(iii) Stochastic matrices Let S_1, S_2 be countable and $S_i = \mathcal{P}(S_i)$, i = 1, 2. In this case, any transition probability from (S_1, S_1) to (S_2, S_2) is given by

$$K(x_1, x_2) := K(x_1, \{x_2\}), \quad x_1 \in S_1, \ x_2 \in S_2,$$

where $K: S_1 \times S_2 \rightarrow [0, 1]$ is a mapping, such that for all $x_1 \in S_1 \sum_{x_2 \in S_2} K(x_1, x_2) = 1$. Consequently, K can be identified with a stochastic matrix, or a transition matrix, i.e. a matrix with nonnegative entries and row sums equal to one.

Example 2.3. (i) Transition probabilities of the random walk on \mathbb{Z}^d

$$S_1 = S_2 = S := \mathbb{Z}^d \text{ with } \mathbb{S} := \mathcal{P}(\mathbb{Z}^d)$$
$$K(x, \cdot) := \frac{1}{2d} \sum_{i=1}^d \delta_{ii}, x \in \mathbb{Z}^d,$$

$$K(x, \cdot) := \frac{1}{2d} \sum_{y \in N(x)} \delta_y, x \in \mathbb{Z}$$

with

$$N(x) := \left\{ y \in \mathbb{Z}^d \mid ||x - y|| = 1 \right\}$$

denotes the set of nearest neighbours of x.

- (ii) Ehrenfest model Consider a box containing N balls. The box is divided into two parts ("left" and "right"). A ball is selected randomly and put into the other half.
 - "microscopic level" the state space is $S := \{0,1\}^N$ with $x = (x_1, \ldots, x_N) \in S$ defined by

$$x_i := \begin{cases} 1 & \text{if the } i^{th} \text{ ball is contained in the "left" half} \\ 0 & \text{if the } i^{th} \text{ ball is contained in the "right" half} \end{cases}$$

the transition probability is given by

$$K(x, \cdot) := \frac{1}{N} \sum_{i=1}^{N} \delta_{(x_1, \dots, x_{i-1}, 1-x_i, x_{i+1}, \dots, x_N)}.$$

"macroscopic level" the state space is $S := \{0, ..., N\}$, where $j \in S$ denotes the number of balls contained in the left half. The transition probabilities are given by

$$K(j,\,\cdot\,) := \frac{N-j}{N} \cdot \delta_{j+1} + \frac{j}{N} \cdot \delta_{j-1}$$

(iii) Transition probabilities of the Ornstein-Uhlenbeck process $S = S_1 = S_2 = \mathbb{R}$, $K(x, \cdot) := N(\alpha x, \sigma^2)$ with $\alpha \in \mathbb{R}$, $\sigma^2 > 0$.

We now turn to Fubini's theorem. To this end, let μ_1 be a probability measure on (S_1, S_1) and $K(\cdot, \cdot)$ be a transition probability from (S_1, S_1) to (S_2, S_2) . Our aim is to construct a probability measure P (:= $\mu_1 \otimes K$) on the product space (Ω, \mathcal{A}) , where

$$\Omega := S_1 \times S_2$$
$$\mathcal{A} := \mathfrak{S}_1 \otimes \mathfrak{S}_2 := \sigma(X_1, X_2) \stackrel{!}{=} \sigma(\{A_1 \times A_2 \mid A_1 \in \mathfrak{S}_1, A_2 \in \mathfrak{S}_2\}),$$

and

$$\begin{array}{rccc} X_i: & \Omega = S_1 \times S_2 & \to & S_i, \quad i = 1, 2, \\ & & (x_1, x_2) & \mapsto & x_i, \end{array}$$

satisfying

$$P(A_1 \times A_2) = \int_{A_1} K(x_1, A_2) \ \mu_1(\mathrm{d}x_1)$$

for all $A_1 \in S_1$ and $A_2 \in S_2$.

Proposition 2.4 (Fubini). Let μ_1 be a probability measure on (S_1, S_1) , K a transition probability from (S_1, S_1) to (S_2, S_2) , and

$$\Omega := S_1 \times S_2, \tag{3.1}$$

$$\mathcal{A} := \sigma(\{A_1 \times A_2 \,|\, A_i \in \mathbb{S}_i\}) =: \mathbb{S}_1 \otimes \mathbb{S}_2.$$

$$(3.2)$$

Then there exists a probability measure P (=: $\mu_1 \otimes K$) on (Ω, \mathcal{A}) , such that for all \mathcal{A} -measurable functions $f \ge 0$

$$\int_{\Omega} f \, \mathrm{d}P = \int \left(\int f(x_1, x_2) \, K(x_1, \mathrm{d}x_2) \right) \, \mu_1(\mathrm{d}x_1), \tag{3.3}$$

in particular, for all $A \in \mathcal{A}$

$$P(A) = \int K(x_1, A_{x_1}) \ \mu_1(\mathrm{d}x_1) \,. \tag{3.4}$$

Here

$$A_{x_1} = \{ x_2 \in S_2 \, | \, (x_1, x_2) \in A \}$$

is called the section of A by x_1 . In particular, for $A_1 \in S_1$, $A_2 \in S_2$:

$$P(A_1 \times A_2) = \int_{A_1} K(x_1, A_2) \ \mu_1(\mathrm{d}x_1).$$
(3.5)

P is uniquely determined by (3.5).

Proof. Uniqueness: Clearly, the collection of cylindrical sets $A_1 \times A_2$ with $A_i \in S_i$ is stable under intersections and generates A, so that the uniqueness now follows from Proposition 1.11.5.

Existence: For given $x_1 \in S_1$ let

$$\varphi_{x_1}(x_2) := (x_1, x_2)$$

 $\varphi_{x_1}:S_2\to \Omega$ is measurable, because for $A_1\in \mathbb{S}_1,\,A_2\in \mathbb{S}_2$

$$\varphi_{x_1}^{-1}(A_1 \times A_2) = \begin{cases} \emptyset & \text{if } x_1 \notin A_1 \\ A_2 & \text{if } x_1 \in A_1 \end{cases}.$$

It follows that for any $f:\Omega \to \mathbb{R}$ A-measurable and any $x_1 \in S_1$, the mapping

$$f_{x_1} := f \circ \varphi_{x_1} : S_2 \to \mathbb{R}, x_2 \mapsto f(x_1, x_2)$$

is $S_2/\mathcal{B}(\mathbb{R})$ -measurable.

Suppose now that $f \ge 0$ or bounded. Then

$$x_1 \mapsto \int f(x_1, x_2) K(x_1, \mathrm{d}x_2) \left(= \int f_{x_1}(x_2) K(x_1, \mathrm{d}x_2) \right)$$
 (3.6)

is well-defined.

We will show in the following that this function is S_1 -measurable. We will prove the assertion for $f = 1_A$, $A \in \mathcal{A}$ first. For general f the measurability then follows by measure-theoretic induction.

Note that for $f = 1_A$ we have that

$$\int \underbrace{\mathbf{1}_A(x_1, x_2)}_{=\mathbf{1}_{A_{x_1}}(x_2)} K(x_1, \mathrm{d}x_2) = K(x_1, A_{x_1}).$$

Hence, in the following we consider

$$\mathcal{D} := \{ A \in \mathcal{A} \mid x_1 \mapsto K(x_1, A_{x_1}) \ \mathfrak{S}_1 \text{-measurable} \}.$$

 \mathcal{D} is a Dynkin system (!) and contains all cylindrical sets $A = A_1 \times A_2$ with $A_i \in S_i$, because

$$K(x_1, (A_1 \times A_2)_{x_1}) = 1_{A_1}(x_1) \cdot K(x_1, A_2).$$

Since measurable cylindrical sets are stable under intersections, we conclude that $\mathcal{D}=\mathcal{A}.$

It follows that for all nonnegative or bounded A-measurable functions $f:\Omega\to\mathbb{R},$ the integral

$$\int \left(\int f(x_1, x_2) K(x_1, \mathrm{d}x_2)\right) \mu(\mathrm{d}x_1)$$

is well-defined.

For all $A \in \mathcal{A}$ we can now define

$$P(A) := \int \left(\int \underbrace{\mathbf{1}_A(x_1, x_2)}_{=\mathbf{1}_{A_{x_1}}(x_2)} K(x_1, \mathrm{d}x_2) \right) \mu(\mathrm{d}x_1) = \int K(x_1, A_{x_1}) \mu(\mathrm{d}x_1)$$

P is a probability measure on (Ω, \mathcal{A}) , because

$$P(\Omega) = \int K(x_1, S_2) \ \mu(\mathrm{d}x_1) = \int 1 \ \mu(\mathrm{d}x_1) = 1.$$

For the proof of the σ -additivity, let A_1, A_2, \ldots be pairwise disjoint subsets in \mathcal{A} . It follows that for all $x_1 \in S_1$ the subsets $(A_1)_{x_1}, (A_2)_{x_1}, \ldots$ are pairwise disjoint too, hence

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \int K\left(x_1, \left(\bigcup_{n\in\mathbb{N}}A_n\right)_{x_1}\right)\mu(\mathrm{d}x_1)$$
$$= \int \sum_{n=1}^{\infty} K\left(x_1, (A_n)_{x_1}\right)\mu(\mathrm{d}x_1)$$
$$= \sum_{n=1}^{\infty} \int K\left(x_1, (A_n)_{x_1}\right)\mu(\mathrm{d}x_1) = \sum_{n=1}^{\infty} P(A_n).$$

In the second equality we used that $K(x_1, \cdot)$ is a probability measure for all x_1 and in the third equality we used monotone integration.

Finally, (3.3) follows from measure-theoretic induction.

2.1 Examples and Applications

Remark 2.5. The classical Fubini theorem is a particular case of Proposition 2.4: $K(x_1, \cdot) = \mu_2$. In this case, the measure $\mu_1 \otimes K$, constructed in Fubini's theorem, is called the product measure of μ_1 and μ_2 and is denoted by $\mu_1 \otimes \mu_2$. Moreover, in this case

$$\int f \, \mathrm{d}P = \int \left(\int f(x_1, x_2) \, \mu_2(\mathrm{d}x_2) \right) \, \mu_1(\mathrm{d}x_1).$$

Remark 2.6 (Marginal distributions). Let $X_i : \Omega \to S_i$, i = 1, 2, be the natural projections $X_i((x_1, x_2)) := x_i$. The distributions of X_i under the measure $\mu_1 \otimes K$ are called the marginal distributions and they are given by

)

$$(P \circ X_1^{-1})(A_1) = P[X_1 \in A_1] = P(A_1 \times S_2)$$
$$= \int_{A_1} \underbrace{K(x_1, S_2)}_{=1} \mu_1(dx_1) = \mu_1(A_1)$$

and

$$(P \circ X_2^{-1})(A_2) = P[X_2 \in A_2] = P(S_1 \times A_2)$$
$$= \int K(x_1, A_2) \ \mu_1(\mathrm{d}x_1) =: (\mu_1 K)(A_2)$$

So, the marginal distributions are

$$P \circ X_1^{-1} = \mu_1 \qquad P \circ X_2^{-1} = \mu_1 K.$$

Definition 2.7. Let $S_1 = S_2 = S$ and $S_1 = S_2 = S$. A probability measure μ on (S, S) is said to be an *equilibrium distribution for* K (or *invariant distribution under* K) if $\mu = \mu K$.

Example 2.8. (i) Ehrenfest model (macroscopic) Let $S = \{0, 1, ..., N\}$ and

$$K(y, \cdot) = \frac{y}{N} \cdot \delta_{y-1} + \frac{N-y}{N} \cdot \delta_{y+1}.$$

In this case, the binomial distribution μ with parameter $N,\frac{1}{2}$ is an equilibirum distribution, because

$$\begin{split} (\mu K)(\{x\}) &= \sum_{y \in S} \mu(\{y\}) \cdot K(y, x) \\ &= \mu(\{x+1\}) \cdot \frac{x+1}{N} + \mu(\{x-1\}) \cdot \frac{N-(x-1)}{N} \\ &= 2^{-N} \binom{N}{x+1} \cdot \frac{x+1}{N} + 2^{-N} \binom{N}{x-1} \cdot \frac{N-(x-1)}{N} \\ &= 2^{-N} \left[\binom{N-1}{x} + \binom{N-1}{x-1} \right] = 2^{-N} \cdot \binom{N}{x} = \mu(\{x\}) \end{split}$$

(ii) Ornstein-Uhlenbeck process Let $S = \mathbb{R}$ and $K(x, \cdot) = N(\alpha x, \sigma^2)$ with $|\alpha| < 1$. Then

$$\mu = N\!\left(0, \frac{\sigma^2}{1 - \alpha^2}\right)$$

is an equilibrium distribution. (Exercise.)

We now turn to the converse problem: Given a probability measure P on the product space (Ω, \mathcal{A}) . Can we "disintegrate" P, i.e., can we find a probability measure μ_1 on (S_1, S_1) and a transition probability from S_1 to S_2 such that

$$P = \mu_1 \otimes K?$$

Answer: In most cases - yes, e.g. if S_1 and S_2 are Polish spaces (i.e., a topological space having a countable basis, whose topology is induced by some complete metric), using conditional expectations (see below).

Example 2.9. In the particular case, when S_1 is countable (and $S_1 = \mathcal{P}(S_1)$), we can disintegrate P explicitly as follows: Necessarily, μ_1 has to be the distribution of the projection X_1 onto the first coordinate. To define the kernel K, let ν be any probability measure on (S_2, S_2) and define

$$K(x_1, A_2) := \begin{cases} P[X_2 \in A_2 \,|\, X_1 = x_1] & \text{if } \underbrace{\mu_1(\{x_1\})}_{=P[X_1 = x_1]} > 0 \\ \nu(A_2) & \text{if } \mu_1(\{x_1\}) = 0. \end{cases}$$

Then

$$\begin{split} P(A_1 \times A_2) &= P[X_1 \in A_1, \ X_2 \in A_2] = \sum_{x_1 \in A_1} P[X_1 = x_1, \ X_2 \in A_2] \\ &= \sum_{\substack{x_1 \in A_1, \\ \mu_1(\{x_1\}) > 0}} P[X_1 = x_1] \cdot P[X_2 \in A_2 \mid X_1 = x_1] \\ &= \sum_{x_1 \in A_1} \mu_1(\{x_1\}) \cdot K(x_1, A_2) = \int_{A_1} K(x_1, A_2) \ \mu_1(\mathrm{d}x_1) \\ &= (\mu_1 \otimes K)(A_1 \times A_2), \end{split}$$

hence $P = \mu_1 \otimes K$.

In the next proposition we are interested in an explicit formula for the disintegration in the case of absolute continuous probability measures.

Note: If P is a probability measure on (Ω, \mathcal{A}) and $\varphi : \Omega \to \mathbb{R}_+$ is \mathcal{A} -measurable with $\int \varphi \, \mathrm{d}P = 1$. Then

$$(\varphi P)(A) := \int_A \varphi \, \mathrm{d} P$$

defines another probability measure on (Ω, \mathcal{A}) .

For a given transition probability K from S_1 to S_2 and a function $\varphi:\Omega\to\mathbb{R}_+$, $\mathcal A\text{-measurable, let}$

$$K\varphi(x) := \int K(x, \mathrm{d}y) \, \varphi(x, y) \,, x \in S_1$$

Proposition 2.10. Let $P = \mu \otimes K$ and $\tilde{P} := \varphi P$. Then $\tilde{P} = \tilde{\mu} \otimes \tilde{K}$ with

$$\tilde{\mu} = (K\varphi)\mu$$
 und $\tilde{K}(x, \mathrm{d}y) := \frac{\varphi(x, y)}{K\varphi(x)} \cdot K(x, \mathrm{d}y)$

for all $x \in S_1$ with $K\varphi(x) > 0$ (and $\tilde{K}(x, \cdot) = \nu$, ν any probability measure on (S_2, S_2) if $x \in S_2$ is such that $K\varphi(x) = 0$).

Proof. (i) Let $\tilde{\mu}$ be the distribution of X_1 under \tilde{P} . Then for all $A \in S_1$

$$\tilde{\mu}(A) = \tilde{P}(A \times S_2) = \int_{A \times S_2} \varphi(x, y) \, \mathrm{d}P$$
$$= \int \mathbb{1}_A(x) \left(\int \varphi(x, y) \, K(x, \mathrm{d}y) \right) \, \mu(\mathrm{d}x) = \int_A (K\varphi)(x) \, \mu(\mathrm{d}x),$$

hence $\tilde{\mu} = (K\varphi)\mu$. In particular, $\tilde{\mu}$ -a.s. $K\varphi > 0$, because

$$\tilde{\mu}(K\varphi=0) = \int_{\{K\varphi=0\}} (K\varphi)(x) \, \mu(dx) = 0 \, .$$

14

(ii) Let \tilde{K} be as above. Clearly, \tilde{K} is a transition probability, because

$$\int \varphi(x,y) \ K(x,\mathrm{d} y) = K\varphi(x) \,, \text{ so that } \tilde{K}(x,S_2) = 1 \qquad \forall x \in S_1 \,.$$

For all $A \in S_1$ and $B \in S_2$ we then have

$$\begin{split} \tilde{P}(A \times B) &= \int \left(\underbrace{\int \mathbf{1}_{A \times B}(x, y) \cdot \varphi(x, y) \ K(x, \mathrm{d}y)}_{\leqslant K \varphi(x)} \right) \mu(\mathrm{d}x) \\ &= \int_{\{K\varphi > 0\}} \left(\int \mathbf{1}_{A \times B}(x, y) \cdot \varphi(x, y) \ K(x, \mathrm{d}y) \right) \mu(\mathrm{d}x) \\ &= \int_{A} K \varphi(x) \ \tilde{K}(x, B) \ \mu(\mathrm{d}x) = \int_{A} \tilde{K}(x, B) \ \tilde{\mu}(\mathrm{d}x) \\ &= (\tilde{\mu} \otimes \tilde{K})(A \times B). \end{split}$$

3 The canonical model for the evolution of a stochastic system in discrete time

Consider the following situation: suppose we are given

• measurable spaces (S_i, \mathbb{S}_1) , $i = 0, 1, 2, \ldots$ and we define

$$S^{n} := S_{0} \times S_{1} \times \dots \times S_{n}$$
$$S^{n} := S_{0} \otimes S_{1} \otimes \dots \otimes S_{n} = \sigma (\{A_{0} \times \dots \times A_{n} \mid A_{i} \in S_{i}\}).$$

- – an initial distribution μ_0 on (S_0, S_0)
 - transition probabilities

$$K_n\bigl((x_0,\ldots,x_{n-1}),\mathrm{d} x_n\bigr)$$
 from $(S^{n-1},\mathbb{S}^{n-1})$ to $(S_n,\mathbb{S}_n),\ n=1,2,\ldots$

Using Fubini's theorem, we can then define probability measures P^n on S^n , $n = 0, 1, 2, \ldots$ as follows:

$$\begin{array}{ll} P^0 & := \mu_0 & \mbox{ on } S_0, \\ \\ P^n & := P^{n-1} \otimes K_n & \mbox{ on } S^n = S^{n-1} \times S_n \end{array}$$

Note that Fubini's theorem (see Proposition 2.4) implies that for any S^n -measurable function $f: S^n \to \mathbb{R}_+$:

$$\int f \, dP^n$$

$$= \int P^{n-1} (d(x_0, \dots, x_{n-1})) \int K_n ((x_0, \dots, x_{n-1}), dx_n) f(x_0, \dots, x_{n-1}, x_n)$$

$$= \cdots$$

$$= \int \mu_0 (dx_0) \int K_1(x_0, dx_1) \cdots \int K_n ((x_0, \dots, x_{n-1}), dx_n) f(x_0, \dots, x_n).$$

3.1 The canonical model

Let $\Omega := S_0 \times S_1 \times \ldots$ be the set of all paths (or trajectories) $\omega = (x_0, x_1, \ldots)$ with $x_i \in S_i$, and

$$X_n(\omega) := x_n \quad (\text{projection onto } n^{th}\text{-coordinate}),$$
$$\mathcal{A}_n := \sigma(X_0, \dots, X_n) \quad (\subset \mathcal{A}),$$
$$\mathcal{A} := \sigma(X_0, X_1, \dots) = \sigma\Big(\bigcup_{n=1}^{\infty} \mathcal{A}_n\Big).$$

Our main goal in this section is to construct a probability measure P on (Ω, \mathcal{A}) satisfying

$$\int f(X_0, \dots, X_n) dP = \int f dP^n \qquad \forall n = 1, 2, \dots$$

In other words, the "finite dimensional distributions" of P, i.e., the joint distributions of (X_0, \ldots, X_n) under P, are given by P^n .

Proposition 3.1 (lonescu-Tulcea). There exists a unique probability measure P on (Ω, \mathcal{A}) such that for all $n \ge 0$ und all \mathbb{S}^n -measurable functions $f: S^n \to \mathbb{R}_+$:

$$\int_{S^n} f \, \mathrm{d}P_{(X_0,\dots,X_n)} = \int_{\Omega} f(X_0,\dots,X_n) \, \mathrm{d}P = \int_{S^n} f \, \mathrm{d}P^n.$$
(3.7)

In other words: there exists a unique P such that $P^n = P \circ (X_0, \ldots, X_n)^{-1}$.

Proof. Uniqueness: Obvious, because the collection of finite cylindrical subsets

$$\mathcal{E} := \left\{ \bigcap_{i=0}^{n} \{ X_i \in A_i \} \mid n \ge 0, \ A_i \in \mathfrak{S}_i \right\}$$

is closed under intersections and generates \mathcal{A} . *Existence:* Let $A \in \mathcal{A}_n$, hence

$$A=(X_0,\ldots,X_n)^{-1}(A^n)$$
 for some $A^n\in \mathbb{S}^n$, $1_A=1_{A^n}(X_0,\ldots,X_n)$

In order to have (3.7) we thus have to define

$$P(A) := P^n(A^n).$$
(3.8)

We have to check that P is well-defined. To this end note that $A \in A_n \subset A_{n+1}$ implies

$$A = A^n \times S_{n+1} \times S_{n+2} \times \cdots = A^{n+1} \times S_{n+2} \times \cdots$$

hence $A^{n+1} = A^n \times S_{n+1}$. Consequently,

$$P^{n+1}(A^{n+1}) = P^{n+1}(A^n \times S_{n+1})$$

=
$$\int_{A^n} \underbrace{K_{n+1}((x_0, \dots, x_n), S_{n+1})}_{=1} dP^n = P^n(A^n).$$

It follows that P is well-defined by (3.8) on $\mathcal{B} = \bigcup_{n+1}^{\infty} \mathcal{A}$. \mathcal{B} is an algebra (i.e., a collection of subsets of Ω containing Ω , that is closed under complements and finite (!) unions), and P is finitely additive on \mathcal{B} , since P is (σ -) additive on \mathcal{A}_n for every n. To extend P to a σ -additive probability measure on $\mathcal{A} = \sigma(\mathcal{B})$ with the help of Caratheodory's extension theorem, it suffices now to show that P is \emptyset -continuous, i.e., the following condition is satisfied:

$$B_n \in \mathcal{B}, B_n \searrow \emptyset \quad \Rightarrow \quad P(B_n) \xrightarrow{n \to \infty} 0.$$

(For Caratheodory's extension theorem see text books on measure theory, or Satz 1.41 in Klenke.)

W.l.o.g. $B_0 = \Omega$ and $B_n \in \mathcal{A}_n$ (if $B_n \in \mathcal{A}_m$, just repeat B_{n-1} *m*-times!). Then

$$B_n = A^n \times S_{n+1} \times S_{n+2} \times \dots$$

with

$$A^{n+1} \subset A^n \times S_{n+1}$$

and we have to show that

$$(P(B_n) =) \quad P^n(A^n) \xrightarrow{n \to \infty} 0$$

(i.e., $\inf_n P^n(A^n) = 0$).

Suppose on the contrary that

$$\inf_{n\in\mathbb{N}}P^n(A^n)>0\,.$$

We have to show that this implies

$$\bigcap_{n=0}^{\infty} B_n \neq \emptyset.$$

Note that

$$P^{n}(A^{n}) = \int \mu_{0}(\mathrm{d}x_{0}) f_{0,n}(x_{0})$$

with

$$f_{0,n}(x_0) := \int K_1(x_0, \mathrm{d}x_1) \cdots \int K_n((x_0, \dots, x_{n-1}), \mathrm{d}x_n) \, \mathbf{1}_{A^n}(x_0, \dots, x_n).$$

It is easy to see that the sequence $(f_{0,n})_{n\in\mathbb{N}}$ is decreasing, because

$$\int K_{n+1} ((x_0, \dots, x_n), \mathrm{d}x_{n+1}) \, 1_{A^{n+1}} (x_0, \dots, x_{n+1})$$

$$\leqslant \int K_{n+1} ((x_0, \dots, x_n), \mathrm{d}x_{n+1}) \, 1_{A^n \times S_{n+1}} (x_0, \dots, x_{n+1})$$

$$= 1_{A^n} (x_0, \dots, x_n) \,,$$

hence

$$f_{0,n+1}(x_0) = \int K_1(x_0, \mathrm{d}x_1) \cdots \int K_{n+1}((x_0, \dots, x_n), \mathrm{d}x_{n+1}) \, \mathbf{1}_{A^{n+1}}(x_0, \dots, x_{n+1})$$

$$\leq \int K_1(x_0, \mathrm{d}x_1) \cdots \int K_n((x_0, \dots, x_{n-1}), \mathrm{d}x_n) \, \mathbf{1}_{A^n}(x_0, \dots, x_n) = f_{0,n}(x_0)$$

In particular,

$$\int \inf_{n \in \mathbb{N}} f_{0,n} \, \mathrm{d}\mu_0 = \inf_{n \in \mathbb{N}} \int f_{0,n} \, \mathrm{d}\mu_0 = \inf_{n \in \mathbb{N}} P^n(A^n) > 0 \, .$$

Therefore we can find some $\bar{x}_0 \in S_0$ with

$$\inf_{n\in\mathbb{N}}f_{0,n}(\bar{x}_0)>0\,.$$

On the other hand we can write

$$f_{0,n}(\bar{x}_0) = \int K_1(\bar{x}_0, \mathrm{d}x_1) \ f_{1,n}(x_1)$$

with

$$f_{1,n}(x_1) := \int K_2((\bar{x}_0, x_1), \mathrm{d}x_2)$$

$$\cdots \int K_n((\bar{x}_0, x_1, \dots, x_{n-1}), \mathrm{d}x_n) \mathbb{I}_{A^n}(\bar{x}_0, x_1, \dots, x_n).$$

Using the same argument as above (with $\mu_1=K_1(\bar{x}_0,\cdot))$ we can find some $\bar{x}_1\in S_1$ with

$$\inf_{n\in\mathbb{N}}f_{1,n}(\bar{x}_1)>0\,.$$

Iterating this procedure, we find for any $i=0,1,\ldots$ some $ar{x}_i\in S_i$ such that for all

 $m \geqslant 0$

$$\inf_{n \in \mathbb{N}} \int K_m \left((\bar{x}_0, \dots, \bar{x}_{m-1}), \mathrm{d}x_m \right)$$
$$\cdots \int K_n \left((\bar{x}_0, \dots, \bar{x}_{m-1}, x_m, \dots, x_{n-1}), \mathrm{d}x_n \right)$$
$$1_{A^n} (\bar{x}_0, \dots, \bar{x}_{m-1}, x_m, \dots, x_n)$$
$$> 0.$$

In particular, if m = n

$$0 < \int K_m ((\bar{x}_0, \dots, \bar{x}_{m-1}), \mathrm{d}x_m) \, \mathbf{1}_{A^m} (\bar{x}_0, \dots, \bar{x}_{m-1}, x_m) \\ \leqslant \mathbf{1}_{A^{m-1}} (\bar{x}_0, \dots, \bar{x}_{m-1}),$$

so that

$$(\bar{x}_0,\ldots,\bar{x}_{m-1})\in A^{m-1}$$
 and $\bar{\omega}:=(\bar{x}_0,\bar{x}_1,\ldots)\in \underbrace{B_{m-1}}_{=A^{m-1}\times S_m\times S_{m+1}\times\cdots}$

for all $m \geq 1$, i.e.,

$$\bar{\omega} \in \bigcap_{m=0}^{\infty} B_m$$

Hence the assertion is proven.

Definition 3.2. Suppose that $(S_i, S_i) = (S, S)$ for all i = 0, 1, 2, ... Then $(X_n)_{n \ge 0}$ on (Ω, \mathcal{A}, P) (with P as in the previous proposition is said to be a *stochastic process* (in discrete time) with *state space* (S, S), *initial distribution* μ_0 and *transition probabilities* $(K_n(\cdot, \cdot))_{n \in \mathbb{N}}$.

3.2 Examples

1) Infinite product measures

Let

$$K_n((x_0,\ldots,x_{n-1}),\,\cdot\,)=\mu_n\,$$

independent of (x_0, \ldots, x_{n-1}) : Then

$$P =: \bigotimes_{n=0}^{\infty} \mu_n$$

is said to be the product measure associated with μ_0, μ_1, \ldots

For all $n \ge 0$ and $A_0, \ldots, A_n \in S$ we have that

$$P[X_0 \in A_0, \dots, X_n \in A_n] \stackrel{\text{I-T-}}{=} P^n(A_0 \times \dots \times A_n)$$
$$= \int \mu_0(\mathrm{d}x_0) \int \mu_1(\mathrm{d}x_1) \cdots \int \mu_n(\mathrm{d}x_n) \mathbb{I}_{A_0 \times \dots \times A_n}(x_0, \dots, x_n)$$
$$= \mu_0(A_0) \cdot \mu_1(A_1) \cdots \mu_n(A_n).$$

In particular, $P_{X_n} = \mu_n$ for all n, and the natural projections X_0, X_1, \ldots are independent. We thus have the following:

Proposition 3.3. Let (μ_n) be a sequence of probability measures on a measurable space (S, S). Then there exists a probability space (Ω, \mathcal{A}, P) and a sequence (X_n) of independent r.v. with $P_{X_n} = \mu_n$ for all n.

We have thus proven in particular the existence of a probability space modelling infinitely many independent 0-1-experiments!

2) Markov chains

$$K_n((x_0,\ldots,x_{n-1}),\,\cdot\,) = K_n(x_{n-1},\,\cdot\,)$$

time-homogeneous, if $\tilde{K}_n = K$ for all n.

For given initial distribution μ and transition probabilities K there exists a unique probability measure P on (Ω, \mathcal{A}) , which is said to be the canonical model for the time evolution of a *Markov chain*.

Example 3.4. Let $S = \mathbb{R}$, $\beta > 0$, $x_0 \in \mathbb{R} \setminus \{0\}$, $\mu_0 = \delta_{x_0}$ and $K(x, \cdot) = N(0, \beta x^2)$ $(K(0, \cdot) = \delta_0)$

For which β does the sequence (X_n) converge and what is its limit? For $n \geqslant 1$

$$\mathbb{E}[X_n^2] \stackrel{\text{I}-T}{=} \int x_n^2 P^n (d(x_0, \dots, x_n))$$

= $\int \left(\underbrace{\int x_n^2 K(x_{n-1}, dx_n)}_{=\beta x_{n-1}^2, K(x_{n-1}, dx_n) = N(0, \beta x_{n-1}^2)} \right) P^{n-1}(dx_0, \dots, dx_{n-1})$
= $\beta \cdot \mathbb{E}[X_{n-1}^2] = \dots = \beta^n x_0^2.$

If $\beta < 1$ it follows that

$$\mathbb{E}\Big[\sum_{n=1}^{\infty} X_n^2\Big] = \sum_{n=1}^{\infty} \mathbb{E}[X_n^2] = \sum_{n=1}^{\infty} \beta^n x_0^2 < \infty,$$

hence $\sum\limits_{n=1}^{\infty}X_n^2<\infty$ P-a.s., and therefore

$$\lim_{n \to \infty} X_n = 0 \quad P\text{-a.s.}$$

A similar calculation as above for the first absolute moment yields

$$\mathbb{E}\big[|X_n|\big] = \dots = \sqrt{\frac{2}{\pi} \cdot \beta} \cdot \mathbb{E}\big[|X_{n-1}|\big] = \dots = \left(\frac{2}{\pi} \cdot \beta\right)^{\frac{n}{2}} \cdot \underbrace{\mathbb{E}\big(|X_0|\big)}_{=|x_0|},$$

because

$$\int |X_n| K(x_{n-1}, \mathrm{d}x_n) = \sqrt{\frac{2}{\pi}} \cdot \sigma = \sqrt{\frac{2}{\pi}} \cdot \beta |x_{n-1}|.$$

Consequently,

$$\mathbb{E}\left[\sum_{n=1}^{\infty} |X_n|\right] = \sum_{n=1}^{\infty} \left(\frac{2}{\pi} \cdot \beta\right)^{\frac{n}{2}} \cdot |x_0|,$$

so that also for $\beta < \frac{\pi}{2}$:

$$\lim_{n \to \infty} X_n = 0 \quad P\text{-a.s.}$$

In fact, if we define

$$\beta_0 := \exp\left(-\frac{4}{\sqrt{2\pi}} \int_0^\infty \log x \cdot e^{-\frac{x^2}{2}} \,\mathrm{d}x\right)$$
$$= 2e^C \approx 3.56,$$

where

$$C := \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \approx 0.577$$

denotes the Euler-Mascheroni constant, it follows that

$$\begin{array}{l} \forall \; \beta < \beta_0 : X_n \xrightarrow{n \to \infty} 0 \quad P \text{-a.s. with exp. rate} \\ \forall \; \beta > \beta_0 : |X_n| \xrightarrow{n \to \infty} \infty \quad P \text{-a.s. with exp. rate.} \end{array}$$

Proof. It is easy to see that for all $n: X_n \neq 0$ P-a.s. For $n \in \mathbb{N}$ we can then define

$$Y_n := \begin{cases} \frac{X_n}{X_{n-1}} & \text{on } \{X_{n-1} \neq 0\} \\ 0 & \text{on } \{X_{n-1} = 0\}. \end{cases}$$

Then Y_1, Y_2, \ldots are independent r.v. with distribution $N(0, \beta)$, because for all measurable functions $f : \mathbb{R}^n \to \mathbb{R}_+$

$$\int f(Y_1, \dots, Y_n) \, \mathrm{d}P \stackrel{\mathrm{I}-\mathrm{T}}{=} \int f\left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_{n-1}}\right) \cdot \left(\frac{1}{2\pi\beta}\right)^{\frac{n}{2}} \cdot \left(\frac{1}{x_0^2 \cdots x_{n-1}^2}\right)^{\frac{1}{2}}$$
$$\cdot \exp\left(-\frac{x_1^2}{2\beta x_0^2} - \dots - \frac{x_n^2}{2\beta x_{n-1}^2}\right) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n$$
$$= \int f(y_1, \dots, y_n) \cdot \left(\frac{1}{2\pi\beta}\right)^{\frac{n}{2}} \cdot \exp\left(-\frac{y_1^2 + \dots + y_n^2}{2\beta}\right) \, \mathrm{d}y_1 \dots \, \mathrm{d}y_n \, .$$

21

Note that

$$|X_n| = |x_0| \cdot |Y_1| \cdots |Y_n|$$

and thus

$$\frac{1}{n} \cdot \log|X_n| = \frac{1}{n} \cdot \log|x_0| + \frac{1}{n} \sum_{i=1}^n \log|Y_i|.$$

Note that $(\log |Y_i|)_{i\in\mathbb{N}}$ are independent and identically distributed with

$$\mathbb{E}\left[\log|Y_i|\right] = 2 \cdot \frac{1}{\sqrt{2\pi\beta}} \int_0^\infty \log x \cdot e^{-\frac{x^2}{2\beta}} \, \mathrm{d}x \,.$$

Kolmogorov's law of large numbers now implies that

$$\lim_{n \to \infty} \frac{1}{n} \cdot \log |X_n| = \frac{2}{\sqrt{2\pi\beta}} \int_0^\infty \log x \cdot e^{-\frac{x^2}{2\beta}} \, \mathrm{d}x \quad P\text{-a.s.}$$

Consequently,

$$|X_n| \xrightarrow{n \to \infty} 0$$
 with exp. rate, if $\int \dots < 0$,
 $|X_n| \xrightarrow{n \to \infty} \infty$ with exp. rate, if $\int \dots > 0$.

Note that

$$\begin{aligned} \frac{2}{\sqrt{2\pi\beta}} \int_0^\infty \log x \cdot e^{-\frac{x^2}{2\beta}} \, \mathrm{d}x &\stackrel{y=\frac{x}{\sqrt{\beta}}}{=} \frac{2}{\sqrt{2\pi}} \int_0^\infty \log(\sqrt{\beta}y) \cdot e^{-\frac{y^2}{2}} \, \mathrm{d}y \\ &= \frac{1}{2} \cdot \log \beta + \frac{2}{\sqrt{2\pi}} \int_0^\infty \log y \cdot e^{-\frac{y^2}{2}} \, \mathrm{d}y \\ &< 0 \quad \Leftrightarrow \quad \beta < \beta_0. \end{aligned}$$

It remains to check that

$$-\frac{4}{\sqrt{2\pi}} \int_0^\infty \log x \cdot e^{-\frac{x^2}{2}} \, \mathrm{d}x = \log 2 + C$$

where C is the Euler-Mascheroni constant (Exercise!)

Example 3.5. Consider independent 0-1-experiments with success probability $p \in [0, 1]$ but suppose that p ist unknown. In the canonical model:

$$\begin{split} S_i &:= \{0, 1\}, \ i \in \mathbb{N}; \quad \Omega := \{0, 1\}^{\mathbb{N}}, \\ X_i &: \Omega \to \{0, 1\}, \ i \in \mathbb{N}, \quad \text{projections,} \\ \mu_i &:= p \varepsilon_1 + (1 - p) \varepsilon_0, \ i \in \mathbb{N}; \quad P_p := \bigotimes_{i=1}^{\infty} \mu_i \end{split}$$

 \mathcal{A}_n and \mathcal{A} are defined as above.

Since p is unknown, we choose an a priori distribution μ on $([0,1], \mathcal{B}([0,1]))$ (as a distribution for the unknown parameter p).

Claim: $K(p, \cdot) := P_p(\cdot)$ is a transition probability from $([0, 1], \mathcal{B}([0, 1]))$ to (Ω, \mathcal{A}) .

Proof. We only need to show that for given $A \in \mathcal{A}$ the mapping $p \mapsto P_p(A)$ is measurable on [0, 1]. To this end define

 $\mathcal{D} := \left\{ A \in \mathcal{A} \mid p \mapsto P_p(A) \text{ is } \mathcal{B}([0,1]) \text{-measurable} \right\}$

Then $\mathcal D$ is a Dynkin system and contains all finite cylindrical sets

$$\{X_1 = x_1, \dots, X_n = x_n\}, n \in \mathbb{N}, x_1, \dots, x_n \in \{0, 1\},\$$

because

$$P_p(X_1 = x_1, \dots, X_n = x_n) = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

is measurable (even continuous) in p!

The claim now follows from the fact, that the finite cylindrical sets are closed under intersections and generate A.

Let $\bar{P} := \mu \otimes K$ on $\bar{\Omega} := [0,1] \times \Omega$ with $\mathcal{B}([0,1]) \otimes \mathcal{A}$. Using Remark 2.6 it follows that \bar{P} has marginal distributions μ and

$$P(\cdot) := \int P_p(\cdot) \,\mu(\mathrm{d}p) \tag{3.9}$$

on (Ω, \mathcal{A}) . The integral can be seen as mixture of P_p according to the a priori distribution μ .

Note: The X_i are no longer independent under P!

We now calculate the initial distribution P_{X_1} and the transition probabilities in the particular case where μ is the Lebesgue measure (i.e., the uniform distribution on the unknown parameter p):

$$P \circ X_1^{-1} = \int (p\varepsilon_1 + (1-p)\varepsilon_0)(\cdot) \mu(\mathrm{d}p)$$
$$= \int p \,\mu(\mathrm{d}p) \cdot \varepsilon_1 + \int (1-p) \,\mu(\mathrm{d}p) \cdot \varepsilon_0 = \frac{1}{2} \cdot \varepsilon_1 + \frac{1}{2} \cdot \varepsilon_0.$$

For given $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in \{0, 1\}$ with $k := \sum_{i=1}^n x_i$ it follows that

$$\begin{split} P[X_{n+1} = 1 \mid X_1 = x_1, \dots, X_n = x_n] \\ &= \frac{P[X_{n+1} = 1, X_n = x_n, \dots, X_1 = x_1]}{P[X_n = x_n, \dots, X_1 = x_1]} \\ \underbrace{\overset{(3.9)}{=} \frac{\int p^{k+1} (1-p)^{n-k} \ \mu(dp)}{\int p^k (1-p)^{n-k} \ \mu(dp)}}_{\Gamma(n+2)} \\ &= \frac{\Gamma(k+2)\Gamma(n-k+1)}{\Gamma(n+3)} \frac{\Gamma(n+2)}{\Gamma(k+1)\Gamma(n-k+1)} = \frac{k+1}{n+2} \\ &= \underbrace{\left(1 - \frac{n}{n+2}\right) \cdot \frac{1}{2} + \frac{n}{n+2} \cdot \frac{k}{n}}_{\text{convex combination}}. \end{split}$$

Proposition 3.6. Let P be a probability measure on (Ω, \mathcal{A}) ("canonical model"), and

 $\mu_n := P \circ X_n^{-1}, \quad n \in \mathbb{N}_0.$

Then:

$$X_n, n \in \mathbb{N}, \text{ independent} \quad \Leftrightarrow \quad P = \bigotimes_{n=0}^{\infty} \mu_n.$$

Proof. Let $\tilde{P} := \bigotimes_{n=0}^{\infty} \mu_n$. Then

 $P=\tilde{P}$

if and only if for all $n \in \mathbb{N}_0$ and all $A_0 \in S_0, \ldots, A_n \in S_n$

$$P[X_0 \in A_0, \dots, X_n \in A_n] = \tilde{P}[X_0 \in A_0, \dots, X_n \in A_n]$$
$$= \prod_{i=0}^n \mu_i(A_i) = \prod_{i=0}^n P[X_i \in A_i],$$

which is the case if and only if X_n , $n \in \mathbb{N}_0$, are independent.

Definition 3.7. Let $S_i := S$, $i \in \mathbb{N}_0$, (Ω, \mathcal{A}) be the canonical model and P be a probability measure on (Ω, \mathcal{A}) . In particular, $(X_n)_{n \ge 0}$ is a stochastich process in the sense of Definition 3.2. Let $J \subset \mathbb{N}_0$, $|J| < \infty$. Then the distribution of $(X_j)_{j \in J}$ under P

 $\mu_J := P \circ (X_i)_{i \in J}^{-1}$

is said to be the *finite dimensional distribution* (w.r.t. J) on (S^J, S^J) .

Remark 3.8. *P* is uniquely determined by its finite-dimensional distributions resp. by

$$\mu_{\{0,\ldots,n\}}, \quad n \in \mathbb{N}.$$

4 Stationarity

Let (S, S) be a measurable space, $\Omega = S^{\mathbb{N}_0}$ and (Ω, \mathcal{A}) be the associated canonical model. Let P be a probability measure on (Ω, \mathcal{A}) .

Definition 4.1. The mapping $T: \Omega \to \Omega$, defined by

 $\omega = (x_0, x_1, \dots) \mapsto T\omega := (x_1, x_2, \dots)$

is called the *shift-operator* on Ω .

Remark 4.2. For all $n \in \mathbb{N}_0$, $A_0, \ldots, A_n \in \mathbb{S}$

 $T^{-1}(\{X_0 \in A_0, \dots, X_n \in A_n\}) = \{X_1 \in A_0, \dots, X_{n+1} \in A_n\}.$

In particular: T is A/A-measurable

Definition 4.3. The measure *P* is said to be *stationary* (or *shift-invariant*) if

 $P \circ T^{-1} = P \,.$

Proposition 4.4. The measure P is stationary if and only if for all $k, n \in \mathbb{N}_0$:

 $\mu_{\{0,...,n\}} = \mu_{\{k,...,k+n\}}.$

Proof.

$$P \circ T^{-1} = P$$

$$\Leftrightarrow P \circ T^{-k} = P \quad \forall k \in \mathbb{N}_0$$

$$\stackrel{3.8}{\Leftrightarrow} (P \circ T^{-k}) \circ (X_0, \dots, X_n)^{-1} = P \circ (X_0, \dots, X_n)^{-1} \quad \forall k, n \in \mathbb{N}_0$$

$$\Leftrightarrow \mu_{\{k,\dots,n+k\}} = \mu_{\{0,\dots,n\}}.$$

Remark 4.5. (i) The last proposition implies in the particular case

$$P = \bigotimes_{i=1}^{\infty} \mu_n \quad \text{with} \quad \mu_n := P \circ X_n^{-1}$$

that

P stationary
$$\Leftrightarrow$$
 $\mu_n = \mu_0 \quad \forall n \in \mathbb{N}.$

(ii) If $P = \bigotimes \mu_n$ as in (i), hence X_0, X_1, X_2, \ldots independent, Kolmogorov's zero-one law implies that P = 0 - 1 on the tail-field

$$\mathcal{A}^* := \bigcap_{n \ge 0} \sigma(X_n, X_{n+1}, \dots)$$

Proposition 4.6. Let $P = \bigotimes_{n=0}^{\infty} \mu_n$, $\mu_n := P \circ X_n^{-1}$, $n \in \mathbb{N}_0$. Then P is ergodic, i.e. P = 0 - 1 on $\mathfrak{I} := \{A \in \mathcal{A} \mid T^{-1}(A) = A\}$.

 ${\mathbb J}$ is called the $\sigma\text{-algebra}$ of shift-invariant sets.

Proof. Using part (ii) of the previous remark, it suffices to show that $\mathfrak{I} \subset \mathcal{A}^*$. But

$$A \in \mathfrak{I} \Rightarrow A = T^{-n}(A) \in \sigma(X_n, X_{n+1}, \dots) \quad \forall n \in \mathbb{N}$$
$$\Rightarrow A \in \mathcal{A}^*.$$