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2 Independence

4 Joint distribution and convolution

Let X; € L' i.i.d. Kolmogorov's law of large numbers implies that
g g

%Z Xi(w) 222 E[X,] P-as.
hence
/f(a:)d(Po <%>_1>(x) - E[f(%)]

(Lebesgue)

—= f(E[Xi]) = /f(x) Ao,y (z)  Vf € Cy(R)

i.e., the distribution of S—n" converges weakly to dg[x,). This is not surprising, because
at least for X; € L2

var( ) Zvar i;w>0.

_var(Xl)

We will see later that if we rescale S,, appropriately, namely ﬁSn, so that Var(ﬁSn) =
var(X1)), the sequence of distributions of \/LESR is asymptotically distributed as a nor-
mal distribution.

One problem in this context is: How to calculate the distribution of S,,? Since S,, is a
function of X3,..., X,,, we need to consider their joint distribution in the sense of the
following definition:

Definition 4.1. Let X3,...,X,, be real-valued r.v. on (2, A, P). Then the distribution
[i := P o X! of the transformation

X: Q=R we (Xiw),...,X,(w))

under P is said to be the joint distribution of Xq,...,X,,. o
_ Note that /i is a probability measure on (R™, B(R™)) with i(A) = P[X € A] for all
A € B(R™).

Remark 4.2. (i) ji is well-defined, because X : 0 — R" is A/B(R™)-measurable.



Proof:

B(R") =0({A1 x -+ x A, | A; € B(R)})

:U({Al XX Ay, ‘ Ai:]—OO,.%i], T; ER})

and

XA x - x Ay =[1{Xi€e 4} €A

P
€A

which implies the measurability of the transformation X (see Remark 1.3.2 (ii))

(i) Proposition 1.11.5 implies that [ is uniquely determined by
G(Ar X - x Ay) = P(ﬂ{Xi € Ai}) .
i=1

Example 4.3. (i) Let X,Y be r.v., uniformly distributed on [0, 1]. Then

e X, Y independent = joint distribution = uniform distribution on [0,1]2

e X =Y = joint distribution = uniform distribution on the diagonal

(i) Let X,Y be independent, N(m,o?) distributed. The following Proposition shows
that the joint distribution of X and Y has the density

1

s (= m) o+ (g = m)?)

f(xvy) = %

5 " exp
o

which is a particular example of a 2-dimensional normal distribution.

In the case m = 0 it follows that
R:=vVX2+Y2
Y
o = tan —
arctan X
are independent and

® has a uniform distribution on ]—g, 5 [,

T ( r? ) if r > 0
R has a density { 77 FPlTaez) N1 2
0 if r<0.

Definition 4.4. (Products of probability spaces) The product of measurable spaces
(Q;,A;), i =1,...n, is defined as the measurable space

Q=0 x...xQ,



endowed with the smallest o-algebra

.AI:O'{Al X...x A, | Aleﬂl,lgzgn}
generated by measurable cylindrical sets. A is said to be the product o-algebra of A;
(notation: @"_, A;).

Let P;,i=1,...,n, be probability measures on (§2;, A;). Then there exists a unique
probability measure P on the product space (€2, A) satisfying

for every measurable cylindrical set. P is called the product measure of P; (notation:
iy P)-
(Uniqueness of P follows from 1.11.5, existence later!)

Proposition 4.5. Let X;,...,X, be r.v. on (Q, A, P) with distributions p1, ..., pn
and joint distribution fi. Then

X1,..., X, independent < ﬂz@ui,
i=1

(ie, i(Ay x -~ x Ap) =T, mi(Aq) if Ay € B(R)).
In this case:

(i) & is uniquely determined by p1, ..., pin.
(ii)
/gp(xl, coos ) dip(@r, .., Th)

= /( (/<p(x1,...,xn) ml(dxil)> ) i, (ds,).

for all B(R™)-measurable functions ¢ : R™ — R with ¢ > 0 or ¢ ji-integrable.

(iii) If w; is absolutely continuous with density f;, i = 1,...,n, then fi is absolutely
continuous with density

Proof. The equivalence is obvious.
(i) Obvious from part (ii) of the previous Remark 4.2.

(ii) See text books on measure theory.



(iii) f is nonnegative and measurable on R™ w.r.t. B(R"), and
f(z) dz = H/ filws) da; = 1.
Rn /R
Hence,

(A) = Af(j) dz, Ae BR"),

defines a probability measure on (R™, B(R™)). For A4y,..., 4, € B(R) it follows
that

f(Ar 5 x Ay) = [ mi(Ai) = H/ fi(;) dz;
i=1 i=17Ai
D [1aca, @ Fla) do = s x - x 4,)

Hence it = i by 1.11.5.

Let X1,...,X, beindependent, S,, := X1 +---+ X,
How to calculate the distribution of S,, with the help of the distribution of X7
In the following denote by 7}, : R! — R!, y s = + y, the translation by = € R.

Proposition 4.6. Let X1, X5 be independent r.v. with distributions i1, . Then:
(i) The distribution of X1 + X is given by the convolution
M * fho 1= /Ml(dxl) peo Tyt ie
pr+ pa(4) = = [ La(or + 22) pa(dn) pa(doe)

:/Ul(dxl)uz(A—xl) vAeBR).

(ii) If one of the distributions 11, 1o is absolutely continuous, e.g. us with density f,
then p1 x pg is absolutely continuous again with density

flz) = / i () ol — 1)

( = [ @) fola—0) dn = (i 2)a) i = dxl.)



Proof. (i) Let A € B(R), and define A := {(21,22) € R? | 21 + 3 € A}). Then
P[Xl + X5 € A] = P[(Xl,XQ) S A] = (,ul ®ILL2)(A)

= // 1a(w1,22) d(u1 ® po) (w1, 22)
= // La(zy + 22) d(p1 @ p2) (21, 72)

— /(/ LAz, (72) Mz(d$2)> pa (dzy)

= /NQ(A — 1) pa(der) = (p1 * p2)(A).

(i)
i + ) ) = [ (o) pa(a =) = [ i) | e de,
chanwgfmoéf;/;rziable /ul(dirl) A f2($ B l.l) dir
L5 /A(/ul(dml) fg(x—a:l)> dz. 0
Example 4.7.

(i) Let X, X5 be independent r.v. with Poisson-distribution 7y, and my,. Then
X1+ X2 has Poisson-distribution 7y, 4+ ,, because

Ap—k
(n—k)!

- . ) = o~ (A1tA2) 21,
(7T>\1 * 7T>\2)(n) = kZ:O,]D\l (k) T, (n k) =€ e kgo k!

_ e—(,\1+>\2)i <”> A — o= (ata) (A1 + )\2)".

n! k n!
k=0

(i) Let X1, X5 be independent r.v. with normal distributions N(m;,0?), i = 1,2.
Then X+ X5 has normal distribution N (m;+ma, 02+03), because frnitma o202 =
frnr,02 * finy,02 (Exercisel)

(iii) The Gamma distribution T, ,, is defined through its density 74, given by

_1 . ppp—lo—az
oy () = iy QP e ifz >0
’ 0 if £ <0

If X1, X5 are independent with distribution I'y 5, ¢ = 1,2, then X; + X3 has
distribution 'y p, 4p,. (Exercise!)



In the particular case p; = 1: Thesum S,, =T + ...+ T, of independent r.v. T;
with exponential distribution with parameter ac has Gamma-distribution I, ,, i.e.

ol emargn—l if 55 ()
’Yoz,n(m) — (n—1)! .
0 if z <O0.

Example 4.8 (The waiting time paradox). Let T3, 75, ... be independent, exponentially
distributed waiting times with parameter o > 0, so that in particular

E[TZ]:/ $'a67awdx:...:l'
0 «

T1 T2

Question: Fix some time t. How long on average is the remaining waiting time until
the next event, i.e., how big is E[Y]?

Answer: E[Y] =1, and
1 1
EX+Y]=—-(1—-e"*)~ — for large ¢.
o o
More precisely:
(i) X,Y are independent.
(ii) Y has exponential distribution with parameter «.

(iii) X has exponential distribution with parameter «, "conditioned on" [0, 1], i.e.:

PX>2sl=e% V0<s<t,

In particular,

t
E[X]:/ s - e s ds_i_t,e*at:...:l(l_efat)'
0 Q@

Proof. Let us first determine the joint distribution of X and Y: Fix 0 < 2 < ¢ and



y>0. Then for S, :==T1+---+ Ty, Sp:=0:

PX >z, Y >y

= P(U{Sn+x<t, Sn+1—y>t})

neN

n=1
— e—alt+y) + Z // 70&771(5) cae” " dsdr
el {(s,r) | s<t—=x,
r>y+t—s}
_ efa(ter) + Z/ P)/ogn(s) ’ eia(ertiS) ds
n=1 {S ‘ Sgt_r}
t—x 0
— —oltt) (1 +/ e Yam(s) dS)
0 n=
;,_/

()

=«

t—x
= ¢~ o(t+y) (1 + / ae™® ds)
0

_ e—oz(t+y) . ea(t—z) — e~ W . AT

Consequently:

(i) If z = 0: Y ist exponentially distributed with parameter «.

(ii) If y =0: X ist exponentially distributed with parameter «, conditioned on [0, ¢].
(i) X,Y are independent.

We have used in line six that:

o0

_ - a” n—1_—as __ —as - (as)n71 _ —as _as __
Z’Ya,n(é‘)—z(n_l)! -8 e = ae Z (1] =ae e =a.0
n=1 n=1

n=1

5 Characteristic functions

Let ML (R™) be the set of all probability measures on (R", B(R™)).
For given p € M (R™) define its characteristic function as the complex-valued func-
tion ji : R™ — C defined by

jlw) = [ €0 u(ay) i= [ cos(fu.9)) n(dy) + i [ sinf(u.)) ().

Proposition 5.1. Let € M} (R™). Then



(i) i(0) = 1.
(i) |af < 1.

(ii) fo(—u) = ).

(iv) [ is uniformly continuous.

(v) [i is positive definite, i.e. forall cy,...,cm € C, u1,..., Uy, €R™, m > 1:

Proof. Exercise. |

Proposition 5.2 (Uniqueness theorem). Let 1,10 € MY (R™) with iy = fio. Then
H1 = H2.

Proposition 5.3 (Bochner's theorem). Let ¢ : R® — C be a continuous, positive
definite function with p(0) = 1. Then there exists one (and only one) € ML (R™)
with i = ¢.

Proposition 5.4 (Lévy's continuity theorem). Let (i )men be a sequence in MY (R™).
Then

(1) limy,— o0 b, = o weakly implies lim,, o fi, = [i uniformly on every compact
subset of R™.

(ii) Conversely, if (fim)men converges pointwise to some function ¢ : R™ — C which
is continuous in u = 0, then there exists a unique p € M (R™) such that i = ¢
and lim,, oo i = 1 weakly.

Proof. See Satz 15.23 in Klenke. O

Let (Q2, A, P) be a probability space and X : 2 — R"™ be A/B(R™)-measurable. Let
Px (:= P o X~1) be the distribution of X. Then

ox(u) := Px(u) = /ei(u,y> Px (dy) = /ei(u,X)dP - B {€i<u7X>}

is said to be the characteristic function of X.

Remark 5.5. X1,..., X, are independent if and only if

Pixyxo) Wi, o) = [ Pxy(wg) (= (Px, ® -+ @ Px,)(ur, .., un)),
———— i ~—~—

=P(X1,. Xn) =¢x; (u;)

10



Proposition 5.6. Let X1,...,X,, be independent r.v., a« € R and S := a >} _, Xj.
Then for all u € R:

ps(u) = [] vx.(aw).
k=1
Proof.
ps(u) = /eius dP = / H eiouX qp "SEP- H /eio‘“X’“ dP = H vx, (au)O
Proposition 5.7. For all u € R™:

1\* [,
(%) /€1<u,y>e—%\y\2 dy = e~ 4l

Proof. See Satz 15.12 in Klenke. O
Example 5.8. (i) d,(u) = e™.
(i) Let =32 g, (a; >0, > .2 oy =1). Then

o0
i(u) = Zaiei““i, u e R".
i=1

Examples:

a) Binomial distribution 32 =37 | ()p*q" % &) Then for all u € R:
Ap(u) _ Z n pkqnflc . eiuk — (q _'_peiu)n.
n k

b) Poisson distribution 7, = 3> e~ 27 5,. Then for all u € R:

n!
——
_ (aciu)n

- n!

n
R _ « : iu_
To(u) =% E — L eun = (e 1),
n=0

6 Central limit theorem

Definition 6.1. Let X1, X5,... € £L? be independent r.v., S, := X; +---+ X,, and
* = S — B[] ("standardization")
var(Sy,)

(so that in particular E[S’] = 0 and var(S}: = 1)). The sequence X1, Xo,... of r.v. is
said to have the central limit property (CLP), if

lim Ps- = N(0,1) weakly,

n—oo

11



or equivalently (by the Portmanteau theorem)

n—oo

1o .
lim P[S;gb]:\/?/ % dr=®(b) VbeR
T J—c

Proposition 6.2. (Central limit theorem) Let X1, Xs,... € L? be independent r.v.,
o2 :=var(X,) > 0 and

swim (Y02,

k=1

Assume that (X,,)nen satisfies Lindeberg's condition

n X, — EIX 2
lim Z/ (’“7[’“]> dP=0 VYe>0. (L)
n—o00 P { \Xk—si[Xk]\ 2&.} Sn

=:L,(¢e)

Then (X,,)nen has the CLP.

Remark 6.3. (i) (X, )nen i.id. = (Xp)nen satisfies (L).

Proof: Let m := E[X,,], 02 := var(X,,). Then s2 = no?, so that

Lebesgue
Ly(e) =072 / (X, —m)*dP ==, 0.
{IX1—m|Zev/no}

(ii) The following stronger condition, known as Lyapunov's condition, is often easier
to check in applications:

n

ZE[\Xk —E[Xk]\“‘;}
36>0: lim *= =0. (Lya)

n—oo S?{‘ré

To see that Lyapunov's condition implies Lindeberg’s condition note that for all
e>0:

| Xk —E[Xk]| >esn

]|2+5

= | Xk —EXT 2 | X - E[X]) - (e50)°

and therefore
n

1
Ln(i‘:) < 858—2+6 ZE“X}C — ]E[Xk”2+5:| .
o k=1

12



(iii) Let (X,,) be bounded and suppose that s,, — co. Then (X,,) satisfies Lyapunov's
condition for any 6 > 0, because

| Xk| < 5
= |Xk— [ ]| Q

= S%% Z]EUXk ~ E[x")

S 2+66 ZE“Xk— [Xk| } = (%)5

77. k=1

— g2
=sz

Lemma 6.4. Suppose that (X,,) satisfies Lindeberg’s condition. Then

. Ok
lim max — =0. (2.1)
n—oo 1<kLn Sy,

Proof. Forall 1<k <n

(%)2:/(Xk _siE ) /{Xk . }( SLE[Xk]) dP + &2

< Ln(e) + €% O
The proof of Proposition 6.2 requires some further preparations.
Lemma 6.5. Forallt € R andn € N:

it (it)? (it)n 1
12 (n—1)!

"
Sl

Proof. Define f(t) := €™, then f(*)(t) = i¥¢®, and the Taylor series expansion, applied
to real and imaginary part, implies that

(Z't)n—l

(LN [
‘ (n—1)!

— }Rn(t)}
with
1 ! 1in i 1 . "
n = |— — n—linets g e n-— = —. I:‘
|R(t)| (n—l)!/o(t s)" i ds‘ (n—l)!/o s ds py

Proposition 6.6. Let X € L?. Then px(u) = [e™X dP is two times continuously
differentiable with

'y (u) :i/Xei“X dp, o' (u /X2 wX qp.

13



In particular
P (0) =i -E[X], ¢%(0)=—-E[X?, |ok|<E[X?].

Moreover, for all w € R
1
ox(u) =1+iu-E[X]+ 3 O(u)u? - E[X?]

with |6(u)| <1 and 6(u) € C.
Proof. Clearly,
(eiuX)/:Z-X.eiuX’ (eiuX)//:_XQeiuX’ |€iuX|:1.

Now, Lebesgue's dominated convergence theorem implies all assertions up to the last
one. For the proof of the last assertion note that the previous lemma implies in the
case n = 2 that

- 1
leX —1 —juX| < 5 u? X2,
Integration w.r.t. P now implies that

‘/ei“X —1—iuX dP| = |px(u) — 1 —iu-E[X]| <

From now on assume that X, Xs,--- € L2 are independent and

E[X,]=0VYn, o2:=var(X,)>0, s,= (i U,%)%.
k=1

Proposition 6.7. Suppose that

. Ok
(a) lim max — =0 and
n—oo 1<k<n S,

. s U 1
(b) nh_>n302<</)xk <5_> —1) = —§u2 VueR.

k=1 n
Then (X,,) has the CLP.

Proof. It is sufficient to show that

because for S = - 31" | X}, we have that

s (u) = kf[lsoxk <ﬂ> |

S’IL

14



oo

and pg: (u) 2= e=3%" = N(0,1)(u) pointwise, implies by Lévy’s continuity theorem

that lim,, ... Ps: = N(0, 1) weakly.

For the proof of (2.6) we need to show that for all u € R

(o (2)- il (2) o) -

=exp[> -

]—»exp[——uQ]

To this end fix v € R and note that |px, | < 1, hence

olpe(2)

= e><p[Re<pX,c <si) — 1} < 1.

Note that for a1, ..., an,b1,...,bp € {z € C| [2| < 1}

‘H%-ku‘=|(a1—bl)-az
k=1 k=1

+b1"'bn—1'

n
<D _lai = b,
k=1

Consequently,

flou(2) - fleolo

5>

k=1

() el (2)

-'an+b1-(ag—bg)'a3---an+...

(an - bn)}

=)

=:D,.

If we define 2, := @x, (;-) — 1, we can write

D, = lek +1— e
k=1

Note that E[X}] = 0 and E[X?] = o3.

all k&
1/ u)\?

For € > 0 we can find § > 0 such that

|z 4+1—€*| < €lz] Viz] < 6.

The previous proposition now implies that for

15



Let ng € N be such that for all n > ng

u (o 2<5
2 \ sy

for all n > ng. Then, for all n > ng
n u n

Consequently, lim,, .o, D,, = 0.

*M|ww
<

Proof of Proposition 6.2. It remains to show that Lindeberg's condition implies

. - U 1

W.l.o.g. assume that E[X,,] = 0foralln € N. Letu e R,n € N, 1 < k
Lemma 6.5 implies that

1 u? 1 3
Y} = |exp Z‘.ﬁ.Xk —l—i-i~Xk+—-u—-X,f<—i-Xk ’
n Sn 2 S% GSn
————
E[...]=0
and
o u U u? o U,
Yp<lexpli-— Xy | —1—i-— Xp|+ 5 =X < 7 - Xj
n Sn Sn Sn

With these notations

k=1
For d >0
E[Yk] = / Y, dP -l-/ Y, dP
{|Xk|>6sn} {|Xk|<8sn}
u? Jul? 3
< 3 Xk dP + — | Xk|” dP.
S J{| Xk |25} 6sj {|Xk|<85n}
Note that

1 5 2
—3/ |Xk|3dP<—2/X,3dP=5-U—§,
Sn J{|Xp|<bsn} Sn Sn

16
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so that for e > 0 and 6 > 0 with %6 < 5, we obtain that

n

n 2 n
ZE[Yk]ngZ/ (ﬁ> dP+M-5ZU—§
2k 26\ Sn 6 $

k=1 n k=1 "
=1
9 €
Note that u?L, () < § for large n, so that
lim » E[Yi] =0,
n—oo k:]_
and thus
. - u Ly
i > |ex. s ) Tg =0.
k=1
Now the assertion follows from Proposition 6.7. O

Example 6.8 (Applications). (i) "Ruin probability"
Consider a portfolio of n contracts of a risc insurance (e.g. car insurance, fire
insurance, health insurance, ...). Let X; > 0 be the claim size (or claim severity)
of the i*? contract, 1 < i < n. We assume that X1,..., X, € £? are i.i.d. with
m :=E[X;] and 02 := var(X;).

Suppose the insurance holder has to pay he following premium
II:=m+ \o?
= average claim size + safety loading.
After some fixed amount of time:

Income: nll

Expenditures: S,, = ZXi'
i=1
Suppose that K is the initial capital of the insurance company. What is the
probability P(R), where
R :={S, > K + nIl} denotes the ruin 7

We assume here that:

o No interest rate.

e Payments due only at the end of the time period.

17



Let

Sp —nm
SF =
" V/no
The central limit theorem implies for large n that S} ~ N(0,1), so that
K I - K 2
P(R) = plgz > Brmllznm|  plg. K tnio
V/no Vno
2
C,II,T1—<I> K +nho ’
Vno

where @ denotes the distribution of the standard normal distribution. Note that
the ruin probability decreases with an increasing number of contracts.

Example
Assume that n = 2000, o = 60, A\ = 0.5%o.

(a) K=0= P(R) ~ 1 — ®(1.342) ~ 9%.
(b) K =1500 = P(R) ~ 3%.
How large do we have to choose n in order to let the probability of ruin P(R) fall

below 1%0?
Answer: ®(...) > 0.999, hence n > 10611.

(i) Stirling’s formula
Remark: Stirling proved the following formula

nl ~ V2rn"tre ™ (2.3)

in the year 1730 and De Moivre used it in his proof of the CLT for Bernoulli
experiments.

Conversely, in 1977, Weng provided an independent proof of the formula, using
the CLT (note that we did not use Stirling's formula in our proof of the CLT).
Here is Weng's proof:

Let X1, Xo,... bei.i.d. with distribution 71, i.e.,

=1
PXn = eilzﬂdk.
k=0

Then S, := X1 + --- + X,, has Poisson distribution 7, i.e.,

18



and in particular E[S,,] = var(S,,) = n. As usual, define
_ Sp—n
=~

so that S =t,, 0 S, for t,(x) := % Then

Sy

/fdPS;; Z]E[f(S;ﬂ :E[(fotn)(snﬂ = /fotn d@

In particular, for

foolz) =2~ (: (—x) Vv 0)

it follows that

— n k -
o [ (= £

\ , k=0 ~ \/ﬁ v
{:0 if x>n =foo (k)
= "\/_g if z<n
e " " nF(n— k)
- (e )
k=1
e n nk+1 nk e M. nnJr%
NG Y] al
_n7l+17n71
- nl 0!
Moreover,
Vo) =1 [ ey T dee ]
0o s e —x)-e 2 xTr = e 2
/f V2T /700 V2 oo

Hence, Stirling's formula (2.7) would follow, once we have shown that

/foo dPg: = /foo dN(0,1).

(2.4)

Note that this is not implied by the weak convergence in the CLT since fo is

continuous but unbounded. Hence, we consider for given m € N

fm = foo Am (€ Cy(R)).

The CLT now implies that

/fm dPgx = /fm dN(0,1).

19



Define ¢, := foo — fmn (= 0). (2.8) then follows from a "3z-argument", once
we have shown that

VvV m,

1
(0<) /gm dPs; < —
m

Vm.

(0<) / g AN(0,1) < -

The first inequality follows from

/gm dPs: = / (|z| = m) dPs: S/ |z| dPs:
]—o00,—m] |—00,—m]

Lol

21 ] 1
< —/ z? dPs: < — -var(S,),
m ]—oc0,—m] m H,E_J

the second inequality can be shown similarly.



