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1 Basic Notions

9 Distribution of random variables
Let (€2,.A, P) be a probability space, and X : Q — R be a r.v. )
Let i be the distribution of X (under P), i.e., u(A) = P[X € A] for all A € B(R).

Assume that P[X € R] = 1 (in particular, X P-a.s. finite, and u is a probability
measure on (R, B(R)).

Definition 9.1. The function F': R — [0, 1], defined by
F(b) :== P[X <b] =p(]—o0,b]), beR, (1.1)
is called the distribution function of X resp. p.

Proposition 9.2. (i) Fis monotone increasing: a<b = F(a)< F(b)

right continuous: F(a) = ggn F(b)
normalized: lim F(a) =0, lim F(b) =1.
a\,— oo b,/ o0

(ii) To any such function there exists a unique probability measure 1 on (R, B(R))
with (1.10).

Proof. (i) Monotonicity is obvious.

Right continuity: if b\, a then ]— 00,b] \, | — 00, a], hence by continuity of u
from above (vgl. Proposition 1.9):

F(a) = (] = 00,a]) = Jim ju(] = 00,8]) = Jim F(b).

Similarly, | — oo, a] \, 0 if a \, —oo (resp. |— 00,b] /" R if b / =), and thus

lim F(a) = i —00,a]) =0
Jim Fa) = lim u(]—co,a))

(resp. bli/r{)lo F(b) = bli/r{)lou(]— 00,b]) =1).

(ii) Existence: Let X be the Lebesgue measure on |0, 1[. Define the "inverse function"
G of F:R—[0,1] by

G:10,1[—-R
G(y) :==inf{z e R | F(z) > y}.



Note that y < F(x) = G(y) < x implies
10,F(z)[ c{G < a}

and G(y) <z = Tz, \,z with F(z,) >y, hence F(z) > y, so that
{G <z} C]0,F(2)].

Combining both inclusions we obtain that
10,F(z)[ c {G <2} C]0,F(z)].

so that G is measurable.

Let pu:= G(\) = Ao G~! (probability measure on (R, B(R))). Then

uﬂ—wwb:AGGng:AGQF@ﬂ):F@) vz eR.

Uniqueness: |ater. O

Remark 9.3. (i) LetY be a r.v. with uniform distribution on [0, 1], then X = G(Y)
has distribution . In particular: simulating the uniform distribution on [0, 1] gives
by transformation with G a simulation of .

(ii) Some authors define the distribution function F by F(x) := pu(]— oo, z[). In this
case F' is left continuous, not right continuous.

Remark 9.4. (i) Let F be a distribution function and let = € R: Then

. 1
F@) - Fla=) = i (]~ 20] ) = alta)
is called the step height of F'in x. In particular:

F continuous < VaxzeR:u({z})=0 "uiscontinuous”.

(i) Let F' be monotone increasing and bounded, then F' has at most countable many
points of discontinuity.

Definition 9.5. (i) F' (resp. u1) is called discrete, if there exists a countable set S C R
with p(S) = 1. In this case, p is uniquenely determined by the weights p({z}),
x €S, and F'is a step function of the following type:

F(z) = n({y}).

yeS,
ysz

i) F' (resp. is called absolutely continuous, if there exists a measurbale function
1
f = 0 (called the "density"), such that

F@:ff@% (1.2)



resp., for all A € B(R):
w(A) = [ Ft) dt = /m La-ft. (1.3)
A —o0
+oo

In particular / ft)ydt=1.

Remark 9.6. (i) Every measurable function f > 0 with fjoio f(t) dt =1 defines a
probability measure on (R, B(R)) by A [, f(t) dt.

(i) In the previous definition "(1.11)=(1.12)", because A — [, f(t) dt defines a
probability measure on (R, B(R)) with distribution function F. Uniqueness in 9.2
implies the assertion.

Example 9.7. (i) Uniform distribution on [a,b].  Let f := ;2 -1,;. The
associated distribution function is given by

0 ifx<a
F(z):=< 7= (z—a) ifz€[a,b]
1 if £ > 0.

(continuous analogue to the dicrete uniform distribution on a finite set)

(i) Exponential distribution with parameter o > 0.

fla) = {ae‘” ifz>0

0 if v <0,
_ —ax >
Flr) = 1—e !f:r/O
0 if z <O0.
a 7777777777777777777

(continuous analogue of the geometric distribution)
k+1
/ flx)dz=F(k+1)—Fk)=e “*1-e®)=1—-prpwithp=1—e"2.
k

(iii) Normal distribution N(m,c?), m € R, 0% > 0




The associated distribution function is given by

1 T wem)?
\/27‘(0’2./7006 wdy

x

Fm,o'2 (x) =

v_me ] - T—m
= — e” 2 dz = F .
V2w /_Oo 0’1< o )

® := Fp,; is called the distribution function of the standard normal distribution
N(0,1).

z=

The expectation E[X] (or more general E[h(X)]) can be calculated with the help of
the distribution p of X:

Proposition 9.8. Let h > 0 be measurable, then
“+o00

B[(X)] = [ hia) ulde)

— 00

+oo
/ h(z) - f(z) dz if p absolutely continuous with density f

h(x) - p({x}) if p discrete, u(S) =1 and S countable.
€S

Proof. See exercises.

Example 9.9. Let X be N(m,o?)-distributed. Then

BIX) = [ fnorla) do=mt [ (o =m) - fpo(a) do=m.

=0

The pt* central moment of X is given by

IE[|X — m|p] = /|gc —mP - fr, o2 (2) du,

<
5
[




In particular:

pzl:E“X—mH:a-\/g

p=2:E[|X —m|*] =0?

o3

pzS:E[|X—m|3]:2%-

S

p=4:E[|X —m|'] = 30t

10 Weak convergence of probability measures

Let S be a topological space and 8§ be the Borel o-algebra on S.
Let u, pn, n € N, be probability measures on (S, 8).
What is a reasonable notion of convergence of the sequence ., towards p? The
n—oo

notion of "pointwise convergence" in the sense that u,(A) —— u(A) forall A € §
is too strong for many applications.

Definition 10.1. Let x and p,,, n € N, be probability measures on (S, 8). The sequence
(1) converges to p weakly if for all f € Cy(S) (= the space of bounded continuous
functions on ) it follows that

/fdunm/fdu.

Example 10.2. (i) z, —> z in S implies 0,, —— J, weakly.
(i) Let S:=R! and i, := N(0,2). Then p,, — 8y weakly, since for all f € Cy(R)

2

[ ram = [ 1@ \/217_ da

gc—:;ﬁ/f(%).\/%_w.e—%dy

Lebesgue
=20 = 1

Proposition 10.3 (Portemanteau-Theorem). Let S be a metric space with metric d.
Then the following statements are equivalent:

(i) pn — p weakly

(ii) [ f dun === [ f dp for all f bounded and uniformly continuous (w.r.t. d)
(i) Yimsup,,_, oo pn(F) < p(F) for all F C S closed
(iv) liminf, o pn(G) = w(G) for all G C S open



(v) limy, oo i (A) = u(A) forall A € 8 with u(A\ A) = 0.
Proof. (iii)<(iv): Obvious by considering the complement.
(i)=-(ii): Trivial.

(ii)=(iii): Let F' C S be closed, let

Gm::{xES‘d(x,F)<i}, meN open!
m

Then G, \\ F', hence u(Gp) \, p(F).
If € > 0 there exists some m € N mit u(Gy,) < u(F) + €. Define

1 if x <0
ox):=<1—z ifzel0,1]
0 if x> 1.
P
0 1

and let f := p(m-d(-,F)).

f is Lipschitz, in particular uniformly continuous, f =0 on G, and f =1 on F,
and thus

lim sup pr, (F hmsup/f dun /f du

n—oo n—o0

< (Gm) < p(F) + <.

(iii)=(v): Let A be such that u(A\ A) = 0. Then

(iv)
w(A) = ,u(A) < liminf ,un(A) liminf p,, (A) < limsup g, (A)

n—oo n—oo N—00

—
=
|

< limsup in(A) € p(A) = u(4).

(v)=-(iii): Let F C S be closed. For all § > 0 we have that
o{d(-,F) =6} c{d(-,F) =4}
Note The set

= {6>0|u({a(-,F)=3}) >0}



is countable, since for all n the set
1
Dy = {5> 0 ‘ w({d(-, F) = 8Y) > 5}
~—_——
disjoint!

is finite for any n € N. In particular, there exists a sequence J; € ]0,00[ \ D,
0r | 0 such that the set

Fy, = {d(-,F) < 5k}
satisfies pu(Fy \Fk) = 0. Fy \, F now implies that

limsup 1 (F) < limsup i (F) 2 p(Fr) 2225 u(F).

n—oo n—o0

(iii)=(i): Let f € Cy(S). It suffices to prove that

lim sup / J dpn < / fdp,

n—oo

(since then
~timint [ < [ (1) an

hence liminf [ fdu, > [ f du)
Wlog 0< f<1

Fix k € N and let F; := {f}%},jeN(Fj closed! )

Then

_|_

s
S

1 k

k
Sl
=1

Hence for all probability measures v on (S, 8):

=1
and
. 1M1 k
1111111—>Sol<1>p / [ dpn — TS -11ﬂs§p;un(ﬂ)
1< (i) 1 ()
< g 2 tmswin(F) < £ Y uF) < /fdu O



Corollary 10.4. Let X, X,,, n € N, be measurable mappings from (Q, A, P) to (S, 8)
with distributions p, pi,, n € N. Then:

n—oo

X, 2= X in probability = jpi, —5u weakly
Here, lim,,_,o X,, = X in probability, if lim,,_... P(d(X, X,) > ) =0 for all § > 0.

Proof. Let f € Cy(S) be uniformly continuous and € > 0. Then there exists a § =
d(g) > 0 such that:

x,y € S with d(z,y) < § implies |f(x) — f(y)| < e
Hence

‘/fdu—/fdun

< / F(X) — F(X,)| dP + / 1£(X) = f(X)] dP
{d(X,X,)<d} {d(X,X,)>6}

<e+ 2 flloo - Pld(Xn, X) > 6] a
—_——

= [E[£(X0)] - E[/(Xa) |

n—oo

0

Corollary 10.5. Let S = R! and let j1, pun, n € N, be probability measures on (R, B(R))
with distributions functions F', F,,. Then the following statements are equivalent:

(i) pn ~—=> pu vaguely, i.e. lim, o [ fdu, = [ fdu for all f € Co(RY) (= the
space of continuous functions with compact support)

(i) pn === 11 weakly

(iii) Fp(z) 2==% F(z) for all x where F' is continuous.

(iv) pn(la,b])) === p(la,b]) for allJa,b] with p({a}) = p({b}) = 0.
Proof. (i)=-(ii): Exercise.

(ii)=-(iii): Let z be such that F' is continuous in . Then p({z}) = 0, which implies
by the Portmanteau theorem:

Fy(z) = .LLn(]_ oo,a:]) = N(]_ oo,a:]) = F(x).

(iii)=(iv): Let ]a, b] be such that u({a}) = p({b}) = 0 then F' is continuous in a and
b and thus

p(a,b) = F®) — Fla) @ 1im F,(b) — lim F,(a)

n—oo n—oo

= lim py,(Ja,b)).

n—oo

10



(iv)=(i): Let D :={z € R | u({z}) = 0}. Then R\ D is countable, hence D C R
dense. Let f € Cy(R), then f is uniformly continuous, hence for € > 0 we find
co < -+ < ¢y € D such that

<sup  sup | f(2) — fle—1)| <e.

k z€lck—_1,ck]

H.f - Z f(ck—l) 'H]Ck—hck] .
k=1

=g
Then

‘/fdu—/fdun

</|f—g|du+‘/gdu—/gdun
————
<e

+/|f—g| dan
—_—
<e

m (iv)
<2+ Zf(ckq) . ’M(]quack]) — pin (Jer—1, cx]) | —= 2e. O
=1

11 Dynkin-systems and Uniqueness of probability
measures

Let Q # 0.

Definition 11.1. A collection of subsets D C P(2) is called a Dynkin-system, if:
(i) Qe D.
(i) AeD = A°eD.

(ili) A; € D, i € N, pairwise disjoint, then

) 4 eD.

ieN
Example 11.2. (i) Every o-Algebra A C P(Q) is a Dynkin-system
(ii) Let Py, P, be probability measures on (€2,A). Then
D:={AcA|P(A)=P(A)}
is a Dynkin-system
Remark 11.3. (i) Let D be a Dynkin-system. Then

A, BeD,ACB = B\A=(B°UA)eD

11



(ii) Every Dynkin-system which is closed under finite unions (short notation: N-stable),
is a o-algebra, because:

(a) ABeD = AUB=AU(B\(ANB))eD.
N—_——
eD
N————’
(i)
€D

(b) A, €D, ieN = UAi:U[Aim(i_UlAn)c] eD.

€N €N

€ D by ass.,
pairwise disjoint

Proposition 11.4. Let B C P(2) be a N-stable collection of subsets. Then
o(B) = D(B),
where

D(B) := N D
D Dynkin-system
BCD
is called the Dynkin-system generated by B.

Proof. See text books on measure theory.
O

Proposition 11.5 (Uniqueness of probability measures). Let Py, P> be probability mea-
sures on (Q,A), and B C A be a N-stable collection of subsets. Then:

Pi(A) =Py (A) forall Ac B = P,=P, ono(B).
Proof. The collection of subsets

D:={AecA|Pi(A) =P (A}
is a Dynkin-system containing B. Consequently,

o(B) = D(B) ¢ D. O

Example 11.6. (i) For p € ]0,1[ the probability measure P, on (Q := {0, 1}, A) is
uniquely determined by

P X1i=m1,..., X, = x,] :pk(l —p)"ik, with k := le
i=1

for all x1,...,2, € {0,1}, n € N, because the collection of cylindrical sets
{Xi=m1,...,.Xn=2,}, neNgy, z1,...,2, € {0,1}

is N-stable, generating A (cf. Example 1.7).
(Existence of P, for p = 1 see Example 3.6. Existence for p € ]0,1[\ {3} later.)

12



(ii) A probability measure on (R, B(R)) is uniquely determined through its distribution
function F (:= p(]— oo, -])), because

M(]a’vb]) = F(b) - F(a)7

and the collection of intervals ]a, b, a,b € R, is N-stable, generating B(R).

13
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2 Independence

1 Independent events
Let (2, A, P) be a probability space.

Definition 1.1. A collection of events A; € A, i € I, are said to be independent (w.r.t.
P), if for any finite subset J C I

P(() 45) = T] P(4y).
JjeJ JjeJ

A family of collection of subsets B; C A, i € I, is said to be independent, if for all
finite subsets J C I and for all subsets A; € B;, j € J

P(() 45) =TT P(4y).
jeJd jeJ
Proposition 1.2. Let B;, i € I, be independent and closed under intersections. Then:
(i) o(B;), i € I, are independent.
(i) Let Ji, k € K, be a partition of the index set I. Then the o-algebras
O'( U ‘Bl), ke K,
1€ Jg
are independent.

Proof. (i) Let J C I, J finite, be of the form J = {ji,...,jn}. Let A; €
U(le),...,Ajn S O’('Bjn).

We have to show that
P(Aj,Nn---NA, )=P(Aj) - P(A,,). (2.1)
To this end suppose first that A;, € B;,,..., A;, € B, and define
D), :={Aco(B;) | P(ANAj,N---NA,)
=P(A)- P(A;,) -+ P(4;,)}.
Then Dj, is a Dynkin system (!) containing B;,. Proposition 1.11.4 now implies
o(Bj,) =D(Bj,) € Dj, ,

hence o(B;,) = Dj,. lterating the above argument for D;,, D;,, implies (2.1).

15



(ii) For k € K define
Cp = {ﬂ A ] JC Jy, J finite, A; € Bj}.
jeJ

Then C; is closed under intersections and the collection of subsets G, k € K,
are still independent, because: given ki,...,k, € K and finite subsets J! C
Jiyyeroy J™ C Jg,, then

Biiel g

P(Na)nn(na)) ™ TIr(N 4),
i€J! ieJn Jj=1 i€Ji
—— ——
Gekl €Cyk,
(i) now implies that
U(ek):U(U ’Bi), ke K,
i€k
are independent too. O

Example 1.3. Let A; € A, i € I, beindependent. Then A;, A, i € I, are independent
too.

Remark 1.4. Pairwise independence does not imply independence in general.
Beispiel: Consider two tosses with a fair coin, i.e.

Q:={(i,k) | i,k €{0,1}}, P := uniform distribution.
Consider the events

A= "1 toss 1" = {(1,0), (1,1)}

B:="2 toss1"={(0,1), (1,1)}

C :="1. and 2. toss equal" = {(0,0), (1,1)}.

Then P(A) = P(B) = P(C) = and A, B,C are pairwise independent

1
P(ANB)=P(BNC)=P(CNA)= 1
But on the other hand
P(ANBNC)=14+# P(A)- P(B) - P(C).
Example 1.5. Independent 0-1-experiments with success probability p € [0,1].
Let Q:= {0,1}", X;(w) := x; and w := (x;);en. Let P, be a probability measure on
A=0c({X; =1}, i=1,2,...), with
(i) Po[X;=1]=p (hence P,[X; =0] = P,({X; =1}°) =1 —p).

16



(i) {X; =1}, 7 €N, are independent w.r.t. P,.

Existence of such a probability measure later! Then for any z1,...,z, € {0,1}:

(ii

) and

13 0] e

Pp[Xil :xl,...,Xin :ﬁn] = HPP[X” :{Ej] :pk(l—p) k
j=1

where k := """ | x; gilt. Hence P, is uniquely determined by (i) and (ii).

Proposition 1.6 (Kolmogorov's Zero-One Law). Let B, n € N, be independent o-

algebras, and

be the tail-field (resp. o-algebra of terminal events). Then
P(A) € {0,1} VA€ Bu
i.e., P is deterministic on B..

Illustration: Independent 0-1-experiments
Let 31 = O'({Xl = 1}) Then

B = (N o( U Bn)
neN  m>=n

is the o-algebra containing the events of the remote future, e.g.

lim sup{ X, = 1} = {"infinitely many ‘1""}

71— 00

{w c{0,1}"

1 n
lim — X; ist
Jim — ; (w) exis s}

~———

= Sn(w)

Proof of the Zero-One Law. Proposition 1.2 implies that for all n

BiBa,. o B0 G B

m=n
are independent. Since B, C O’(Um>n Bm), this implies that for all n
Bla ’BQa s aBn—la Bm
are independent. By definition this implies that

Boo , Br,m € N are independent

17



and now Proposition 1.2(ii) implies that

O’(U Bn) und B

neN

are idependent. Since B, C a(Un>1 ‘Bn) we finally obtain that B,, and B, are
independent. The conclusion now follows from the next lemma. O

Lemma 1.7. Let B C A be a o-algebra such that B is independent from B. Then
P(A) e {0,1} VAeB.

Proof. For all A€ B
P(A)=P(ANA) = P(A)-P(A) = P(A)%

Hence P(A) =0 or P(A) = 1. O

For any sequence A,, n € N, of independent events in A, Kolmogorov's Zero-One
Law implies in particular for

Ay = ﬂ U A (:: limsupAn)

n— oo
neNm>=n

that P(A) =0—1.
Proof: The o-algebras B, := o{A,} = {0,9Q, A, A°}, n € N, are independent by
Proposition 1.2 and A € Boo.

Lemma 1.8 (Borel-Cantelli). (i) Let A; € A, i € N. Then

> P(4;) <o =  P(limsup 4;) = 0.
i=1

(ii) Assume that A; € A, i € N, are independent. Then

ZP(Ai) =oc0 = P(limsup4;) =1.
i=1

Proof. (i) See Lemma 1.1.11.

(i) It suffices to show that

P(Uan) =1 resp. P(()45) =0 va.

18



The last equality follows from the fact that

o n+k
P(( 4;) = tm  P([) 4;)
m=n m=n
=TIts P(Ag,) ind.
n+k n+k
= J[ 1= P(An)) <exp <Z P(Am)> =0

where we used the inequality 1 — a < e~ for all a € R.
O

Example 1.9. Independent 0-1-experiments with success probability p € ]0,1].
Let (z1,...,zn) € {0,1}" ("binary text of length N").

P,["text occurs"] 7

To calculate this probability we partition the infinite sequence w = (y,,) € {0,1}" into
blocks of length N

(Y1,92, -0 e e ) e:={0,1}N
—_———— N——

1. block 2. block
length = N length = N

and consider the events A; = "text occurs in the i*" block". Clearly, A;, i € N, are
independent events (!) by Proposition 1.2(ii) with equal probability

P,(A;) =pFl-pN E=a>o0

where K := 3" | 2, is the total sum of ones. In particular, 5%, P,(A4;) = 350, o =
oo, and now Borel-Cantelli implies P,(As) = 1, where

Ao = limsup A; := "text occurs infinitely many times" .
1—00
Moreover: since the indicator functions 14,,14,,... are uncorrelated (since they are

independent r.v. (see below)), the strong law of large numbers implies that

1 —
_E :lA,iﬂE[lAi]:aa
n

i=1

i.e. the relative frequency of the given text in the infinite sequence is strictly positive.

2 Independent random variables

Let (2, A, P) be a probability space.

19



Definition 2.1. A family X;, i € I, of r.v. on (Q, A, P) is said to be independent, if
the o-algebras

o(X;) = X, (B(R)) (: {{XieA}|Ae B(R)}), iel,

3

are independent, i.e. for all finite subsets J C I and any Borel subsets 4; € B(R)
P(({X; € 4;3}) = [T PIX; € 4;).
jET j€J

Remark 2.2. Let X;, i € I, be independent and h; : R — R, i € I, B(R)/B(R)-
measurable. ThenY; := h;(X;), i € I, are again independent, because o (Y;) C o (X;)
forallieI.

Proposition 2.3. Let X4,...,X,, be independent r.v., > 0. Then
E[X; .- X,] =E[X1]---E[X,].

Proof. W.l.o.g. n = 2. (Proof of the general case by induction, using the fact that
X7 +...- Xp1 and X, are independent , since X7 - ... X,,_1 is measurable w.r.t
o(o(X1) U+ Uo(Xp-1)) and o(c(X1)U---Ua(X,—1)) and o(X,,) are independent
by Proposition 1.2.)

It therefore suffices to consider two independent r.v. XY, > 0, and we have to show
that

E[XY] = E[X] - E[Y]. (2.2)
W.lo.g. XY simple
(for general X and Y there exist increasing sequences of simple r.v. X,, (resp. Y3,),
which are o(X)-measurable (resp. o(Y')-measurable), converging pointwise to X (resp.
Y).
Then E[X,,Y,] = E[X,,] - E[Y},] for all n implies (2.2) using monotone integration.)
But for X, Y simple, hence

X:iailm and Yzzn:ﬁlej,
i=1 j=1

with a;,8; > 0 and A; € o(X) resp. B; € o(Y) it follows that

E[XY] =) ;- P(AiNB)) = > aif;- P(A;)- P(B;) =E[X]-E[Y]. O

Corollary 2.4. XY independent, X,Y € L!

= Xy el' and E[XY]=E[X] E[Y].

20



Proof. Let 1,62 € {4+,—}. Then X©* and Y2 are independent by Remark 2.2 and
nonnegative. Proposition 2.3 implies

E[X - V%] = E[X®'] - E[Y*=].
In particular X¢* - Y2 in L1, because E[X¢!] - E[Y*2] < co. Hence
X-Y=X"Y"+X .YV - (X" Y +X .Y er!
and E[XY] =E[X]-E[Y]. O
Remark 2.5. (i) In general the converse to the above corollary does not hold: For

example let X be N(0,1)-distributed and Y = X2. Then X and Y are not
independent, but

E[XY]=E[X?]| =E[X] -E[Y]=0.

(ii)
X, Y e L? independent = XY uncorelated

because
cov(X,Y) = E[XY] - E[X]-E[Y] =0.

Corollary 2.6 (to the strong law of large numbers ). Let X1, Xo,--- € L2 be indepen-
dent with sup,cy var(X;) < co. Then

n

lim_ % > (Xi(w) -E[X;]) =0  P-as.
i=1

1 n
[X;] = m then Jm ; (w)y=m a.s

3 Kolmogorov's law of large numbers

Proposition 3.1 (Kolmogorov, 1930). Let X1, Xo,--- € L' be independent, identically
distributed, m = E[X;]. Then

n—oo

1 n
- Z X;(w) —=m P-as.
n

i=1

empirical
mean

Proposition 3.1 follows from the following more general result:
Proposition 3.2 (Etemadi, 1981). Let X1, Xa,--- € L' be pairwise independent,
identically distributed, m = E[X;]. Then

n

ZXi(w) 7% m  P-as.

1
n
i=1
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Proof. W.lo.g. X; >0
(otherwise consider X", X, ... (pairwise independent, identically distributed)
and X1 ,X5,... (pairwise independent, identically distributed))
1. Replace X; by X, = Lix,<iy Xi-
Clearly,

z fz<i
0 ifz>1

Then X1, X, ... are pairwise independent by Remark 2.2. For the proof it is now
sufficient to show that for S,, := """ | X; we have that

— m P-as.
n
Indeed,
Y PXy# X, =) PlX,>nl=)Y_ P[Xi>n]
n=1 n=1 n=1
=3 > PXi€lkk+1]] =) k-P[Xs € [kk+1]]
n=1k=n k=1

SX1-lix ek kt1[}
implies by the Borel-Cantelli lemma

PIX, # X, infinitely often] = 0.

2. Reduce the proof to convergence along the subsequence k, = |a™| (= largest
natural number < a™), a > 1.

We will show in Step 3. that

o 0 P-a.s. (2.3)

This will imply the assertion of the Proposition, because

1—00

E[X] =E[l{x,<iy - Xi] =E[l{x,<iy - X1] / E[X1](=m)

hence
1 - 1o
— .k = — E[X;] === m,
o Eldn] = - DB S
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and thus

1 n—oo
. Sk ———m P-as.

If 1 € N [k, kni1], then

kn Skn Sl Skn_H kn+1
<2< :
knJrl kn l knJrl kn
n—oo n—oo n—oo n—oo
nmee T, Lo —a
“ P-as. P-a.s.

Hence there exists a P-null set N, € A, such that for all w ¢ N,

. ~ .
— mglilminfw glimsupwga m
(0% —00

l—o00

Finally choose a subsequence a, \, 1. Then forallw ¢ N :=J,5, Na,

limM:m

l—o0 l

3. Due to Lemma 1.7.7 it suffices for the proof of (2.3) to show that

Sk]

Ve >0 : ZP

(fast convergence in probability towards 0)

>€‘| < 00

Pairwise independence of X; implies X; pairwise uncorrelated, hence

& & k
Sk, — E[Sk,] 1 ~ 1 - ~
P ‘T 2 e < W . Va.]f'(Skn) = W ;Vaf(X
kn ~
< o 2 B[]
i=1

To this end note that

=3 (&) B

=1 “n:k,>1
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We will show in the following that there exists a constant ¢ such that
1 c
3 = < (2.4)
nikp>i

This will then imply that

s % CZ— E[(X;)? —CZ— E[l{x,<i} - Xi)
< ci( Zﬂ (X € 1—11[}>
= cz(p <Zzz) P[X; el -1, l[})
g

< 20 1P[Xyell-11] =2¢> E[ I-1{xep-1ay |
~—_———
S(X1+1)-1ex,en—1,10}
< 2c- (E[X1]+1) < o0
where we used the fact that

=1 1 > 1 1 > 1 1 1 1
_g_ - = — - — _g
2 E<Et X i wZ(H 2) ER

i=l i=l+1 i=l+1

~I| o

It remains to show (2.4). To this end note that

[a"| =k, <a" <k,+1

a>1 a—1
= kn>0z”—1>o¢"—a”1=< )oz”.

Let n; be the smallest natural number satisfying k,,, = @] > 4, hence a™ > i
then

1, 1T, 1 om 321
2 Esa Xl mm e STy O

nikp>i nz>n;

Corollary 3.3. Let X1, X5,... be pairwise independent, identically distributed (iid)
with X; > 0. Then

lim %i){i(w) —EX)] (€0, Pas.
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Proof. W.l.o.g. E[X1] = co. Then 1 3" | (X;(w) A N) === E[X; A N], P-a.s. for
all N, hence

1 n
;;Xi(w) >

Example 3.4. Growth in random media Let Y7,Y5,... beiid., Y; >0, with m :=
E[Y;] (existence of such a sequence later!)

Define Xy =1 and inductively X,, := X,,_1 - Y,

Clearly, X,, =Y1---Y, and E[X,,] = E[Y3]---E[Y,,] = m", hence

SO (Xi(w) AN) 22X AN] T EX] Pas O
i=1

S|

+oo ifm>1 exponential growth (supercritical)
E[X,] — <1 ifm=1 critical
0 ifm<1 exponential decay (subcritical)

What will be the long-time behaviour of X,,(w)?

Surprisingly, in the supercritical case m > 1, one may observe that lim,, o, X,, =0
with positive probability.

Explanation: Suppose that logY; € L. Then

1 1 - n—00
—log X, ==Y logV; "% EflogYi] =:a P-as.
n n P

and

a<0: de>0witha+e <0, sothat X, (w) < enlate) > no(w), hence P-a.s.
exponential decay

a>0: 3e>0witha—e >0, so that X,,(w) > €*(@~9) ¥V n > ng(w), hence P-a.s.
exponential growth

Note that Jensen's inequality

a=EllogY:] < logE[Yi],
——
=m
and in general the inequality is strict, i.e. « < logm, so that it might happen that
a < 0 although m > 1 (1)
Hlustration As a particular example let

v - $(1+c¢) with prob.1
e % with prob.%

,so that E[Y;] = 1(1+¢) +
On the other hand

= 1+ 1c (supercritical if ¢ > 2)

1 c<3
reegy,

1
Ellogh] =5 -

1 1 1
log( =(1 log=| = =1
og(z( +c)>+og2] 5 " log

Hence X,, —=5 0 P-a.s. with exponential rate for ¢ < 3, whereas at the same time
for ¢ > 2 E[X,,] =m™ /" 0o with exponential rate.
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Back to Kolmogorov's law of large numbers:
Let Xl,XQ, ... € Lliid. with m = E[Xl] Then

i Xi(w) == E[X;] P-as.

=1

1
n
Define the "random measure"
on(w, A) := l zn: 1A(Xi(w))
’ ni3

= "relative frequency of the event X; € A"

Then
1 n
on(w, -) = n Z(SX«L(W)
=1

is a probability measure on (R, B(R)) for fixed w and it is called the empirical distri-
bution of the first n observations

Proposition 3.5. For P-almost every w € Q:
n—oo

on(w, ) =25 = Po X' weakly.

Proof. Clearly, Kolmogorov's law of large numbers implies that for any =z € R

Fo(w,z) = Qn(w,]— oo,x]) = % Z 15— o0,2] (Xl(w))
i=1

— B[l o) (X0)] = P[X1 < a] = (] - 00,2]) = F(a)

P-a.s., hence for every w ¢ N(x) for some P-null set N(z).
Then

N:= [ N(@).
reQ

is a P-null set too, and for all z € R and all s,r € Qwiths <z <randw ¢ N:

F(s):= lim F,(w,s) < liminf F, (w, )

n—oo n—oo

< limsup F,(w,z) < lim F,(w,r) = F(r).

n— o0 n—00
Hence, if F' is continuous at z, then for w ¢ N

lim F,(w,z) = F(z).

n—oo

Now the assertion follows from the Portmanteau theorem. O
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