Probability Theory

Wilhelm Stannat
Technische Universität Darmstadt
Winter Term 2007/08

Second part - corrected version

This text is a summary of the lecture on Probability Theory held at the TU Darmstadt in Winter Term 2007/08.

Please email all misprints and mistakes to stannat@mathematik.tu-darmstadt.de

Bibliography

- 1. Bauer, H., Probability theory, de Gruyter, 1996.
- 2. Bauer, H., Maß- und Integrationstheorie, de Gruyter, 1996.
- 3. Billingsley, P., Probability and Measure, Wiley, 1995.
- 4. Billingsley, P., Convergence of probability measures, Wiley, 1999.
- 5. Dudley, R.M., Real analysis and probability, Cambridge University Press, 2002.
- 6. Elstrodt, J., Maß- und Integrationstheorie, Springer, 2005.
- 7. Feller, W., An introduction to probability theory and its applications, Vol. 1 & 2, Wiley, 1950.
- 8. Halmos, P.R., Measure Theory, Springer, 1974.
- 9. Klenke, A., Wahrscheinlichkeitstheorie, Springer, 2006.
- 10. Shiryaev, A.N., Probability, Springer, 1996.

1 Basic Notions

Distribution of random variables

Let (Ω, \mathcal{A}, P) be a probability space, and $X : \Omega \to \overline{\mathbb{R}}$ be a r.v.

Let μ be the distribution of X (under P), i.e., $\mu(A) = P[X \in A]$ for all $A \in \mathcal{B}(\mathbb{R})$.

Assume that $P[X \in \mathbb{R}] = 1$ (in particular, X P-a.s. finite, and μ is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Definition 9.1. The function $F: \mathbb{R} \to [0,1]$, defined by

$$F(b) := P[X \leqslant b] = \mu(]-\infty,b], \quad b \in \mathbb{R}, \tag{1.1}$$

is called the distribution function of X resp. μ .

Proposition 9.2. (i) F is monotone increasing: $a \leqslant b \Rightarrow F(a) \leqslant F(b)$

right continuous:
$$F(a) = \lim_{b \to a} F(b)$$

right continuous:
$$F(a) = \lim_{b \searrow a} F(b)$$
 normalized:
$$\lim_{a \searrow -\infty} F(a) = 0, \quad \lim_{b \nearrow +\infty} F(b) = 1.$$

(ii) To any such function there exists a unique probability measure μ on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ with (1.10).

Proof. (i) Monotonicity is obvious.

Right continuity: if $b \setminus a$ then $]-\infty,b] \setminus]-\infty,a]$, hence by continuity of μ from above (vgl. Proposition 1.9):

$$F(a) = \mu(]-\infty, a]) \stackrel{\text{1.9}}{=} \lim_{b \searrow a} \mu(]-\infty, b]) = \lim_{b \searrow a} F(b).$$

Similarly, $]-\infty,a] \searrow \emptyset$ if $a \searrow -\infty$ (resp. $]-\infty,b] \nearrow \mathbb{R}$ if $b \nearrow \infty$), and thus

$$\lim_{a \searrow -\infty} F(a) = \lim_{a \searrow -\infty} \mu(]-\infty, a]) = 0$$

(resp.
$$\lim_{b \nearrow \infty} F(b) = \lim_{b \nearrow \infty} \mu(]-\infty, b]) = 1$$
).

(ii) Existence: Let λ be the Lebesgue measure on]0,1[. Define the "inverse function" $G ext{ of } F: \mathbb{R} \to [0,1] ext{ by}$

$$G:]0,1[\rightarrow \mathbb{R}$$

$$G(y) := \inf\{x \in \mathbb{R} \mid F(x) > y\}.$$

Note that $y < F(x) \implies G(y) \leqslant x$ implies

$$]0, F(x)[\subset \{G \leqslant x\}]$$

and $G(y)\leqslant x$ \Rightarrow $\exists x_n\searrow x$ with $F(x_n)>y$, hence $F(x)\geqslant y$, so that $\{G\leqslant x\}\subset \left[0,F(x)\right]$.

Combining both inclusions we obtain that

$$[0, F(x)] \subset \{G \leqslant x\} \subset [0, F(x)].$$

so that G is measurable.

Let $\mu := G(\lambda) = \lambda \circ G^{-1}$ (probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$). Then

$$\mu(]-\infty,x]) = \lambda(\{G \leqslant x\}) = \lambda(]0,F(x)]) = F(x) \quad \forall x \in \mathbb{R}.$$

Uniqueness: later.

- **Remark 9.3.** (i) Let Y be a r.v. with uniform distribution on [0,1], then X=G(Y) has distribution μ . In particular: simulating the uniform distribution on [0,1] gives by transformation with G a simulation of μ .
- (ii) Some authors define the distribution function F by $F(x) := \mu(]-\infty,x[)$. In this case F is left continuous, not right continuous.
- **Remark 9.4.** (i) Let F be a distribution function and let $x \in \mathbb{R}$: Then

$$F(x) - F(x-) = \lim_{n \nearrow \infty} \mu\left(\left[x - \frac{1}{n}, x\right]\right) = \mu(\{x\})$$

is called the step height of F in x. In particular:

F continuous $\Leftrightarrow \forall x \in \mathbb{R} : \mu(\{x\}) = 0$ " μ is continuous".

- (ii) Let F be monotone increasing and bounded, then F has at most countable many points of discontinuity.
- **Definition 9.5.** (i) F (resp. μ) is called *discrete*, if there exists a countable set $S \subset \mathbb{R}$ with $\mu(S) = 1$. In this case, μ is uniquenely determined by the weights $\mu(\{x\})$, $x \in S$, and F is a *step function* of the following type:

$$F(x) = \sum_{\substack{y \in S, \\ y \leqslant x}} \mu(\{y\}).$$

(ii) F (resp. μ) is called *absolutely continuous*, if there exists a measurbale function $f \geqslant 0$ (called the "density"), such that

$$F(x) = \int_{-\infty}^{x} f(t) dt,$$
 (1.2)

resp., for all $A \in \mathcal{B}(\mathbb{R})$:

$$\mu(A) = \int_A f(t) dt = \int_{-\infty}^{\infty} 1_A \cdot f dt.$$
 (1.3)

In particular $\int_{-\infty}^{+\infty} f(t) dt = 1$.

- **Remark 9.6.** (i) Every measurable function $f \geqslant 0$ with $\int_{-\infty}^{+\infty} f(t) dt = 1$ defines a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ by $A \mapsto \int_A f(t) dt$.
- (ii) In the previous definition "(1.11) \Rightarrow (1.12)", because $A \mapsto \int_A f(t) \ \mathrm{d}t$ defines a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with distribution function F. Uniqueness in 9.2 implies the assertion.
- **Example 9.7.** (i) Uniform distribution on [a,b]. Let $f:=\frac{1}{b-a}\cdot 1_{[a,b]}$. The associated distribution function is given by

$$F(x) := \begin{cases} 0 & \text{if } x \leqslant a \\ \frac{1}{b-a} \cdot (x-a) & \text{if } x \in [a,b] \\ 1 & \text{if } x \geqslant b. \end{cases}$$

(continuous analogue to the dicrete uniform distribution on a finite set)

(ii) Exponential distribution with parameter $\alpha > 0$.

$$f(x) := \begin{cases} \alpha e^{-\alpha x} & \text{if } x \geqslant 0\\ 0 & \text{if } x < 0, \end{cases}$$

$$F(x) := \begin{cases} 1 - e^{-\alpha x} & \text{if } x \geqslant 0\\ 0 & \text{if } x < 0. \end{cases}$$

(continuous analogue of the geometric distribution)

$$\int_{k}^{k+1} f(x) \, \mathrm{d}x = F(k+1) - F(k) = e^{-\alpha k} (1 - e^{-\alpha}) = (1 - p)^{k} p \text{ with } p = 1 - e^{-\alpha}.$$

(iii) Normal distribution $N(m, \sigma^2)$, $m \in \mathbb{R}$, $\sigma^2 > 0$

$$f_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

The associated distribution function is given by

$$F_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \int_{-\infty}^x e^{-\frac{(y-m)^2}{2\sigma^2}} dy$$
$$z = \frac{y-m}{\sigma} \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{\frac{x-m}{\sigma}} e^{-\frac{z^2}{2}} dz = F_{0,1}\left(\frac{x-m}{\sigma}\right).$$

 $\Phi:=F_{0,1}$ is called the distribution function of the *standard normal distribution* N(0,1).

The expectation E[X] (or more general E[h(X)]) can be calculated with the help of the distribution μ of X:

Proposition 9.8. Let $h \geqslant 0$ be measurable, then

$$\begin{split} \mathbb{E}\big[h(X)\big] &= \int_{-\infty}^{+\infty} h(x) \; \mu(\mathrm{d}x) \\ &= \begin{cases} \int_{-\infty}^{+\infty} h(x) \cdot f(x) \; \mathrm{d}x & \text{if μ absolutely continuous with density f} \\ \sum_{x \in S} h(x) \cdot \mu(\{x\}) & \text{if μ discrete, $\mu(S) = 1$ and S countable.} \end{cases} \end{split}$$

Proof. See exercises.

Example 9.9. Let X be $N(m, \sigma^2)$ -distributed. Then

$$\mathbb{E}[X] = \int x \cdot f_{m,\sigma^2}(x) \, dx = m + \underbrace{\int (x-m) \cdot f_{m,\sigma^2}(x) \, dx}_{=0} = m.$$

The p^{th} central moment of X is given by

$$\mathbb{E}[|X - m|^p] = \int |x - m|^p \cdot f_{m,\sigma^2}(x) \, \mathrm{d}x,$$

$$= \int |x|^p \cdot f_{0,\sigma^2}(x) \, \mathrm{d}x.$$

$$= 2 \int_0^\infty x^p \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}} \, \mathrm{d}x,$$

$$= \frac{1}{\sqrt{\pi}} \cdot 2^{\frac{p}{2}} \cdot \sigma^p \underbrace{\int_0^\infty y^{\frac{p+1}{2} - 1} \cdot e^{-y} \, \mathrm{d}y.}_{=\Gamma(\frac{p+1}{2})}$$

In particular:

$$p = 1 : \mathbb{E}[|X - m|] = \sigma \cdot \sqrt{\frac{2}{\pi}}$$

$$p = 2 : \mathbb{E}[|X - m|^2] = \sigma^2$$

$$p = 3 : \mathbb{E}[|X - m|^3] = 2^{\frac{3}{2}} \cdot \frac{\sigma^3}{\sqrt{\pi}}$$

$$p = 4 : \mathbb{E}[|X - m|^4] = 3\sigma^4.$$

10 Weak convergence of probability measures

Let S be a topological space and S be the Borel σ -algebra on S.

Let μ , μ_n , $n \in \mathbb{N}$, be probability measures on (S, \mathbb{S}) .

What is a reasonable notion of convergence of the sequence μ_n towards μ ? The notion of "pointwise convergence" in the sense that $\mu_n(A) \xrightarrow{n \to \infty} \mu(A)$ for all $A \in \mathbb{S}$ is too strong for many applications.

Definition 10.1. Let μ and μ_n , $n \in \mathbb{N}$, be probability measures on (S, \mathbb{S}) . The sequence (μ_n) converges to μ weakly if for all $f \in C_b(S)$ (= the space of bounded continuous functions on S) it follows that

$$\int f \, \mathrm{d}\mu_n \xrightarrow{n \to \infty} \int f \, \mathrm{d}\mu.$$

Example 10.2. (i) $x_n \xrightarrow{n \to \infty} x$ in S implies $\delta_{x_n} \xrightarrow{n \to \infty} \delta_x$ weakly.

(ii) Let $S:=\mathbb{R}^1$ and $\mu_n:=N\big(0,\frac{1}{n}\big).$ Then $\mu_n\to\delta_0$ weakly, since for all $f\in\mathbb{C}_b(\mathbb{R})$

$$\int f \, d\mu_n = \int f(x) \cdot \frac{1}{\sqrt{2\pi \frac{1}{n}}} \cdot e^{-\frac{x^2}{2 \cdot \frac{1}{n}}} \, dx$$

$$\stackrel{x = \frac{y}{\sqrt{n}}}{=} \int f\left(\frac{y}{\sqrt{n}}\right) \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{y^2}{2}} \, dy$$

$$\stackrel{\text{Lebesgue}}{\xrightarrow{n \to \infty}} f(0) = \int f \, d\delta_0.$$

Proposition 10.3 (Portemanteau-Theorem). Let S be a metric space with metric d. Then the following statements are equivalent:

- (i) $\mu_n \to \mu$ weakly
- (ii) $\int f d\mu_n \xrightarrow{n \to \infty} \int f d\mu$ for all f bounded and uniformly continuous (w.r.t. d)
- (iii) $\limsup_{n\to\infty} \mu_n(F) \leqslant \mu(F)$ for all $F \subset S$ closed
- (iv) $\liminf_{n\to\infty} \mu_n(G) \geqslant \mu(G)$ for all $G \subset S$ open

(v) $\lim_{n\to\infty} \mu_n(A) = \mu(A)$ for all $A \in \mathbb{S}$ with $\mu(\bar{A} \setminus \mathring{A}) = 0$.

Proof. (iii)⇔(iv): Obvious by considering the complement.

(i)⇒(ii): Trivial.

(ii) \Rightarrow (iii): Let $F \subset S$ be closed, let

$$G_m:=\left\{x\in S\;\middle|\; d(x,F)<rac{1}{m}
ight\},\quad m\in\mathbb{N} \qquad ext{ open}!$$

Then $G_m \setminus F$, hence $\mu(G_m) \setminus \mu(F)$.

If $\varepsilon > 0$ there exists some $m \in \mathbb{N}$ mit $\mu(G_m) < \mu(F) + \varepsilon$. Define

$$\varphi(x) := \begin{cases} 1 & \text{if } x \leqslant 0 \\ 1 - x & \text{if } x \in [0, 1] \\ 0 & \text{if } x \geqslant 1. \end{cases}$$

and let $f := \varphi(m \cdot d(\cdot, F))$.

f is Lipschitz, in particular uniformly continuous, f=0 on ${\cal G}_m^c$ and f=1 on ${\cal F}$, and thus

$$\limsup_{n \to \infty} \mu_n(F) \leqslant \limsup_{n \to \infty} \int f \ d\mu_n \stackrel{\text{(ii)}}{=} \int f \ d\mu$$
$$\leqslant \mu(G_m) < \mu(F) + \varepsilon.$$

(iii) \Rightarrow (v): Let A be such that $\mu(\bar{A}\setminus \mathring{A})=0$. Then

$$\mu(A) = \mu(\mathring{A}) \overset{\text{(iv)}}{\leqslant} \liminf_{n \to \infty} \mu_n(\mathring{A}) \leqslant \liminf_{n \to \infty} \mu_n(A) \leqslant \limsup_{n \to \infty} \mu_n(A)$$
$$\leqslant \limsup_{n \to \infty} \mu_n(\bar{A}) \overset{\text{(iii)}}{\leqslant} \mu(\bar{A}) = \mu(A).$$

(v) \Rightarrow (iii): Let $F \subset S$ be closed. For all $\delta > 0$ we have that

$$\partial \big\{ d(\,\cdot\,,F) \geqslant \delta \big\} \subset \big\{ d(\,\cdot\,,F) = \delta \big\}.$$

Note The set

$$D:=\Big\{\delta>0\;\Big|\;\mu\big(\big\{d(\,\cdot\,,F)=\delta\big\}\big)>0\Big\}$$

is countable, since for all n the set

$$D_n := \left\{ \delta > 0 \; \middle| \; \mu(\underbrace{\left\{ d(\,\cdot\,,F) = \delta \right\}}_{\text{disjoint!}}) > \frac{1}{n} \right\}$$

is finite for any $n \in \mathbb{N}$. In particular, there exists a sequence $\delta_k \in]0,\infty[\setminus D,\delta_k \downarrow 0$ such that the set

$$F_k := \{d(\cdot, F) \leqslant \delta_k\}$$

satisfies $\mu(\bar{F}_k \setminus \mathring{F}_k) = 0$. $F_k \searrow F$ now implies that

$$\limsup_{n \to \infty} \mu_n(F) \leqslant \limsup_{n \to \infty} \mu_n(F_k) \stackrel{(\mathsf{v})}{=} \mu(F_k) \xrightarrow{k \to \infty} \mu(F).$$

(iii) \Rightarrow (i): Let $f \in C_b(S)$. It suffices to prove that

$$\limsup_{n \to \infty} \int f \, d\mu_n \leqslant \int f \, d\mu,$$

(since then

$$-\liminf \int f \, d\mu_n \leqslant \int (-f) \, \mathrm{d}\mu,$$

hence $\liminf \int f d\mu_n \geqslant \int f d\mu$)

W.l.o.g.
$$0 \leqslant f \leqslant 1$$

Fix
$$k\in\mathbb{N}$$
 and let $F_j:=\left\{f\geqslant rac{j}{k}
ight\}$, $j\in\mathbb{N}$ (F_j closed!)

Then

$$\frac{1}{k} \sum_{i=1}^{k} 1_{F_i} \leqslant f \leqslant \frac{1}{k} + \frac{1}{k} \sum_{i=1}^{k} 1_{F_i}$$

Hence for all probability measures ν on (S, S):

$$\frac{1}{k} \sum_{i=1}^{k} \nu(F_i) \leqslant \int f \, d\nu \leqslant \frac{1}{k} + \frac{1}{k} \sum_{i=1}^{k} \nu(F_i).$$

and

$$\limsup_{n \to \infty} \int f \, d\mu_n - \frac{1}{k} \stackrel{(\ddagger)}{\leqslant} \frac{1}{k} \cdot \limsup_{n \to \infty} \sum_{i=1}^k \mu_n(F_i)$$

$$\leqslant \frac{1}{k} \sum_{i=1}^k \limsup_{n \to \infty} \mu_n(F_i) \stackrel{(iii)}{\leqslant} \frac{1}{k} \sum_{i=1}^k \mu(F_i) \stackrel{(\dagger)}{\leqslant} \int f \, d\mu$$

Corollary 10.4. Let X, X_n , $n \in \mathbb{N}$, be measurable mappings from (Ω, \mathcal{A}, P) to (S, \mathbb{S}) with distributions μ , μ_n , $n \in \mathbb{N}$. Then:

$$X_n \xrightarrow{n \to \infty} X$$
 in probability $\Rightarrow \mu_n \xrightarrow{n \to \infty} \mu$ weakly

Here, $\lim_{n\to\infty} X_n = X$ in probability, if $\lim_{n\to\infty} P(d(X,X_n) > \delta) = 0$ for all $\delta > 0$.

Proof. Let $f \in C_b(S)$ be uniformly continuous and $\varepsilon > 0$. Then there exists a $\delta = \delta(\varepsilon) > 0$ such that:

 $x,y\in S$ with $d(x,y)\leqslant \delta$ implies $|f(x)-f(y)|<\varepsilon$ Hence

$$\left| \int f \, d\mu - \int f \, d\mu_n \right| = \left| \mathbb{E}[f(X)] - \mathbb{E}[f(X_n)] \right|$$

$$\leq \int_{\{d(X,X_n) \leq \delta\}} \left| f(X) - f(X_n) \right| \, dP + \int_{\{d(X,X_n) > \delta\}} \left| f(X) - f(X_n) \right| \, dP$$

$$\leq \varepsilon + 2\|f\|_{\infty} \cdot \underbrace{P[d(X_n,X) > \delta]}_{n \to \infty}.$$

Corollary 10.5. Let $S = \mathbb{R}^1$ and let μ , μ_n , $n \in \mathbb{N}$, be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with distributions functions F, F_n . Then the following statements are equivalent:

- (i) $\mu_n \xrightarrow{n \to \infty} \mu$ vaguely, i.e. $\lim_{n \to \infty} \int f \, d\mu_n = \int f \, d\mu$ for all $f \in \mathbb{C}_0(\mathbb{R}^1)$ (= the space of continuous functions with compact support)
- (ii) $\mu_n \xrightarrow{n \to \infty} \mu$ weakly
- (iii) $F_n(x) \xrightarrow{n \to \infty} F(x)$ for all x where F is continuous.
- $(\text{iv}) \ \mu_n \big(]a,b] \big) \xrightarrow{n \to \infty} \mu \big(]a,b] \big) \ \text{for all} \]a,b] \ \text{with} \ \mu(\{a\}) = \mu(\{b\}) = 0.$

Proof. (i)⇒(ii): Exercise.

(ii) \Rightarrow (iii): Let x be such that F is continuous in x. Then $\mu(\{x\}) = 0$, which implies by the Portmanteau theorem:

$$F_n(x) = \mu_n(]-\infty, x] \xrightarrow{n\to\infty} \mu(]-\infty, x] = F(x).$$

(iii) \Rightarrow (iv): Let]a,b] be such that $\mu(\{a\})=\mu(\{b\})=0$ then F is continuous in a and b and thus

$$\mu(]a,b]) = F(b) - F(a) \stackrel{\text{(iii)}}{=} \lim_{n \to \infty} F_n(b) - \lim_{n \to \infty} F_n(a)$$
$$= \lim_{n \to \infty} \mu_n(]a,b]).$$

(iv) \Rightarrow (i): Let $D:=\{x\in\mathbb{R}\mid \mu(\{x\})=0\}$. Then $\mathbb{R}\setminus D$ is countable, hence $D\subset\mathbb{R}$ dense. Let $f\in C_0(\mathbb{R})$, then f is uniformly continuous, hence for $\varepsilon>0$ we find $c_0<\dots< c_m\in D$ such that

$$\left\| f - \underbrace{\sum_{k=1}^{m} f(c_{k-1}) \cdot \mathbb{I}_{]c_{k-1}, c_k]}}_{=:q} \right\|_{\infty} \leqslant \sup_{k} \sup_{x \in [c_{k-1}, c_k]} \left| f(x) - f(c_{k-1}) \right| < \varepsilon.$$

Then

$$\left| \int f \, d\mu - \int f \, d\mu_n \right|$$

$$\leq \underbrace{\int |f - g| \, d\mu}_{<\varepsilon} + \left| \int g \, d\mu - \int g \, d\mu_n \right| + \underbrace{\int |f - g| \, d\mu_n}_{<\varepsilon}$$

$$\leq 2\varepsilon + \sum_{k=1}^m f(c_{k-1}) \cdot \left| \mu(]c_{k-1}, c_k] \right) - \mu_n(]c_{k-1}, c_k] \right| \xrightarrow{n \to \infty} 2\varepsilon. \quad \Box$$

11 Dynkin-systems and Uniqueness of probability measures

Let $\Omega \neq \emptyset$.

Definition 11.1. A collection of subsets $\mathcal{D} \subset \mathcal{P}(\Omega)$ is called a *Dynkin-system*, if:

- (i) $\Omega \in \mathcal{D}$.
- (ii) $A \in \mathcal{D} \Rightarrow A^c \in \mathcal{D}$.
- (iii) $A_i \in \mathcal{D}$, $i \in \mathbb{N}$, pairwise disjoint, then

$$\bigcup_{i\in\mathbb{N}} A_i \in \mathcal{D}.$$

Example 11.2. (i) Every σ -Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ is a Dynkin-system

(ii) Let P_1, P_2 be probability measures on (Ω, \mathcal{A}) . Then

$$\mathcal{D} := \{ A \in \mathcal{A} \mid P_1(A) = P_2(A) \}$$

is a Dynkin-system

Remark 11.3. (i) Let $\mathfrak D$ be a Dynkin-system. Then

$$A, B \in \mathcal{D}, A \subset B \qquad \Rightarrow \qquad B \setminus A = (B^c \cup A)^c \in \mathcal{D}$$

(ii) Every Dynkin-system which is closed under finite unions (short notation: ∩-stable), is a σ -algebra, because:

(a)
$$A, B \in \mathcal{D} \quad \Rightarrow \quad A \cup B = A \cup (B \setminus \underbrace{(A \cap B)}_{\in \mathcal{D}}) \in \mathcal{D}.$$

(a)
$$A, B \in \mathcal{D}$$
 \Rightarrow $A \cup B = A \cup (B \setminus (A \cap B)) \in \mathcal{D}$.

(b) $A_i \in \mathcal{D}, i \in \mathbb{N}$ \Rightarrow $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} \left[A_i \cap (\bigcup_{n=1}^{i-1} A_n)^c \right] \in \mathcal{D}$.

Proposition 11.4. Let $\mathcal{B} \subset \mathcal{P}(\Omega)$ be a \cap -stable collection of subsets. Then

$$\sigma(\mathcal{B}) = \mathcal{D}(\mathcal{B}),$$

where

$$\mathcal{D}(\mathcal{B}) := \bigcap_{\substack{\mathcal{D} \text{ Dynkin-system} \\ \mathcal{B} \subset \mathcal{D}}} \mathcal{D}$$

is called the Dynkin-system generated by \mathfrak{B} .

Proof. See text books on measure theory.

Proposition 11.5 (Uniqueness of probability measures). Let P_1, P_2 be probability measures on (Ω, A) , and $\mathcal{B} \subset A$ be a \cap -stable collection of subsets. Then:

$$P_1(A) = P_2(A)$$
 for all $A \in \mathcal{B}$ \Rightarrow $P_1 = P_2$ on $\sigma(\mathcal{B})$.

Proof. The collection of subsets

$$\mathcal{D} := \{ A \in \mathcal{A} \mid P_1(A) = P_2(A) \}$$

is a Dynkin-system containing B. Consequently,

$$\sigma(\mathfrak{B}) \stackrel{11.4}{=} \mathfrak{D}(\mathfrak{B}) \subset \mathfrak{D}.$$

Example 11.6. (i) For $p \in]0,1[$ the probability measure P_p on $(\Omega := \{0,1\}^{\mathbb{N}},\mathcal{A})$ is uniquely determined by

$$P_p[X_1 = x_1, \dots, X_n = x_n] = p^k (1-p)^{n-k}, \text{ with } k := \sum_{i=1}^n x_i$$

for all $x_1,\ldots,x_n\in\{0,1\}$, $n\in\mathbb{N}$, because the collection of cylindrical sets

$${X_1 = x_1, \dots, X_n = x_n}, n \in \mathbb{N}_0, x_1, \dots, x_n \in {0, 1}$$

is \cap -stable, generating \mathcal{A} (cf. Example 1.7).

(Existence of P_p for $p=\frac{1}{2}$ see Example 3.6. Existence for $p\in]0,1[\setminus\{\frac{1}{2}\}]$ later.)

(ii) A probability measure on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ is uniquely determined through its distribution function F (:= $\mu(]-\infty,\cdot]$), because

$$\mu(]a,b]) = F(b) - F(a),$$

and the collection of intervals]a,b], $a,b\in\mathbb{R}$, is \cap -stable, generating $\mathcal{B}(\mathbb{R}).$

2 Independence

1 Independent events

Let (Ω, \mathcal{A}, P) be a probability space.

Definition 1.1. A collection of events $A_i \in \mathcal{A}$, $i \in I$, are said to be *independent* (w.r.t. P), if for any finite subset $J \subset I$

$$P\Big(\bigcap_{j\in J} A_j\Big) = \prod_{j\in J} P(A_j).$$

A family of collection of subsets $\mathcal{B}_i \subset \mathcal{A}$, $i \in I$, is said to be *independent*, if for all finite subsets $J \subset I$ and for all subsets $A_j \in \mathcal{B}_j$, $j \in J$

$$P\Big(\bigcap_{j\in J}A_j\Big)=\prod_{j\in J}P(A_j).$$

Proposition 1.2. Let \mathcal{B}_i , $i \in I$, be independent and closed under intersections. Then:

- (i) $\sigma(\mathcal{B}_i)$, $i \in I$, are independent.
- (ii) Let J_k , $k \in K$, be a partition of the index set I. Then the σ -algebras

$$\sigma\Big(\bigcup_{i\in J_k}\mathfrak{B}_i\Big), \quad k\in K,$$

are independent.

Proof. (i) Let $J \subset I$, J finite, be of the form $J = \{j_1, \ldots, j_n\}$. Let $A_{j_1} \in \sigma(\mathcal{B}_{j_1}), \ldots, A_{j_n} \in \sigma(\mathcal{B}_{j_n})$.

We have to show that

$$P(A_{j_1} \cap \dots \cap A_{j_n}) = P(A_{j_1}) \cdots P(A_{j_n}). \tag{2.1}$$

To this end suppose first that $A_{j_2} \in \mathcal{B}_{j_2}, \dots, A_{j_n} \in \mathcal{B}_{j_n}$, and define

$$\mathcal{D}_{j_1} := \left\{ A \in \sigma(\mathcal{B}_{j_1}) \mid P(A \cap A_{j_2} \cap \dots \cap A_{j_n}) \right.$$
$$= P(A) \cdot P(A_{j_2}) \cdots P(A_{j_n}) \right\}.$$

Then \mathcal{D}_{j_1} is a Dynkin system (!) containing \mathcal{B}_{j_1} . Proposition 1.11.4 now implies

$$\sigma(\mathcal{B}_{i_1}) = \mathcal{D}(\mathcal{B}_{i_1}) \subset \mathcal{D}_{i_1} ,$$

hence $\sigma(\mathfrak{B}_{j_1})=\mathfrak{D}_{j_1}$. Iterating the above argument for \mathfrak{D}_{j_2} , \mathfrak{D}_{j_3} , implies (2.1).

(ii) For $k \in K$ define

$$\mathfrak{C}_k := \left\{ \bigcap_{j \in J} A_j \mid J \subset J_k, \ J \ \text{finite}, \ A_j \in \mathfrak{B}_j \right\}.$$

Then \mathcal{C}_k is closed under intersections and the collection of subsets \mathcal{C}_k , $k \in K$, are still independent, because: given $k_1, \ldots, k_n \in K$ and finite subsets $J^1 \subset J_{k_1}, \ldots, J^n \subset J_{k_n}$, then

$$P\bigg(\bigg(\bigcap_{i\in J^1} A_i\bigg)\cap \cdots \cap \bigg(\bigcap_{i\in J^n} A_i\bigg)\bigg) \stackrel{\mathcal{B}_{i,i\in I}}{=} \prod_{j=1}^n P\bigg(\bigcap_{i\in J^j} A_i\bigg).$$

(i) now implies that

$$\sigma(\mathcal{C}_k) = \sigma\Big(\bigcup_{i \in J_k} \mathcal{B}_i\Big), \quad k \in K,$$

are independent too.

Example 1.3. Let $A_i \in \mathcal{A}$, $i \in I$, be independent. Then A_i, A_i^c , $i \in I$, are independent too.

Remark 1.4. Pairwise independence does not imply independence in general. Beispiel: Consider two tosses with a fair coin, i.e.

$$\Omega := \big\{ (i,k) \; \big| \; i,k \in \{0,1\} \big\}, \quad P := \textit{uniform distribution}.$$

Consider the events

$$A := "1. toss 1" = \{(1,0), (1,1)\}$$

$$B := "2. toss 1" = \{(0,1), (1,1)\}$$

$$C := "1. \text{ and } 2. \text{ toss equal}" = \{(0,0), (1,1)\}.$$

Then $P(A)=P(B)=P(C)=\frac{1}{2}$ and A,B,C are pairwise independent

$$P(A \cap B) = P(B \cap C) = P(C \cap A) = \frac{1}{4}.$$

But on the other hand

$$P(A \cap B \cap C) = 14 \neq P(A) \cdot P(B) \cdot P(C).$$

Example 1.5. Independent 0-1-experiments with success probability $p \in [0,1]$. Let $\Omega := \{0,1\}^{\mathbb{N}}$, $X_i(\omega) := x_i$ and $\omega := (x_i)_{i \in \mathbb{N}}$. Let P_p be a probability measure on $\mathcal{A} := \sigma(\{X_i = 1\}, i = 1, 2, \dots)$, with

(i)
$$P_p[X_i = 1] = p$$
 (hence $P_p[X_i = 0] = P_p(\{X_i = 1\}^c) = 1 - p$).

(ii) $\{X_i=1\}$, $i\in\mathbb{N}$, are independent w.r.t. P_p .

Existence of such a probability measure later! Then for any $x_1, \ldots, x_n \in \{0, 1\}$:

$$P_p[X_{i_1} = x_1, \dots, X_{i_n} = x_n] \stackrel{\text{(ii) and}}{=} \prod_{j=1}^n P_p[X_{i_j} = x_j] \stackrel{\text{(i)}}{=} p^k (1-p)^{n-k},$$

where $k:=\sum_{i=1}^n x_i$ gilt. Hence P_p is uniquely determined by (i) and (ii).

Proposition 1.6 (Kolmogorov's Zero-One Law). Let \mathfrak{B}_n , $n \in \mathbb{N}$, be independent σ -algebras, and

$$\mathcal{B}_{\infty} := \bigcap_{n=1}^{\infty} \sigma \Big(\bigcup_{m=n}^{\infty} \mathcal{B}_m \Big)$$

be the tail-field (resp. σ -algebra of terminal events). Then

$$P(A) \in \{0,1\} \qquad \forall A \in \mathcal{B}_{\infty}$$

i.e., P is deterministic on \mathfrak{B}_{∞} .

Illustration: Independent 0-1-experiments

Let
$$\mathcal{B}_i = \sigma(\{X_i = 1\})$$
. Then

$$\mathcal{B}_{\infty} = \bigcap_{n \in \mathbb{N}} \sigma \Big(\bigcup_{m \geqslant n} \mathcal{B}_m \Big)$$

is the σ -algebra containing the events of the remote future, e.g.

$$\limsup_{i \to \infty} \{X_i = 1\} = \{\text{``infinitely many '1'''}\}$$

$$\left\{\omega \in \{0,1\}^{\mathbb{N}} \;\middle|\; \lim_{n \to \infty} \underbrace{\frac{1}{n} \sum_{i=1}^{n} X_i(\omega)}_{=:\underbrace{S_n(\omega)}} \quad \text{exists} \right\}$$

Proof of the Zero-One Law. Proposition 1.2 implies that for all n

$$\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_{n-1}, \sigma\Big(\bigcup_{m=n}^{\infty} \mathcal{B}_m\Big)$$

are independent. Since $\mathfrak{B}_\infty\subset\sigma\Bigl(igcup_{m\geqslant n}\mathfrak{B}_m\Bigr)$, this implies that for all n

$$\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_{n-1}, \mathcal{B}_{\infty}$$

are independent. By definition this implies that

 \mathfrak{B}_{∞} , \mathfrak{B}_{n} , $n \in \mathbb{N}$ are independent

and now Proposition 1.2(ii) implies that

$$\sigma\Big(\bigcup_{n\in\mathbb{N}}\mathfrak{B}_n\Big)$$
 und \mathfrak{B}_{∞}

are idependent. Since $\mathcal{B}_\infty\subset\sigma\Bigl(\bigcup_{n\geqslant 1}\mathcal{B}_n\Bigr)$ we finally obtain that \mathcal{B}_∞ and \mathcal{B}_∞ are independent. The conclusion now follows from the next lemma. \square

Lemma 1.7. Let $\mathcal{B} \subset \mathcal{A}$ be a σ -algebra such that \mathcal{B} is independent from \mathcal{B} . Then

$$P(A) \in \{0, 1\} \quad \forall A \in \mathcal{B}.$$

Proof. For all $A \in \mathcal{B}$

$$P(A) = P(A \cap A) = P(A) \cdot P(A) = P(A)^{2}.$$

Hence
$$P(A) = 0$$
 or $P(A) = 1$.

For any sequence A_n , $n \in \mathbb{N}$, of independent events in \mathcal{A} , Kolmogorov's Zero-One Law implies in particular for

$$A_{\infty} := \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_m \quad \left(=: \limsup_{n \to \infty} A_n \right)$$

that $P(A_{\infty}) = 0 - 1$.

Proof: The σ -algebras $\mathfrak{B}_n:=\sigma\{A_n\}=\{\emptyset,\Omega,A,A^c\},\ n\in\mathbb{N}$, are independent by Proposition 1.2 and $A_\infty\in\mathfrak{B}_\infty$.

Lemma 1.8 (Borel-Cantelli). (i) Let $A_i \in \mathcal{A}$, $i \in \mathbb{N}$. Then

$$\sum_{i=1}^{\infty} P(A_i) < \infty \quad \Rightarrow \quad P(\limsup_{i \to \infty} A_i) = 0.$$

(ii) Assume that $A_i \in \mathcal{A}$, $i \in \mathbb{N}$, are independent. Then

$$\sum_{i=1}^{\infty} P(A_i) = \infty \quad \Rightarrow \quad P(\limsup_{i \to \infty} A_i) = 1.$$

Proof. (i) See Lemma 1.1.11.

(ii) It suffices to show that

$$P\Big(igcup_{m=n}^{\infty}A_m\Big)=1 \quad \text{resp.} \quad P\Big(igcap_{m=n}^{\infty}A_m^c\Big)=0 \qquad orall \, n \, .$$

The last equality follows from the fact that

$$P\left(\bigcap_{m=n}^{\infty} A_m^c\right) = \lim_{k \to \infty} \underbrace{P\left(\bigcap_{m=n}^{n+k} A_m^c\right)}_{=\prod_{m=n}^{n+k} P(A_m^c)} \text{ ind.}$$
$$= \prod_{m=n}^{n+k} (1 - P(A_m)) \le \exp\left(\sum_{m=n}^{n+k} P(A_m)\right) = 0$$

where we used the inequality $1 - \alpha \leqslant e^{-\alpha}$ for all $\alpha \in \mathbb{R}$.

Example 1.9. Independent 0-1-experiments with success probability $p \in]0,1[$. Let $(x_1,\ldots,x_N) \in \{0,1\}^N$ ("binary text of length N").

$$P_p["text occurs"]$$
 ?

To calculate this probability we partition the infinite sequence $\omega=(y_n)\in\{0,1\}^\mathbb{N}$ into blocks of length N

$$\underbrace{(y_1,y_2,\dots}_{\substack{1.\text{ block}\\ \text{length}\,=\,N}}\underbrace{\quad\dots\quad}_{\substack{2.\text{ block}\\ \text{length}\,=\,N}}\dots)\in\Omega:=\{0,1\}^{\mathbb{N}}.$$

and consider the events A_i = "text occurs in the i^{th} block". Clearly, A_i , $i \in \mathbb{N}$, are independent events (!) by Proposition 1.2(ii) with equal probability

$$P_p(A_i) = p^K (1-p)^{N-K} =: \alpha > 0.$$

where $K:=\sum_{i=1}^N x_i$ is the total sum of ones. In particular, $\sum_{i=1}^\infty P_p(A_i)=\sum_{i=1}^\infty \alpha=\infty$, and now Borel-Cantelli implies $P_p(A_\infty)=1$, where

$$A_{\infty} = \limsup_{i \to \infty} A_i := \text{"text occurs infinitely many times"}\,.$$

Moreover: since the indicator functions $1_{A_1}, 1_{A_2}, \ldots$ are uncorrelated (since they are independent r.v. (see below)), the strong law of large numbers implies that

$$\frac{1}{n} \sum_{i=1}^{n} 1_{A_i} \xrightarrow{P_{p}\text{-a.s.}} \mathbb{E}[1_{A_i}] = \alpha,$$

i.e. the relative frequency of the given text in the infinite sequence is strictly positive.

2 Independent random variables

Let (Ω, \mathcal{A}, P) be a probability space.

Definition 2.1. A family X_i , $i \in I$, of r.v. on (Ω, \mathcal{A}, P) is said to be *independent*, if the σ -algebras

$$\sigma(X_i) := X_i^{-1} \big(\mathcal{B}(\bar{\mathbb{R}}) \big) \quad \Big(= \big\{ \{ X_i \in A \} \mid A \in \mathcal{B}(\bar{\mathbb{R}}) \big\} \Big), \quad i \in I,$$

are independent, i.e. for all finite subsets $J \subset I$ and any Borel subsets $A_i \in \mathcal{B}(\bar{\mathbb{R}})$

$$P\Big(\bigcap_{j\in J} \{X_j \in A_j\}\Big) = \prod_{j\in J} P[X_j \in A_j].$$

Remark 2.2. Let X_i , $i \in I$, be independent and $h_i : \overline{\mathbb{R}} \to \overline{\mathbb{R}}$, $i \in I$, $\mathcal{B}(\overline{\mathbb{R}})/\mathcal{B}(\overline{\mathbb{R}})$ -measurable. Then $Y_i := h_i(X_i)$, $i \in I$, are again independent, because $\sigma(Y_i) \subset \sigma(X_i)$ for all $i \in I$.

Proposition 2.3. Let X_1, \ldots, X_n be independent r.v., ≥ 0 . Then

$$\mathbb{E}[X_1\cdots X_n] = \mathbb{E}[X_1]\cdots \mathbb{E}[X_n].$$

Proof. W.l.o.g. n=2. (Proof of the general case by induction, using the fact that $X_1\cdot\ldots\cdot X_{n-1}$ and X_n are independent , since $X_1\cdot\ldots\cdot X_{n-1}$ is measurable w.r.t $\sigma\big(\sigma(X_1)\cup\cdots\cup\sigma(X_{n-1})\big)$ and $\sigma\big(\sigma(X_1)\cup\cdots\cup\sigma(X_{n-1})\big)$ and $\sigma(X_n)$ are independent by Proposition 1.2.)

It therefore suffices to consider two independent r.v. X,Y, ≥ 0 , and we have to show that

$$\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]. \tag{2.2}$$

W.l.o.g. X, Y simple

(for general X and Y there exist increasing sequences of simple r.v. X_n (resp. Y_n), which are $\sigma(X)$ -measurable (resp. $\sigma(Y)$ -measurable), converging pointwise to X (resp. Y).

Then $\mathbb{E}[X_nY_n] = \mathbb{E}[X_n] \cdot \mathbb{E}[Y_n]$ for all n implies (2.2) using monotone integration.) But for X, Y simple, hence

$$X = \sum_{i=1}^m \alpha_i 1_{A_i} \quad \text{and} \quad Y = \sum_{j=1}^n \beta_j 1_{B_j},$$

with $\alpha_i, \beta_i \geqslant 0$ and $A_i \in \sigma(X)$ resp. $B_i \in \sigma(Y)$ it follows that

$$\mathbb{E}[XY] = \sum_{i,j} \alpha_i \beta_j \cdot P(A_i \cap B_j) = \sum_{i,j} \alpha_i \beta_j \cdot P(A_i) \cdot P(B_j) = \mathbb{E}[X] \cdot \mathbb{E}[Y]. \quad \Box$$

Corollary 2.4. X,Y independent, $X,Y \in \mathcal{L}^1$

$$\Rightarrow \qquad XY \in \mathcal{L}^1 \qquad \text{and} \qquad \mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y] \,.$$

Proof. Let $\varepsilon_1, \varepsilon_2 \in \{+, -\}$. Then X^{ε_1} and Y^{ε_2} are independent by Remark 2.2 and nonnegative. Proposition 2.3 implies

$$\mathbb{E}[X^{\varepsilon_1} \cdot Y^{\varepsilon_2}] = \mathbb{E}[X^{\varepsilon_1}] \cdot \mathbb{E}[Y^{\varepsilon_2}].$$

In particular $X^{\varepsilon_1} \cdot Y^{\varepsilon_2}$ in \mathcal{L}^1 , because $\mathbb{E}[X^{\varepsilon_1}] \cdot \mathbb{E}[Y^{\varepsilon_2}] < \infty$. Hence

$$X \cdot Y = X^+ \cdot Y^+ + X^- \cdot Y^- - (X^+ \cdot Y^- + X^- \cdot Y^+) \in \mathcal{L}^1,$$

and
$$\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$$
.

Remark 2.5. (i) In general the converse to the above corollary does not hold: For example let X be N(0,1)-distributed and $Y=X^2$. Then X and Y are not independent, but

$$\mathbb{E}[XY] = \mathbb{E}[X^3] = \mathbb{E}[X] \cdot \mathbb{E}[Y] = 0.$$

(ii)

$$X,Y \in \mathcal{L}^2$$
 independent $\Rightarrow X,Y$ uncorelated

because

$$cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y] = 0.$$

Corollary 2.6 (to the strong law of large numbers). Let $X_1, X_2, \dots \in \mathcal{L}^2$ be independent with $\sup_{i \in \mathbb{N}} \operatorname{var}(X_i) < \infty$. Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n \big(X_i(\omega)-\mathbb{E}[X_i]\big)=0 \qquad \textit{P-a.s.}$$

If
$$\mathbb{E}[X_i] \equiv m$$
 then $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n X_i(\omega) = m$ P -a.s.

3 Kolmogorov's law of large numbers

Proposition 3.1 (Kolmogorov, 1930). Let $X_1, X_2, \dots \in \mathcal{L}^1$ be independent, identically distributed, $m = \mathbb{E}[X_i]$. Then

$$\underbrace{\frac{1}{n}\sum_{i=1}^{n}X_{i}(\omega)}_{\substack{empirical \\ prior}} \xrightarrow{n\to\infty} m \quad P\text{-a.s.}$$

Proposition 3.1 follows from the following more general result:

Proposition 3.2 (Etemadi, 1981). Let $X_1, X_2, \dots \in \mathcal{L}^1$ be pairwise independent, identically distributed, $m = \mathbb{E}[X_i]$. Then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}(\omega)\xrightarrow{n\to\infty}m\quad P\text{-a.s.}$$

Proof. W.l.o.g. $X_i \geqslant 0$ (otherwise consider X_1^+, X_2^+, \ldots (pairwise independent, identically distributed) and X_1^-, X_2^-, \ldots (pairwise independent, identically distributed))

1. Replace X_i by $\tilde{X}_i := 1_{\{X_i < i\}} X_i$.

Clearly,

$$\tilde{X}_i = h_i(X_i)$$
 with $h_i(x) := \begin{cases} x & \text{if } x < i \\ 0 & \text{if } x \geqslant i \end{cases}$

Then $\tilde{X}_1, \tilde{X}_2, \ldots$ are pairwise independent by Remark 2.2. For the proof it is now sufficient to show that for $\tilde{S}_n:=\sum_{i=1}^n \tilde{X}_i$ we have that

$$\frac{\tilde{S}_n}{n} \xrightarrow{n \to \infty} m$$
 P -a.s.

Indeed.

$$\begin{split} &\sum_{n=1}^{\infty} P[X_n \neq \tilde{X}_n] = \sum_{n=1}^{\infty} P[X_n \geqslant n] = \sum_{n=1}^{\infty} P[X_1 \geqslant n] \\ &= \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} P\left[X_1 \in [k, k+1[]] = \sum_{k=1}^{\infty} k \cdot P\left[X_1 \in [k, k+1[]]\right] \\ &= \sum_{k=1}^{\infty} \mathbb{E}\left[\underbrace{k \cdot 1_{\{X_1 \in [k, k+1[]\}}}_{\leqslant X_1 \cdot 1_{\{X_1 \in [k, k+1[]\}}}\right] \leqslant \mathbb{E}[X_1] < \infty \end{split}$$

implies by the Borel-Cantelli lemma

$$P[X_n \neq \tilde{X}_n \text{ infinitely often}] = 0.$$

2. Reduce the proof to convergence along the subsequence $k_n = \lfloor \alpha^n \rfloor$ (= largest natural number $\leq \alpha^n$), $\alpha > 1$.

We will show in Step 3. that

$$\frac{\tilde{S}_{k_n} - \mathbb{E}[\tilde{S}_{k_n}]}{k_n} \xrightarrow{n \to \infty} 0 \qquad \text{P-a.s.}$$
 (2.3)

This will imply the assertion of the Proposition, because

$$\mathbb{E}[\tilde{X}_i] = \mathbb{E}\big[\mathbf{1}_{\{X_i < i\}} \cdot X_i\big] = \mathbb{E}\big[\mathbf{1}_{\{X_1 < i\}} \cdot X_1\big] \overset{i \to \infty}{\nearrow} \mathbb{E}[X_1] (=m)$$

hence

$$\frac{1}{k_n} \cdot \mathbb{E}[\tilde{S}_{k_n}] = \frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{E}[\tilde{X}_i] \xrightarrow{n \to \infty} m,$$

and thus

$$\frac{1}{k_n} \cdot \tilde{S}_{k_n} \xrightarrow{n \to \infty} m \quad P$$
-a.s.

If $l \in \mathbb{N} \cap [k_n, k_{n+1}[$, then

$$\underbrace{\frac{k_n}{\underbrace{k_{n+1}}}}_{\stackrel{n\to\infty}{-}\frac{1}{\alpha}}\cdot\underbrace{\frac{\tilde{S}_{k_n}}{k_n}}_{\stackrel{n\to\infty}{-}\text{P-a.s.}}\leqslant\underbrace{\frac{\tilde{S}_l}{l}}\leqslant\underbrace{\frac{\tilde{S}_{k_{n+1}}}{\underbrace{k_{n+1}}}}_{\stackrel{n\to\infty}{-}\text{P-a.s.}}\cdot\underbrace{\frac{k_{n+1}}{k_n}}_{\stackrel{n\to\infty}{-}\alpha}.$$

Hence there exists a P-null set $N_\alpha\in\mathcal{A},$ such that for all $\omega\notin N_\alpha$

$$\frac{1}{\alpha} \cdot m \leqslant \liminf_{l \to \infty} \frac{\tilde{S}_l(\omega)}{l} \leqslant \limsup_{l \to \infty} \frac{\tilde{S}_l(\omega)}{l} \leqslant \alpha \cdot m.$$

Finally choose a subsequence $\alpha_n \searrow 1$. Then for all $\omega \notin N := \bigcup_{n\geqslant 1} N_{\alpha_n}$

$$\lim_{l \to \infty} \frac{\tilde{S}_l(\omega)}{l} = m.$$

3. Due to Lemma 1.7.7 it suffices for the proof of (2.3) to show that

$$\forall \varepsilon > 0 : \sum_{n=1}^{\infty} P\left[\left|\frac{\tilde{S}_{k_n} - \mathbb{E}[\tilde{S}_{k_n}]}{k_n}\right| \geqslant \varepsilon\right] < \infty$$

(fast convergence in probability towards 0)

Pairwise independence of \tilde{X}_i implies \tilde{X}_i pairwise uncorrelated, hence

$$P\left[\left|\frac{\tilde{S}_{k_n} - \mathbb{E}[\tilde{S}_{k_n}]}{k_n}\right| \geqslant \varepsilon\right] \leqslant \frac{1}{k_n^2 \varepsilon^2} \cdot \operatorname{var}(\tilde{S}_{k_n}) = \frac{1}{k_n^2 \varepsilon^2} \sum_{i=1}^{k_n} \operatorname{var}(\tilde{X}_i)$$
$$\leqslant \frac{1}{k_n^2 \varepsilon^2} \sum_{i=1}^{k_n} \mathbb{E}\left[(\tilde{X}_i)^2\right].$$

It therefore suffices to show that

$$s := \sum_{n=1}^{\infty} \left(\frac{1}{k_n^2} \sum_{i=1}^{k_n} \mathbb{E}[(\tilde{X}_i)^2] \right) = \sum_{\substack{(i,n) \in \mathbb{N}^2, \\ i \leqslant k_n}} \frac{1}{k_n^2} \cdot \mathbb{E}[(\tilde{X}_i)^2] < \infty.$$

To this end note that

$$s = \sum_{i=1}^{\infty} \left(\sum_{n: k_n \geqslant i} \frac{1}{k_n^2} \right) \cdot \mathbb{E}\left[(\tilde{X}_i)^2 \right].$$

We will show in the following that there exists a constant c such that

$$\sum_{n:k_n \geqslant i} \frac{1}{k_n^2} \leqslant \frac{c}{i^2}.\tag{2.4}$$

This will then imply that

$$s \overset{(2.4)}{\leqslant} c \sum_{i=1}^{\infty} \frac{1}{i^2} \cdot \mathbb{E} \left[(\tilde{X}_i)^2 \right] = c \sum_{i=1}^{\infty} \frac{1}{i^2} \cdot \mathbb{E} \left[1_{\{X_1 < i\}} \cdot X_1^2 \right]$$

$$\leqslant c \sum_{i=1}^{\infty} \left(\frac{1}{i^2} \sum_{l=1}^{i} l^2 \cdot P \left[X_1 \in [l-1, l[]] \right) \right]$$

$$= c \sum_{l=1}^{\infty} \left(l^2 \cdot \left(\sum_{i=l}^{\infty} \frac{1}{i^2} \right) \cdot P \left[X_1 \in [l-1, l[]] \right) \right]$$

$$\leqslant 2c \sum_{l=1}^{\infty} l \cdot P \left[X_1 \in [l-1, l[]] \right] = 2c \sum_{l=1}^{\infty} \mathbb{E} \left[\underbrace{l \cdot 1_{\{X_1 \in [l-1, l[]\}}}_{\leqslant (X_1 + 1) \cdot 1_{\{X_1 \in [l-1, l[]\}}} \right]$$

$$\leqslant 2c \cdot \left(\mathbb{E}[X_1] + 1 \right) < \infty,$$

where we used the fact that

$$\sum_{i=l}^{\infty} \frac{1}{i^2} \leqslant \frac{1}{l^2} + \sum_{i=l+1}^{\infty} \frac{1}{(i-1)i} = \frac{1}{l^2} + \sum_{i=l+1}^{\infty} \left(\frac{1}{i-1} - \frac{1}{i} \right) = \frac{1}{l^2} + \frac{1}{l} \leqslant \frac{2}{l}.$$

It remains to show (2.4). To this end note that

$$\lfloor \alpha^n \rfloor = k_n \leqslant \alpha^n < k_n + 1$$

$$\Rightarrow k_n > \alpha^n - 1 \stackrel{\alpha > 1}{\geqslant} \alpha^n - \alpha^{n-1} = \underbrace{\left(\frac{\alpha - 1}{\alpha}\right)}_{=:c_\alpha} \alpha^n.$$

Let n_i be the smallest natural number satisfying $k_{n_i}=\lfloor\alpha^{n_i}\rfloor\geqslant i$, hence $\alpha^{n_i}\geqslant i$, then

$$\sum_{n \,:\, k_n \geqslant i} \frac{1}{k_n^2} \leqslant c_\alpha^{-2} \sum_{n \geqslant n_i} \frac{1}{\alpha^{2n}} = c_\alpha^{-2} \cdot \frac{1}{1 - \alpha^{-2}} \cdot \alpha^{-2n_i} \leqslant \frac{c_\alpha^{-2}}{1 - \alpha^{-2}} \cdot \frac{1}{i^2}. \qquad \Box$$

Corollary 3.3. Let $X_1, X_2, ...$ be pairwise independent, identically distributed (iid) with $X_i \ge 0$. Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n X_i(\omega) = \mathbb{E}[X_1] \quad \left(\in [0,\infty]\right) \qquad \textit{P-a.s.}$$

Proof. W.l.o.g. $\mathbb{E}[X_1] = \infty$. Then $\frac{1}{n} \sum_{i=1}^n \left(X_i(\omega) \wedge N \right) \xrightarrow{n \to \infty} \mathbb{E}[X_1 \wedge N]$, P-a.s. for all N, hence

$$\frac{1}{n}\sum_{i=1}^n X_i(\omega)\geqslant \frac{1}{n}\sum_{i=1}^n \left(X_i(\omega)\wedge N\right)\xrightarrow{n\to\infty} \mathbb{E}[X_1\wedge N] \stackrel{N\to\infty}{\nearrow} \mathbb{E}[X_1] \quad P\text{-a.s.} \quad \Box$$

Example 3.4. Growth in random media Let Y_1, Y_2, \ldots be i.i.d., $Y_i > 0$, with $m := \mathbb{E}[Y_i]$ (existence of such a sequence later!)

Define $X_0=1$ and inductively $X_n:=X_{n-1}\cdot Y_n$

Clearly, $X_n=Y_1\cdots Y_n$ and $\mathbb{E}[X_n]=\mathbb{E}[Y_1]\cdots \mathbb{E}[Y_n]=m^n$, hence

$$\mathbb{E}[X_n] \to \begin{cases} +\infty & \text{if } m>1 \\ 1 & \text{if } m=1 \\ 0 & \text{if } m<1 \end{cases} \quad \text{exponential growth (supercritical)}$$

What will be the long-time behaviour of $X_n(\omega)$?

Surprisingly, in the supercritical case m>1, one may observe that $\lim_{n\to\infty}X_n=0$ with positive probability.

Explanation: Suppose that $\log Y_i \in \mathcal{L}^1$. Then

$$\frac{1}{n}\log X_n = \frac{1}{n}\sum_{i=1}^n \log Y_i \xrightarrow{n\to\infty} \mathbb{E}[\log Y_1] =: \alpha \quad P\text{-a.s.}$$

and

 $\alpha < 0$: $\exists \ \varepsilon > 0$ with $\alpha + \varepsilon < 0$, so that $X_n(\omega) \leqslant e^{n(\alpha + \varepsilon)} \ \forall \ n \geqslant n_0(\omega)$, hence P-a.s. exponential decay

 $\alpha>0$: $\exists \ \varepsilon>0$ with $\alpha-\varepsilon>0$, so that $X_n(\omega)\geqslant e^{n(\alpha-\varepsilon)} \ \forall \ n\geqslant n_0(\omega)$, hence P-a.s. exponential growth

Note that Jensen's inequality

$$\alpha = \mathbb{E}[\log Y_1] \leqslant \log \mathbb{E}[Y_1],$$

and in general the inequality is strict, i.e. $\alpha < \log m$, so that it might happen that $\alpha < 0$ although m > 1 (!)

Illustration As a particular example let

$$Y_i := \begin{cases} \frac{1}{2}(1+c) & \text{with prob.} \frac{1}{2} \\ \frac{1}{2} & \text{with prob.} \frac{1}{2} \end{cases}$$

, so that $\mathbb{E}[Y_i]=\frac{1}{4}(1+c)+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}c$ (supercritical if c>2) On the other hand

$$\mathbb{E}[\log Y_1] = \frac{1}{2} \cdot \left[\log \left(\frac{1}{2} (1+c) \right) + \log \frac{1}{2} \right] = \frac{1}{2} \cdot \log \frac{1+c}{4} \stackrel{c<3}{<} 0.$$

Hence $X_n \xrightarrow{n \to \infty} 0$ P-a.s. with exponential rate for c < 3, whereas at the same time for c > 2 $\mathbb{E}[X_n] = m^n \nearrow \infty$ with exponential rate.

Back to Kolmogorov's law of large numbers: Let $X_1, X_2, \ldots \in \mathcal{L}^1$ i.i.d. with $m := \mathbb{E}[X_i]$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i(\omega) \xrightarrow{n \to \infty} \mathbb{E}[X_1] \quad P\text{-a.s.}$$

Define the "random measure"

$$\varrho_n(\omega, A) := \frac{1}{n} \sum_{i=1}^n 1_A (X_i(\omega))$$

= "relative frequency of the event $X_i \in A$ "

Then

$$\varrho_n(\omega,\,\cdot\,) = \frac{1}{n} \sum_{i=1}^n \delta_{X_i(\omega)}$$

is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ for fixed ω and it is called the *empirical distribution of the first* n *observations*

Proposition 3.5. For P-almost every $\omega \in \Omega$:

$$\varrho_n(\omega,\,\cdot\,) \xrightarrow{n \to \infty} \mu := P \circ X_1^{-1}$$
 weakly.

Proof. Clearly, Kolmogorov's law of large numbers implies that for any $x \in \mathbb{R}$

$$F_n(\omega, x) := \varrho_n(\omega,]-\infty, x] = \frac{1}{n} \sum_{i=1}^n 1_{]-\infty, x]} (X_i(\omega))$$
$$\to \mathbb{E}[1_{]-\infty, x]}(X_1) = P[X_1 \le x] = \mu(]-\infty, x] =: F(x)$$

P-a.s., hence for every $\omega\notin N(x)$ for some P-null set N(x) Then

$$N := \bigcup_{r \in \mathbb{Q}} N(r).$$

is a P-null set too, and for all $x \in \mathbb{R}$ and all $s, r \in \mathbb{Q}$ with s < x < r and $\omega \notin N$:

$$F(s) := \lim_{n \to \infty} F_n(\omega, s) \leqslant \liminf_{n \to \infty} F_n(\omega, x)$$

$$\leqslant \limsup_{n \to \infty} F_n(\omega, x) \leqslant \lim_{n \to \infty} F_n(\omega, r) = F(r).$$

Hence, if F is continuous at x, then for $\omega \notin N$

$$\lim_{n \to \infty} F_n(\omega, x) = F(x).$$

Now the assertion follows from the Portmanteau theorem.