Probability Theory

Wilhelm Stannat
Technische Universität Darmstadt
Winter Term 2007/08

Second part - corrected version

This text is a summary of the lecture on Probability Theory held at the TU Darmstadt in Winter Term 2007/08.

Please email all misprints and mistakes to stannat@mathematik.tu-darmstadt.de

Bibliography

1. Bauer, H., Probability theory, de Gruyter, 1996.
2. Bauer, H., Maß- und Integrationstheorie, de Gruyter, 1996.
3. Billingsley, P., Probability and Measure, Wiley, 1995.
4. Billingsley, P., Convergence of probability measures, Wiley, 1999.
5. Dudley, R.M., Real analysis and probability, Cambridge University Press, 2002.
6. Elstrodt, J., Maß- und Integrationstheorie, Springer, 2005.
7. Feller, W., An introduction to probability theory and its applications, Vol. 1 \& 2, Wiley, 1950.
8. Halmos, P.R., Measure Theory, Springer, 1974.
9. Klenke, A., Wahrscheinlichkeitstheorie, Springer, 2006.
10. Shiryaev, A.N., Probability, Springer, 1996.

1 Basic Notions

9 Distribution of random variables

Let (Ω, \mathcal{A}, P) be a probability space, and $X: \Omega \rightarrow \overline{\mathbb{R}}$ be a r.v.
Let μ be the distribution of X (under P), i.e., $\mu(A)=P[X \in A]$ for all $A \in \mathcal{B}(\overline{\mathbb{R}})$.
Assume that $P[X \in \mathbb{R}]=1$ (in particular, $X P$-a.s. finite, and μ is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Definition 9.1. The function $F: \mathbb{R} \rightarrow[0,1]$, defined by

$$
\begin{equation*}
F(b):=P[X \leqslant b]=\mu(]-\infty, b]), \quad b \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

is called the distribution function of X resp. μ.
Proposition 9.2. (i) F is monotone increasing: $a \leqslant b \Rightarrow F(a) \leqslant F(b)$
right continuous: $\quad F(a)=\lim _{b \backslash a} F(b)$
normalized: $\quad \lim _{a \searrow-\infty} F(a)=0, \quad \lim _{b \nearrow+\infty} F(b)=1$.
(ii) To any such function there exists a unique probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R})$) with (1.10).

Proof. (i) Monotonicity is obvious.
Right continuity: if $b \searrow a$ then $]-\infty, b] \searrow]-\infty, a]$, hence by continuity of μ from above (vgl. Proposition 1.9):

$$
\left.\left.F(a)=\mu(]-\infty, a]) \stackrel{1.9}{=} \lim _{b \searrow a} \mu(]-\infty, b\right]\right)=\lim _{b \searrow a} F(b)
$$

Similarly, $]-\infty, a] \searrow \emptyset$ if $a \searrow-\infty$ (resp. $]-\infty, b] \nearrow \mathbb{R}$ if $b \nearrow \infty$), and thus

$$
\left.\left.\lim _{a \searrow-\infty} F(a)=\lim _{a \backslash-\infty} \mu(]-\infty, a\right]\right)=0
$$

$\left(\right.$ resp. $\left.\left.\left.\lim _{b / \infty} F(b)=\lim _{b / \infty} \mu(]-\infty, b\right]\right)=1\right)$.
(ii) Existence: Let λ be the Lebesgue measure on $] 0,1[$. Define the "inverse function" G of $F: \mathbb{R} \rightarrow[0,1]$ by

$$
\begin{aligned}
& G:] 0,1[\rightarrow \mathbb{R} \\
& G(y):=\inf \{x \in \mathbb{R} \mid F(x)>y\}
\end{aligned}
$$

Note that $y<F(x) \Rightarrow G(y) \leqslant x$ implies

$$
] 0, F(x)[\subset\{G \leqslant x\}
$$

and $G(y) \leqslant x \quad \Rightarrow \quad \exists x_{n} \searrow x$ with $F\left(x_{n}\right)>y$, hence $F(x) \geqslant y$, so that

$$
\{G \leqslant x\} \subset] 0, F(x)]
$$

Combining both inclusions we obtain that

$$
] 0, F(x)[\subset\{G \leqslant x\} \subset] 0, F(x)] .
$$

so that G is measurable.
Let $\mu:=G(\lambda)=\lambda \circ G^{-1}$ (probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$). Then

$$
\mu(]-\infty, x])=\lambda(\{G \leqslant x\})=\lambda(] 0, F(x)])=F(x) \quad \forall x \in \mathbb{R}
$$

Uniqueness: later.
Remark 9.3. (i) Let Y be a r.v. with uniform distribution on $[0,1]$, then $X=G(Y)$ has distribution μ. In particular: simulating the uniform distribution on $[0,1]$ gives by transformation with G a simulation of μ.
(ii) Some authors define the distribution function F by $F(x):=\mu(]-\infty, x[)$. In this case F is left continuous, not right continuous.

Remark 9.4. (i) Let F be a distribution function and let $x \in \mathbb{R}$: Then

$$
\left.\left.F(x)-F(x-)=\lim _{n \nearrow \infty} \mu(\rceil x-\frac{1}{n}, x\right]\right)=\mu(\{x\})
$$

is called the step height of F in x. In particular:

$$
F \text { continuous } \Leftrightarrow \quad \forall x \in \mathbb{R}: \mu(\{x\})=0 \quad \text { " } \mu \text { is continuous". }
$$

(ii) Let F be monotone increasing and bounded, then F has at most countable many points of discontinuity.

Definition 9.5. (i) $F($ resp. μ) is called discrete, if there exists a countable set $S \subset \mathbb{R}$ with $\mu(S)=1$. In this case, μ is uniquenely determined by the weights $\mu(\{x\})$, $x \in S$, and F is a step function of the following type:

$$
F(x)=\sum_{\substack{y \in S, y \leqslant x}} \mu(\{y\})
$$

(ii) F (resp. μ) is called absolutely continuous, if there exists a measurbale function $f \geqslant 0$ (called the "density"), such that

$$
\begin{equation*}
F(x)=\int_{-\infty}^{x} f(t) \mathrm{d} t \tag{1.2}
\end{equation*}
$$

resp., for all $A \in \mathcal{B}(\mathbb{R})$:

$$
\begin{equation*}
\mu(A)=\int_{A} f(t) \mathrm{d} t=\int_{-\infty}^{\infty} 1_{A} \cdot f \mathrm{~d} t . \tag{1.3}
\end{equation*}
$$

In particular $\int_{-\infty}^{+\infty} f(t) \mathrm{d} t=1$.
Remark 9.6. (i) Every measurable function $f \geqslant 0$ with $\int_{-\infty}^{+\infty} f(t) \mathrm{d} t=1$ defines a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ by $A \mapsto \int_{A} f(t) \mathrm{d} t$.
(ii) In the previous definition " $(1.11) \Rightarrow(1.12)$ ", because $A \mapsto \int_{A} f(t) \mathrm{d} t$ defines a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with distribution function F. Uniqueness in 9.2 implies the assertion

Example 9.7. (i) Uniform distribution on $[a, b]$. Let $f:=\frac{1}{b-a} \cdot 1_{[a, b]}$. The associated distribution function is given by

$$
F(x):= \begin{cases}0 & \text { if } x \leqslant a \\ \frac{1}{b-a} \cdot(x-a) & \text { if } x \in[a, b] \\ 1 & \text { if } x \geqslant b\end{cases}
$$

(continuous analogue to the dicrete uniform distribution on a finite set)
(ii) Exponential distribution with parameter $\alpha>0$.

$$
\begin{aligned}
& f(x):= \begin{cases}\alpha e^{-\alpha x} & \text { if } x \geqslant 0 \\
0 & \text { if } x<0,\end{cases} \\
& F(x):= \begin{cases}1-e^{-\alpha x} & \text { if } x \geqslant 0 \\
0 & \text { if } x<0 .\end{cases}
\end{aligned}
$$

(continuous analogue of the geometric distribution)

$$
\int_{k}^{k+1} f(x) \mathrm{d} x=F(k+1)-F(k)=e^{-\alpha k}\left(1-e^{-\alpha}\right)=(1-p)^{k} p \text { with } p=1-e^{-\alpha} .
$$

(iii) Normal distribution $N\left(m, \sigma^{2}\right), m \in \mathbb{R}, \sigma^{2}>0$

$$
f_{m, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} .
$$

The associated distribution function is given by

$$
\begin{aligned}
& F_{m, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \int_{-\infty}^{x} e^{-\frac{(y-m)^{2}}{2 \sigma^{2}}} \mathrm{~d} y \\
& z=\frac{y-m}{\sigma} \frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{\frac{x-m}{\sigma}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z=F_{0,1}\left(\frac{x-m}{\sigma}\right)
\end{aligned}
$$

$\Phi:=F_{0,1}$ is called the distribution function of the standard normal distribution $N(0,1)$.

The expectation $E[X]$ (or more general $E[h(X)]$) can be calculated with the help of the distribution μ of X :

Proposition 9.8. Let $h \geqslant 0$ be measurable, then

$$
\begin{aligned}
\mathbb{E} & {[h(X)]=\int_{-\infty}^{+\infty} h(x) \mu(\mathrm{d} x) } \\
& = \begin{cases}\int_{-\infty}^{+\infty} h(x) \cdot f(x) \mathrm{d} x & \text { if } \mu \text { absolutely continuous with density } f \\
\sum_{x \in S} h(x) \cdot \mu(\{x\}) & \text { if } \mu \text { discrete, } \mu(S)=1 \text { and } S \text { countable. }\end{cases}
\end{aligned}
$$

Proof. See exercises.
Example 9.9. Let X be $N\left(m, \sigma^{2}\right)$-distributed. Then

$$
\mathbb{E}[X]=\int x \cdot f_{m, \sigma^{2}}(x) \mathrm{d} x=m+\underbrace{\int(x-m) \cdot f_{m, \sigma^{2}}(x) \mathrm{d} x}_{=0}=m
$$

The $p^{t h}$ central moment of X is given by

$$
\begin{aligned}
\mathbb{E}\left[|X-m|^{p}\right] & =\int|x-m|^{p} \cdot f_{m, \sigma^{2}}(x) \mathrm{d} x, \\
& =\int|x|^{p} \cdot f_{0, \sigma^{2}}(x) \mathrm{d} x . \\
& =2 \int_{0}^{\infty} x^{p} \cdot \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{x^{2}}{2 \sigma^{2}}} \mathrm{~d} x, \\
& \underbrace{=}_{y=\frac{x^{2}}{2 \sigma^{2}}} \frac{1}{\sqrt{\pi}} \cdot 2^{\frac{p}{2}} \cdot \sigma^{p} \underbrace{\int_{0}^{\infty} y^{\frac{p+1}{2}-1} \cdot e^{-y} \mathrm{~d} y}_{=\Gamma\left(\frac{p+1}{2}\right)}
\end{aligned}
$$

In particular:

$$
\begin{aligned}
& p=1: \mathbb{E}[|X-m|]=\sigma \cdot \sqrt{\frac{2}{\pi}} \\
& p=2: \mathbb{E}\left[|X-m|^{2}\right]=\sigma^{2} \\
& p=3: \mathbb{E}\left[|X-m|^{3}\right]=2^{\frac{3}{2}} \cdot \frac{\sigma^{3}}{\sqrt{\pi}} \\
& p=4: \mathbb{E}\left[|X-m|^{4}\right]=3 \sigma^{4} .
\end{aligned}
$$

10 Weak convergence of probability measures

Let S be a topological space and \mathcal{S} be the Borel σ-algebra on S.
Let $\mu, \mu_{n}, n \in \mathbb{N}$, be probability measures on (S, \mathcal{S}).
What is a reasonable notion of convergence of the sequence μ_{n} towards μ ? The notion of "pointwise convergence" in the sense that $\mu_{n}(A) \xrightarrow{n \rightarrow \infty} \mu(A)$ for all $A \in \mathcal{S}$ is too strong for many applications.

Definition 10.1. Let μ and $\mu_{n}, n \in \mathbb{N}$, be probability measures on (S, \mathcal{S}). The sequence $\left(\mu_{n}\right)$ converges to μ weakly if for all $f \in C_{b}(S)$ ($=$ the space of bounded continuous functions on S) it follows that

$$
\int f \mathrm{~d} \mu_{n} \xrightarrow{n \rightarrow \infty} \int f \mathrm{~d} \mu .
$$

Example 10.2. (i) $x_{n} \xrightarrow{n \rightarrow \infty} x$ in S implies $\delta_{x_{n}} \xrightarrow{n \rightarrow \infty} \delta_{x}$ weakly.
(ii) Let $S:=\mathbb{R}^{1}$ and $\mu_{n}:=N\left(0, \frac{1}{n}\right)$. Then $\mu_{n} \rightarrow \delta_{0}$ weakly, since for all $f \in \mathbb{C}_{b}(\mathbb{R})$

$$
\begin{aligned}
\int f \mathrm{~d} \mu_{n} & =\int f(x) \cdot \frac{1}{\sqrt{2 \pi \frac{1}{n}}} \cdot e^{-\frac{x^{2}}{2 \cdot \frac{1}{n}}} \mathrm{~d} x \\
& \stackrel{x}{ }=\frac{y}{\sqrt{n}} \int f\left(\frac{y}{\sqrt{n}}\right) \cdot \frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{y^{2}}{2}} \mathrm{~d} y \\
& \xrightarrow{\text { Lebesgue }} n \\
& f(0)=\int f \mathrm{~d} \delta_{0}
\end{aligned}
$$

Proposition 10.3 (Portemanteau-Theorem). Let S be a metric space with metric d. Then the following statements are equivalent:
(i) $\mu_{n} \rightarrow \mu$ weakly
(ii) $\int f \mathrm{~d} \mu_{n} \xrightarrow{n \rightarrow \infty} \int f \mathrm{~d} \mu$ for all f bounded and uniformly continuous (w.r.t. d)
(iii) $\lim \sup _{n \rightarrow \infty} \mu_{n}(F) \leqslant \mu(F)$ for all $F \subset S$ closed
(iv) $\liminf _{n \rightarrow \infty} \mu_{n}(G) \geqslant \mu(G)$ for all $G \subset S$ open
(v) $\lim _{n \rightarrow \infty} \mu_{n}(A)=\mu(A)$ for all $A \in \mathcal{S}$ with $\mu(\bar{A} \backslash \AA)=0$.

Proof. (iii) \Leftrightarrow (iv): Obvious by considering the complement.
(i) \Rightarrow (ii): Trivial.
(ii) \Rightarrow (iii): Let $F \subset S$ be closed, let

$$
G_{m}:=\left\{x \in S \left\lvert\, d(x, F)<\frac{1}{m}\right.\right\}, \quad m \in \mathbb{N} \quad \text { open! }
$$

Then $G_{m} \searrow F$, hence $\mu\left(G_{m}\right) \searrow \mu(F)$.
If $\varepsilon>0$ there exists some $m \in \mathbb{N}$ mit $\mu\left(G_{m}\right)<\mu(F)+\varepsilon$. Define

$$
\varphi(x):= \begin{cases}1 & \text { if } x \leqslant 0 \\ 1-x & \text { if } x \in[0,1] \\ 0 & \text { if } x \geqslant 1\end{cases}
$$

and let $f:=\varphi(m \cdot d(\cdot, F))$.
f is Lipschitz, in particular uniformly continuous, $f=0$ on G_{m}^{c} and $f=1$ on F, and thus

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \mu_{n}(F) & \leqslant \limsup _{n \rightarrow \infty} \int f d \mu_{n} \stackrel{(\text { ii) }}{=} \int f d \mu \\
& \leqslant \mu\left(G_{m}\right)<\mu(F)+\varepsilon
\end{aligned}
$$

(iii) $\Rightarrow \mathbf{(v)}$: Let A be such that $\mu(\bar{A} \backslash \AA)=0$. Then

$$
\begin{aligned}
\mu(A) & =\mu(\AA) \stackrel{(\text { iv })}{\leqslant} \liminf _{n \rightarrow \infty} \mu_{n}(\AA) \leqslant \liminf _{n \rightarrow \infty} \mu_{n}(A) \leqslant \limsup _{n \rightarrow \infty} \mu_{n}(A) \\
& \leqslant \limsup _{n \rightarrow \infty} \mu_{n}(\bar{A}) \stackrel{(\mathrm{iii})}{\leqslant} \mu(\bar{A})=\mu(A) .
\end{aligned}
$$

$\mathbf{(v)} \Rightarrow \mathbf{(i i i) : ~ L e t ~} F \subset S$ be closed. For all $\delta>0$ we have that

$$
\partial\{d(\cdot, F) \geqslant \delta\} \subset\{d(\cdot, F)=\delta\}
$$

Note The set

$$
D:=\{\delta>0 \mid \mu(\{d(\cdot, F)=\delta\})>0\}
$$

is countable, since for all n the set

$$
D_{n}:=\{\delta>0 \left\lvert\, \mu(\underbrace{\{d(\cdot, F)=\delta\}}_{\text {disjoint! }})>\frac{1}{n}\right.\}
$$

is finite for any $n \in \mathbb{N}$. In particular, there exists a sequence $\left.\delta_{k} \in\right] 0, \infty[\backslash D$, $\delta_{k} \downarrow 0$ such that the set

$$
F_{k}:=\left\{d(\cdot, F) \leqslant \delta_{k}\right\}
$$

satisfies $\mu\left(\bar{F}_{k} \backslash \stackrel{\circ}{F}_{k}\right)=0 . F_{k} \searrow F$ now implies that

$$
\limsup _{n \rightarrow \infty} \mu_{n}(F) \leqslant \limsup _{n \rightarrow \infty} \mu_{n}\left(F_{k}\right) \stackrel{(v)}{=} \mu\left(F_{k}\right) \xrightarrow{k \rightarrow \infty} \mu(F) .
$$

$\mathbf{(i i i)} \Rightarrow \mathbf{(i)}$: Let $f \in C_{b}(S)$. It suffices to prove that

$$
\limsup _{n \rightarrow \infty} \int f d \mu_{n} \leqslant \int f d \mu
$$

(since then

$$
-\liminf \int f d \mu_{n} \leqslant \int(-f) \mathrm{d} \mu
$$

hence $\lim \inf \int f d \mu_{n} \geqslant \int f \mathrm{~d} \mu$)
W.I.o.g. $0 \leqslant f \leqslant 1$

Fix $k \in \mathbb{N}$ and let $F_{j}:=\left\{f \geqslant \frac{j}{k}\right\}, j \in \mathbb{N}\left(F_{j}\right.$ closed! $)$
Then

$$
\frac{1}{k} \sum_{i=1}^{k} 1_{F_{i}} \leqslant f \leqslant \frac{1}{k}+\frac{1}{k} \sum_{i=1}^{k} 1_{F_{i}}
$$

Hence for all probability measures ν on (S, \mathcal{S}) :

$$
\frac{1}{k} \sum_{i=1}^{k} \nu\left(F_{i}\right) \underset{\dagger}{\leqslant} f d \nu \underset{\ddagger}{\leqslant} \frac{1}{k}+\frac{1}{k} \sum_{i=1}^{k} \nu\left(F_{i}\right) .
$$

and

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \int f \mathrm{~d} \mu_{n}-\frac{1}{k} \stackrel{(\ddagger)}{\leqslant} \frac{1}{k} \cdot \limsup _{n \rightarrow \infty} \sum_{i=1}^{k} \mu_{n}\left(F_{i}\right) \\
& \quad \leqslant \frac{1}{k} \sum_{i=1}^{k} \limsup _{n \rightarrow \infty} \mu_{n}\left(F_{i}\right) \stackrel{(\text { (iii) }}{\leqslant} \frac{1}{k} \sum_{i=1}^{k} \mu\left(F_{i}\right) \stackrel{(\dagger)}{\leqslant} \int f d \mu
\end{aligned}
$$

Corollary 10.4. Let $X, X_{n}, n \in \mathbb{N}$, be measurable mappings from (Ω, \mathcal{A}, P) to (S, S) with distributions $\mu, \mu_{n}, n \in \mathbb{N}$. Then:

$$
X_{n} \xrightarrow{n \rightarrow \infty} X \quad \text { in probability } \quad \Rightarrow \quad \mu_{n} \xrightarrow{n \rightarrow \infty} \mu \quad \text { weakly }
$$

Here, $\lim _{n \rightarrow \infty} X_{n}=X$ in probability, if $\lim _{n \rightarrow \infty} P\left(d\left(X, X_{n}\right)>\delta\right)=0$ for all $\delta>0$.
Proof. Let $f \in C_{b}(S)$ be uniformly continuous and $\varepsilon>0$. Then there exists a $\delta=$ $\delta(\varepsilon)>0$ such that:
$x, y \in S$ with $d(x, y) \leqslant \delta$ implies $|f(x)-f(y)|<\varepsilon$
Hence

$$
\begin{aligned}
& \left|\int f \mathrm{~d} \mu-\int f \mathrm{~d} \mu_{n}\right|=\left|\mathbb{E}[f(X)]-\mathbb{E}\left[f\left(X_{n}\right)\right]\right| \\
& \quad \leqslant \int_{\left\{d\left(X, X_{n}\right) \leqslant \delta\right\}}\left|f(X)-f\left(X_{n}\right)\right| \mathrm{d} P+\int_{\left\{d\left(X, X_{n}\right)>\delta\right\}}\left|f(X)-f\left(X_{n}\right)\right| \mathrm{d} P \\
& \quad \leqslant \varepsilon+2\|f\|_{\infty} \cdot \underbrace{P\left[d\left(X_{n}, X\right)>\delta\right]}_{n_{n \rightarrow \infty} 0} .
\end{aligned}
$$

Corollary 10.5. Let $S=\mathbb{R}^{1}$ and let $\mu, \mu_{n}, n \in \mathbb{N}$, be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with distributions functions F, F_{n}. Then the following statements are equivalent:
(i) $\mu_{n} \xrightarrow{n \rightarrow \infty} \mu$ vaguely, i.e. $\lim _{n \rightarrow \infty} \int f d \mu_{n}=\int f d \mu$ for all $f \in \mathbb{C}_{0}\left(\mathbb{R}^{1}\right)$ (= the space of continuous functions with compact support)
(ii) $\mu_{n} \xrightarrow{n \rightarrow \infty} \mu$ weakly
(iii) $F_{n}(x) \xrightarrow{n \rightarrow \infty} F(x)$ for all x where F is continuous.
(iv) $\left.\left.\left.\left.\mu_{n}(] a, b\right]\right) \xrightarrow{n \rightarrow \infty} \mu(] a, b\right]\right)$ for all $\left.] a, b\right]$ with $\mu(\{a\})=\mu(\{b\})=0$.

Proof. (i) \Rightarrow (ii): Exercise.
(ii) \Rightarrow (iii): Let x be such that F is continuous in x. Then $\mu(\{x\})=0$, which implies by the Portmanteau theorem:

$$
\left.\left.\left.\left.F_{n}(x)=\mu_{n}(]-\infty, x\right]\right) \xrightarrow{n \rightarrow \infty} \mu(]-\infty, x\right]\right)=F(x) .
$$

(iii) \Rightarrow (iv): Let $] a, b]$ be such that $\mu(\{a\})=\mu(\{b\})=0$ then F is continuous in a and b and thus

$$
\begin{aligned}
\mu(] a, b]) & =F(b)-F(a) \stackrel{(i i i)}{=} \lim _{n \rightarrow \infty} F_{n}(b)-\lim _{n \rightarrow \infty} F_{n}(a) \\
& \left.\left.=\lim _{n \rightarrow \infty} \mu_{n}(] a, b\right]\right) .
\end{aligned}
$$

(iv) $\Rightarrow \mathbf{(i) : ~ L e t ~} D:=\{x \in \mathbb{R} \mid \mu(\{x\})=0\}$. Then $\mathbb{R} \backslash D$ is countable, hence $D \subset \mathbb{R}$ dense. Let $f \in C_{0}(\mathbb{R})$, then f is uniformly continuous, hence for $\varepsilon>0$ we find $c_{0}<\cdots<c_{m} \in D$ such that

$$
\|f-\underbrace{\sum_{k=1}^{m} f\left(c_{k-1}\right) \cdot \mathbb{I}_{]_{\left.c_{k-1}, c_{k}\right]}\right]}}_{=: g}\|_{\infty} \leqslant \sup _{k} \sup _{x \in\left[c_{k-1}, c_{k}\right]}\left|f(x)-f\left(c_{k-1}\right)\right|<\varepsilon .
$$

Then

$$
\begin{aligned}
& \left|\int f \mathrm{~d} \mu-\int f \mathrm{~d} \mu_{n}\right| \\
& \quad \leqslant \underbrace{\int|f-g| \mathrm{d} \mu}_{<\varepsilon}+\left|\int g \mathrm{~d} \mu-\int g \mathrm{~d} \mu_{n}\right|+\underbrace{\int|f-g| \mathrm{d} \mu_{n}}_{<\varepsilon} \\
& \left.\left.\left.\left.\quad \leqslant 2 \varepsilon+\sum_{k=1}^{m} f\left(c_{k-1}\right) \cdot \mid \mu(] c_{k-1}, c_{k}\right]\right)-\mu_{n}(] c_{k-1}, c_{k}\right]\right) \mid \xrightarrow{(\mathrm{iv})} 2 \varepsilon
\end{aligned}
$$

11 Dynkin-systems and Uniqueness of probability measures

Let $\Omega \neq \emptyset$.
Definition 11.1. A collection of subsets $\mathcal{D} \subset \mathcal{P}(\Omega)$ is called a Dynkin-system, if:
(i) $\Omega \in \mathcal{D}$.
(ii) $A \in \mathcal{D} \quad \Rightarrow \quad A^{c} \in \mathcal{D}$.
(iii) $A_{i} \in \mathcal{D}, i \in \mathbb{N}$, pairwise disjoint, then

$$
\bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{D} .
$$

Example 11.2. (i) Every σ-Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ is a Dynkin-system
(ii) Let P_{1}, P_{2} be probability measures on (Ω, \mathcal{A}). Then

$$
\mathcal{D}:=\left\{A \in \mathcal{A} \mid P_{1}(A)=P_{2}(A)\right\}
$$

is a Dynkin-system
Remark 11.3. (i) Let \mathcal{D} be a Dynkin-system. Then

$$
A, B \in \mathcal{D}, A \subset B \quad \Rightarrow \quad B \backslash A=\left(B^{c} \cup A\right)^{c} \in \mathcal{D}
$$

(ii) Every Dynkin-system which is closed under finite unions (short notation: \cap-stable), is a σ-algebra, because:
(a) $A, B \in \mathcal{D} \quad \Rightarrow \quad A \cup B=A \cup(B \backslash(A \cap B)) \in \mathcal{D}$.

(b) $A_{i} \in \mathcal{D}, i \in \mathbb{N} \Rightarrow \bigcup_{i \in \mathbb{N}} A_{i}=\bigcup_{i \in \mathbb{N}}^{\bullet}[A_{i} \cap \underbrace{(\underbrace{\left.\bigcup_{n=1}^{i-1} A_{n}\right)^{c}}_{\substack{\text { (a) } \mathcal{D}}}]}_{\begin{array}{c}\in \mathcal{D} \text { by ass., } \\ \text { pairwise disjoint }\end{array}}] \in \mathcal{D}$.

Proposition 11.4. Let $\mathcal{B} \subset \mathcal{P}(\Omega)$ be a \cap-stable collection of subsets. Then

$$
\sigma(\mathcal{B})=\mathcal{D}(\mathcal{B})
$$

where

$$
\mathcal{D}(\mathcal{B}):=\bigcap_{\substack{\mathcal{D} \\ \text { Dynkin-system } \\ \mathcal{B} \subset \mathcal{D}}} \mathcal{D}
$$

is called the Dynkin-system generated by \mathcal{B}.
Proof. See text books on measure theory.

Proposition 11.5 (Uniqueness of probability measures). Let P_{1}, P_{2} be probability measures on (Ω, \mathcal{A}), and $\mathcal{B} \subset \mathcal{A}$ be a \cap-stable collection of subsets. Then:

$$
P_{1}(A)=P_{2}(A) \text { for all } A \in \mathcal{B} \quad \Rightarrow \quad P_{1}=P_{2} \text { on } \sigma(\mathcal{B}) .
$$

Proof. The collection of subsets

$$
\mathcal{D}:=\left\{A \in \mathcal{A} \mid P_{1}(A)=P_{2}(A)\right\}
$$

is a Dynkin-system containing \mathcal{B}. Consequently,

$$
\sigma(\mathcal{B}) \stackrel{11.4}{=} \mathcal{D}(\mathcal{B}) \subset \mathcal{D}
$$

Example 11.6. (i) For $p \in] 0,1\left[\right.$ the probability measure P_{p} on $\left(\Omega:=\{0,1\}^{\mathbb{N}}, \mathcal{A}\right)$ is uniquely determined by

$$
P_{p}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]=p^{k}(1-p)^{n-k}, \quad \text { with } k:=\sum_{i=1}^{n} x_{i}
$$

for all $x_{1}, \ldots, x_{n} \in\{0,1\}, n \in \mathbb{N}$, because the collection of cylindrical sets

$$
\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right\}, \quad n \in \mathbb{N}_{0}, x_{1}, \ldots, x_{n} \in\{0,1\}
$$

is \cap-stable, generating \mathcal{A} (cf. Example 1.7).
(Existence of P_{p} for $p=\frac{1}{2}$ see Example 3.6. Existence for $\left.p \in\right] 0,1\left[\backslash\left\{\frac{1}{2}\right\}\right.$ later.)
(ii) A probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is uniquely determined through its distribution function $F(:=\mu(]-\infty, \cdot]))$, because

$$
\mu(] a, b])=F(b)-F(a)
$$

and the collection of intervals $] a, b], a, b \in \mathbb{R}$, is \cap-stable, generating $\mathcal{B}(\mathbb{R})$.

2 Independence

1 Independent events

Let (Ω, \mathcal{A}, P) be a probability space.
Definition 1.1. A collection of events $A_{i} \in \mathcal{A}, i \in I$, are said to be independent (w.r.t. P), if for any finite subset $J \subset I$

$$
P\left(\bigcap_{j \in J} A_{j}\right)=\prod_{j \in J} P\left(A_{j}\right)
$$

A family of collection of subsets $\mathcal{B}_{i} \subset \mathcal{A}, i \in I$, is said to be independent, if for all finite subsets $J \subset I$ and for all subsets $A_{j} \in \mathcal{B}_{j}, j \in J$

$$
P\left(\bigcap_{j \in J} A_{j}\right)=\prod_{j \in J} P\left(A_{j}\right) .
$$

Proposition 1.2. Let $\mathcal{B}_{i}, i \in I$, be independent and closed under intersections. Then:
(i) $\sigma\left(\mathcal{B}_{i}\right), i \in I$, are independent.
(ii) Let $J_{k}, k \in K$, be a partition of the index set I. Then the σ-algebras

$$
\sigma\left(\bigcup_{i \in J_{k}} \mathcal{B}_{i}\right), \quad k \in K
$$

are independent.
Proof. (i) Let $J \subset I, J$ finite, be of the form $J=\left\{j_{1}, \ldots, j_{n}\right\}$. Let $A_{j_{1}} \in$ $\sigma\left(\mathcal{B}_{j_{1}}\right), \ldots, A_{j_{n}} \in \sigma\left(\mathcal{B}_{j_{n}}\right)$.
We have to show that

$$
\begin{equation*}
P\left(A_{j_{1}} \cap \cdots \cap A_{j_{n}}\right)=P\left(A_{j_{1}}\right) \cdots P\left(A_{j_{n}}\right) \tag{2.1}
\end{equation*}
$$

To this end suppose first that $A_{j_{2}} \in \mathcal{B}_{j_{2}}, \ldots, A_{j_{n}} \in \mathcal{B}_{j_{n}}$, and define

$$
\begin{aligned}
\mathcal{D}_{j_{1}}:=\left\{A \in \sigma\left(\mathcal{B}_{j_{1}}\right) \mid\right. & P\left(A \cap A_{j_{2}} \cap \cdots \cap A_{j_{n}}\right) \\
& \left.=P(A) \cdot P\left(A_{j_{2}}\right) \cdots P\left(A_{j_{n}}\right)\right\}
\end{aligned}
$$

Then $\mathcal{D}_{j_{1}}$ is a Dynkin system (!) containing $\mathcal{B}_{j_{1}}$. Proposition 1.11 .4 now implies

$$
\sigma\left(\mathcal{B}_{j_{1}}\right)=\mathcal{D}\left(\mathcal{B}_{j_{1}}\right) \subset \mathcal{D}_{j_{1}}
$$

hence $\sigma\left(\mathcal{B}_{j_{1}}\right)=\mathcal{D}_{j_{1}}$. Iterating the above argument for $\mathcal{D}_{j_{2}}, \mathcal{D}_{j_{3}}$, implies (2.1).
(ii) For $k \in K$ define

$$
\mathcal{C}_{k}:=\left\{\bigcap_{j \in J} A_{j} \mid J \subset J_{k}, J \text { finite, } A_{j} \in \mathcal{B}_{j}\right\} .
$$

Then \mathcal{C}_{k} is closed under intersections and the collection of subsets $\mathcal{C}_{k}, k \in K$, are still independent, because: given $k_{1}, \ldots, k_{n} \in K$ and finite subsets $J^{1} \subset$ $J_{k_{1}}, \ldots, J^{n} \subset J_{k_{n}}$, then

(i) now implies that

$$
\sigma\left(\mathfrak{C}_{k}\right)=\sigma\left(\bigcup_{i \in J_{k}} \mathcal{B}_{i}\right), \quad k \in K
$$

are independent too.
Example 1.3. Let $A_{i} \in \mathcal{A}, i \in I$, be independent. Then $A_{i}, A_{i}^{c}, i \in I$, are independent too.

Remark 1.4. Pairwise independence does not imply independence in general.
Beispiel: Consider two tosses with a fair coin, i.e.

$$
\Omega:=\{(i, k) \mid i, k \in\{0,1\}\}, \quad P:=\text { uniform distribution. }
$$

Consider the events

$$
\begin{aligned}
& A:=\text { "1. toss } 1 "=\{(1,0),(1,1)\} \\
& B:=\text { "2. toss } 1 "=\{(0,1),(1,1)\} \\
& C:=\text { "1. and 2. toss equal" }=\{(0,0),(1,1)\} .
\end{aligned}
$$

Then $P(A)=P(B)=P(C)=\frac{1}{2}$ and A, B, C are pairwise independent

$$
P(A \cap B)=P(B \cap C)=P(C \cap A)=\frac{1}{4} .
$$

But on the other hand

$$
P(A \cap B \cap C)=14 \neq P(A) \cdot P(B) \cdot P(C)
$$

Example 1.5. Independent 0 -1-experiments with success probability $p \in[0,1]$. Let $\Omega:=\{0,1\}^{\mathbb{N}}, X_{i}(\omega):=x_{i}$ and $\omega:=\left(x_{i}\right)_{i \in \mathbb{N}}$. Let P_{p} be a probability measure on $\mathcal{A}:=\sigma\left(\left\{X_{i}=1\right\}, i=1,2, \ldots\right)$, with
(i) $P_{p}\left[X_{i}=1\right]=p$ (hence $\left.P_{p}\left[X_{i}=0\right]=P_{p}\left(\left\{X_{i}=1\right\}^{c}\right)=1-p\right)$.
(ii) $\left\{X_{i}=1\right\}, i \in \mathbb{N}$, are independent w.r.t. P_{p}.

Existence of such a probability measure later! Then for any $x_{1}, \ldots, x_{n} \in\{0,1\}$:

$$
P_{p}\left[X_{i_{1}}=x_{1}, \ldots, X_{i_{n}}=x_{n}\right] \stackrel{(\mathrm{ii)} \text { and }}{\stackrel{\text { and }}{=}} \prod_{j=1}^{n} P_{p}\left[X_{i_{j}}=x_{j}\right] \stackrel{(\mathrm{i})}{=} p^{k}(1-p)^{n-k}
$$

where $k:=\sum_{i=1}^{n} x_{i}$ gilt. Hence P_{p} is uniquely determined by (i) and (ii).
Proposition 1.6 (Kolmogorov's Zero-One Law). Let $\mathcal{B}_{n}, n \in \mathbb{N}$, be independent σ algebras, and

$$
\mathcal{B}_{\infty}:=\bigcap_{n=1}^{\infty} \sigma\left(\bigcup_{m=n}^{\infty} \mathcal{B}_{m}\right)
$$

be the tail-field (resp. σ-algebra of terminal events). Then

$$
P(A) \in\{0,1\} \quad \forall A \in \mathcal{B}_{\infty}
$$

i.e., P is deterministic on \mathcal{B}_{∞}.

Illustration: Independent 0-1-experiments
Let $\mathcal{B}_{i}=\sigma\left(\left\{X_{i}=1\right\}\right)$. Then

$$
\mathcal{B}_{\infty}=\bigcap_{n \in \mathbb{N}} \sigma\left(\bigcup_{m \geqslant n} \mathcal{B}_{m}\right)
$$

is the σ-algebra containing the events of the remote future, e.g.

$$
\begin{aligned}
& \limsup _{i \rightarrow \infty}\left\{X_{i}=1\right\}=\{\text { "infinitely many '1"' }\} \\
& \{\omega \in\{0,1\}^{\mathbb{N}} \left\lvert\, \lim _{n \rightarrow \infty} \underbrace{\frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega)}_{=: \frac{S_{n}(\omega)}{n}}\right. \text { exists }\}
\end{aligned}
$$

Proof of the Zero-One Law. Proposition 1.2 implies that for all n

$$
\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{n-1}, \sigma\left(\bigcup_{m=n}^{\infty} \mathcal{B}_{m}\right)
$$

are independent. Since $\mathcal{B}_{\infty} \subset \sigma\left(\bigcup_{m \geqslant n} \mathcal{B}_{m}\right)$, this implies that for all n

$$
\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{n-1}, \mathcal{B}_{\infty}
$$

are independent. By definition this implies that
$\mathcal{B}_{\infty}, \mathcal{B}_{n}, n \in \mathbb{N}$ are independent
and now Proposition 1.2 (ii) implies that

$$
\sigma\left(\bigcup_{n \in \mathbb{N}} \mathcal{B}_{n}\right) \text { und } \mathcal{B}_{\infty}
$$

are idependent. Since $\mathcal{B}_{\infty} \subset \sigma\left(\bigcup_{n \geqslant 1} \mathcal{B}_{n}\right)$ we finally obtain that \mathcal{B}_{∞} and \mathcal{B}_{∞} are independent. The conclusion now follows from the next lemma.

Lemma 1.7. Let $\mathcal{B} \subset \mathcal{A}$ be a σ-algebra such that \mathcal{B} is independent from \mathcal{B}. Then

$$
P(A) \in\{0,1\} \quad \forall A \in \mathcal{B} .
$$

Proof. For all $A \in \mathcal{B}$

$$
P(A)=P(A \cap A)=P(A) \cdot P(A)=P(A)^{2} .
$$

Hence $P(A)=0$ or $P(A)=1$.
For any sequence $A_{n}, n \in \mathbb{N}$, of independent events in \mathcal{A}, Kolmogorov's Zero-One Law implies in particular for

$$
A_{\infty}:=\bigcap_{n \in \mathbb{N}} \bigcup_{m \geqslant n} A_{m} \quad\left(=: \limsup _{n \rightarrow \infty} A_{n}\right)
$$

that $P\left(A_{\infty}\right)=0-1$.
Proof: The σ-algebras $\mathcal{B}_{n}:=\sigma\left\{A_{n}\right\}=\left\{\emptyset, \Omega, A, A^{c}\right\}, n \in \mathbb{N}$, are independent by Proposition 1.2 and $A_{\infty} \in \mathcal{B}_{\infty}$.

Lemma 1.8 (Borel-Cantelli). (i) Let $A_{i} \in \mathcal{A}, i \in \mathbb{N}$. Then

$$
\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty \quad \Rightarrow \quad P\left(\limsup _{i \rightarrow \infty} A_{i}\right)=0 .
$$

(ii) Assume that $A_{i} \in \mathcal{A}, i \in \mathbb{N}$, are independent. Then

$$
\sum_{i=1}^{\infty} P\left(A_{i}\right)=\infty \quad \Rightarrow \quad P\left(\limsup _{i \rightarrow \infty} A_{i}\right)=1
$$

Proof. (i) See Lemma 1.1.11.
(ii) It suffices to show that

$$
P\left(\bigcup_{m=n}^{\infty} A_{m}\right)=1 \quad \text { resp. } \quad P\left(\bigcap_{m=n}^{\infty} A_{m}^{c}\right)=0 \quad \forall n .
$$

The last equality follows from the fact that

$$
\begin{aligned}
P\left(\bigcap_{m=n}^{\infty} A_{m}^{c}\right) & =\lim _{k \rightarrow \infty} \underbrace{P\left(\bigcap_{m=n}^{n+k} A_{m}^{c}\right)}_{=\prod_{m=n}^{n+k} P\left(A_{m}^{c}\right)} \text { ind. } \\
& =\prod_{m=n}^{n+k}\left(1-P\left(A_{m}\right)\right) \leq \exp \left(\sum_{m=n}^{n+k} P\left(A_{m}\right)\right)=0
\end{aligned}
$$

where we used the inequality $1-\alpha \leqslant e^{-\alpha}$ for all $\alpha \in \mathbb{R}$.

Example 1.9. Independent 0 -1-experiments with success probability $p \in] 0,1[$. Let $\left(x_{1}, \ldots, x_{N}\right) \in\{0,1\}^{N}$ ("binary text of length N ").

$$
P_{p}[\text { "text occurs" }] \text { ? }
$$

To calculate this probability we partition the infinite sequence $\omega=\left(y_{n}\right) \in\{0,1\}^{\mathbb{N}}$ into blocks of length N

$$
(\underbrace{\cdots \cdots}_{\begin{array}{c}
\text { 1. block } \\
\text { length }=N
\end{array} \underbrace{\ldots \ldots}_{\begin{array}{c}
\text { 2. block } \\
y_{1}, y_{2} \\
y_{2}
\end{array}, \ldots}=N}) \in \Omega:=\{0,1\}^{\mathbb{N}}
$$

and consider the events $A_{i}=$ "text occurs in the $i^{t h}$ block". Clearly, $A_{i}, i \in \mathbb{N}$, are independent events (!) by Proposition 1.2(ii) with equal probability

$$
P_{p}\left(A_{i}\right)=p^{K}(1-p)^{N-K}=: \alpha>0
$$

where $K:=\sum_{i=1}^{N} x_{i}$ is the total sum of ones. In particular, $\sum_{i=1}^{\infty} P_{p}\left(A_{i}\right)=\sum_{i=1}^{\infty} \alpha=$ ∞, and now Borel-Cantelli implies $P_{p}\left(A_{\infty}\right)=1$, where

$$
A_{\infty}=\limsup _{i \rightarrow \infty} A_{i}:=\text { "text occurs infinitely many times" }
$$

Moreover: since the indicator functions $1_{A_{1}}, 1_{A_{2}}, \ldots$ are uncorrelated (since they are independent r.v. (see below)), the strong law of large numbers implies that

$$
\frac{1}{n} \sum_{i=1}^{n} 1_{A_{i}} \xrightarrow{P_{p} \text {-a.s. }} \mathbb{E}\left[1_{A_{i}}\right]=\alpha
$$

i.e. the relative frequency of the given text in the infinite sequence is strictly positive.

2 Independent random variables

Let (Ω, \mathcal{A}, P) be a probability space.

Definition 2.1. A family $X_{i}, i \in I$, of r.v. on (Ω, \mathcal{A}, P) is said to be independent, if the σ-algebras

$$
\sigma\left(X_{i}\right):=X_{i}^{-1}(\mathcal{B}(\overline{\mathbb{R}})) \quad\left(=\left\{\left\{X_{i} \in A\right\} \mid A \in \mathcal{B}(\overline{\mathbb{R}})\right\}\right), \quad i \in I
$$

are independent, i.e. for all finite subsets $J \subset I$ and any Borel subsets $A_{j} \in \mathcal{B}(\overline{\mathbb{R}})$

$$
P\left(\bigcap_{j \in J}\left\{X_{j} \in A_{j}\right\}\right)=\prod_{j \in J} P\left[X_{j} \in A_{j}\right] .
$$

Remark 2.2. Let $X_{i}, i \in I$, be independent and $h_{i}: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}, i \in I, \mathcal{B}(\overline{\mathbb{R}}) / \mathcal{B}(\overline{\mathbb{R}})$ measurable. Then $Y_{i}:=h_{i}\left(X_{i}\right), i \in I$, are again independent, because $\sigma\left(Y_{i}\right) \subset \sigma\left(X_{i}\right)$ for all $i \in I$.

Proposition 2.3. Let X_{1}, \ldots, X_{n} be independent r.v., ≥ 0. Then

$$
\mathbb{E}\left[X_{1} \cdots X_{n}\right]=\mathbb{E}\left[X_{1}\right] \cdots \mathbb{E}\left[X_{n}\right]
$$

Proof. W.l.o.g. $n=2$. (Proof of the general case by induction, using the fact that $X_{1} \cdot \ldots \cdot X_{n-1}$ and X_{n} are independent, since $X_{1} \cdot \ldots \cdot X_{n-1}$ is measurable w.r.t $\sigma\left(\sigma\left(X_{1}\right) \cup \cdots \cup \sigma\left(X_{n-1}\right)\right)$ and $\sigma\left(\sigma\left(X_{1}\right) \cup \cdots \cup \sigma\left(X_{n-1}\right)\right)$ and $\sigma\left(X_{n}\right)$ are independent by Proposition 1.2.)

It therefore suffices to consider two independent r.v. $X, Y, \geq 0$, and we have to show that

$$
\begin{equation*}
\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y] \tag{2.2}
\end{equation*}
$$

W.l.o.g. X, Y simple
(for general X and Y there exist increasing sequences of simple r.v. X_{n} (resp. Y_{n}), which are $\sigma(X)$-measurable (resp. $\sigma(Y)$-measurable), converging pointwise to X (resp. $Y)$.

Then $\mathbb{E}\left[X_{n} Y_{n}\right]=\mathbb{E}\left[X_{n}\right] \cdot \mathbb{E}\left[Y_{n}\right]$ for all n implies (2.2) using monotone integration.) But for X, Y simple, hence

$$
X=\sum_{i=1}^{m} \alpha_{i} 1_{A_{i}} \quad \text { and } \quad Y=\sum_{j=1}^{n} \beta_{j} 1_{B_{j}}
$$

with $\alpha_{i}, \beta_{j} \geqslant 0$ and $A_{i} \in \sigma(X)$ resp. $B_{j} \in \sigma(Y)$ it follows that

$$
\mathbb{E}[X Y]=\sum_{i, j} \alpha_{i} \beta_{j} \cdot P\left(A_{i} \cap B_{j}\right)=\sum_{i, j} \alpha_{i} \beta_{j} \cdot P\left(A_{i}\right) \cdot P\left(B_{j}\right)=\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Corollary 2.4. X, Y independent, $X, Y \in \mathcal{L}^{1}$

$$
\Rightarrow \quad X Y \in \mathcal{L}^{1} \quad \text { and } \quad \mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y] .
$$

Proof. Let $\varepsilon_{1}, \varepsilon_{2} \in\{+,-\}$. Then $X^{\varepsilon_{1}}$ and $Y^{\varepsilon_{2}}$ are independent by Remark 2.2 and nonnegative. Proposition 2.3 implies

$$
\mathbb{E}\left[X^{\varepsilon_{1}} \cdot Y^{\varepsilon_{2}}\right]=\mathbb{E}\left[X^{\varepsilon_{1}}\right] \cdot \mathbb{E}\left[Y^{\varepsilon_{2}}\right] .
$$

In particular $X^{\varepsilon_{1}} \cdot Y^{\varepsilon_{2}}$ in \mathcal{L}^{1}, because $\mathbb{E}\left[X^{\varepsilon_{1}}\right] \cdot \mathbb{E}\left[Y^{\varepsilon_{2}}\right]<\infty$. Hence

$$
X \cdot Y=X^{+} \cdot Y^{+}+X^{-} \cdot Y^{-}-\left(X^{+} \cdot Y^{-}+X^{-} \cdot Y^{+}\right) \quad \in \mathcal{L}^{1}
$$

and $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$.
Remark 2.5. (i) In general the converse to the above corollary does not hold: For example let X be $N(0,1)$-distributed and $Y=X^{2}$. Then X and Y are not independent, but

$$
\mathbb{E}[X Y]=\mathbb{E}\left[X^{3}\right]=\mathbb{E}[X] \cdot \mathbb{E}[Y]=0
$$

(ii)

$$
X, Y \in \mathcal{L}^{2} \quad \text { independent } \Rightarrow X, Y \quad \text { uncorelated }
$$

because

$$
\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]=0
$$

Corollary 2.6 (to the strong law of large numbers). Let $X_{1}, X_{2}, \cdots \in \mathcal{L}^{2}$ be independent with $\sup _{i \in \mathbb{N}} \operatorname{var}\left(X_{i}\right)<\infty$. Then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(X_{i}(\omega)-\mathbb{E}\left[X_{i}\right]\right)=0 \quad \text { P-a.s. } \\
\text { If } \mathbb{E}\left[X_{i}\right] \equiv m \text { then } \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega)=m \quad \text { P-a.s. }
\end{gathered}
$$

3 Kolmogorov's law of large numbers

Proposition 3.1 (Kolmogorov, 1930). Let $X_{1}, X_{2}, \cdots \in \mathcal{L}^{1}$ be independent, identically distributed, $m=\mathbb{E}\left[X_{i}\right]$. Then

$$
\underbrace{\frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega)}_{\substack{\text { empirical } \\ \text { mean }}} \xrightarrow{n \rightarrow \infty} m \quad P \text {-a.s. }
$$

Proposition 3.1 follows from the following more general result:
Proposition 3.2 (Etemadi, 1981). Let $X_{1}, X_{2}, \cdots \in \mathcal{L}^{1}$ be pairwise independent, identically distributed, $m=\mathbb{E}\left[X_{i}\right]$. Then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega) \xrightarrow{n \rightarrow \infty} m \quad P \text {-a.s. }
$$

Proof. W.I.o.g. $X_{i} \geqslant 0$
(otherwise consider $X_{1}^{+}, X_{2}^{+}, \ldots$ (pairwise independent, identically distributed) and $\quad X_{1}^{-}, X_{2}^{-}, \ldots$ (pairwise independent, identically distributed))

1. Replace X_{i} by $\tilde{X}_{i}:=1_{\left\{X_{i}<i\right\}} X_{i}$.

Clearly,

$$
\tilde{X}_{i}=h_{i}\left(X_{i}\right) \quad \text { with } \quad h_{i}(x):= \begin{cases}x & \text { if } x<i \\ 0 & \text { if } x \geqslant i\end{cases}
$$

Then $\tilde{X}_{1}, \tilde{X}_{2}, \ldots$ are pairwise independent by Remark 2.2. For the proof it is now sufficient to show that for $\tilde{S}_{n}:=\sum_{i=1}^{n} \tilde{X}_{i}$ we have that

$$
\frac{\tilde{S}_{n}}{n} \xrightarrow{n \rightarrow \infty} m \quad P \text {-a.s. }
$$

Indeed,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left[X_{n} \neq \tilde{X}_{n}\right]=\sum_{n=1}^{\infty} P\left[X_{n} \geqslant n\right]=\sum_{n=1}^{\infty} P\left[X_{1} \geqslant n\right] \\
& \quad=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} P\left[X _ { 1 } \in \left[k, k+1[]=\sum_{k=1}^{\infty} k \cdot P\left[X_{1} \in[k, k+1[]\right.\right.\right. \\
& \quad=\sum_{k=1}^{\infty} \mathbb{E}[\underbrace{}_{\leqslant X_{1} \cdot 1_{\left\{X_{1} \in[k, k+1[\}\right.} k \cdot 1_{\left\{X_{1} \in[k, k+1[\}\right.}}] \leqslant \mathbb{E}\left[X_{1}\right]<\infty
\end{aligned}
$$

implies by the Borel-Cantelli lemma

$$
P\left[X_{n} \neq \tilde{X}_{n} \text { infinitely often }\right]=0
$$

2. Reduce the proof to convergence along the subsequence $k_{n}=\left\lfloor\alpha^{n}\right\rfloor$ ($=$ largest natural number $\leq \alpha^{n}$), $\alpha>1$.
We will show in Step 3. that

$$
\begin{equation*}
\frac{\tilde{S}_{k_{n}}-\mathbb{E}\left[\tilde{S}_{k_{n}}\right]}{k_{n}} \xrightarrow{n \rightarrow \infty} 0 \quad \text { P-a.s. } \tag{2.3}
\end{equation*}
$$

This will imply the assertion of the Proposition, because

$$
\mathbb{E}\left[\tilde{X}_{i}\right]=\mathbb{E}\left[1_{\left\{X_{i}<i\right\}} \cdot X_{i}\right]=\mathbb{E}\left[1_{\left\{X_{1}<i\right\}} \cdot X_{1}\right] \stackrel{\nearrow}{i \rightarrow \infty} \mathbb{E}\left[X_{1}\right](=m)
$$

hence

$$
\frac{1}{k_{n}} \cdot \mathbb{E}\left[\tilde{S}_{k_{n}}\right]=\frac{1}{k_{n}} \sum_{i=1}^{k_{n}} \mathbb{E}\left[\tilde{X}_{i}\right] \xrightarrow{n \rightarrow \infty} m
$$

and thus

$$
\frac{1}{k_{n}} \cdot \tilde{S}_{k_{n}} \xrightarrow{n \rightarrow \infty} m \quad P \text {-a.s. }
$$

If $l \in \mathbb{N} \cap\left[k_{n}, k_{n+1}[\right.$, then

$$
\underbrace{\frac{k_{n}}{k_{n+1}}}_{n \rightarrow \infty} \cdot \underbrace{\frac{\tilde{S}_{k_{n}}}{k_{n}}}_{P \rightarrow \infty} \leqslant \frac{\tilde{S}_{l}}{l} \leqslant \underbrace{\frac{\tilde{S}_{k_{n+1}}}{k_{n+1}}}_{\substack{n \rightarrow \infty \\ k_{n+1}}} \cdot \underbrace{\frac{k_{n+1}}{k_{n}}}_{P \text {-a.s. }}
$$

Hence there exists a P-null set $N_{\alpha} \in \mathcal{A}$, such that for all $\omega \notin N_{\alpha}$

$$
\frac{1}{\alpha} \cdot m \leqslant \liminf _{l \rightarrow \infty} \frac{\tilde{S}_{l}(\omega)}{l} \leqslant \limsup _{l \rightarrow \infty} \frac{\tilde{S}_{l}(\omega)}{l} \leqslant \alpha \cdot m
$$

Finally choose a subsequence $\alpha_{n} \searrow 1$. Then for all $\omega \notin N:=\bigcup_{n \geqslant 1} N_{\alpha_{n}}$

$$
\lim _{l \rightarrow \infty} \frac{\tilde{S}_{l}(\omega)}{l}=m
$$

3. Due to Lemma 1.7.7 it suffices for the proof of (2.3) to show that

$$
\forall \varepsilon>0: \quad \sum_{n=1}^{\infty} P\left[\left|\frac{\tilde{S}_{k_{n}}-\mathbb{E}\left[\tilde{S}_{k_{n}}\right]}{k_{n}}\right| \geqslant \varepsilon\right]<\infty
$$

(fast convergence in probability towards 0)
Pairwise independence of \tilde{X}_{i} implies \tilde{X}_{i} pairwise uncorrelated, hence

$$
\begin{aligned}
& P\left[\left|\frac{\tilde{S}_{k_{n}}-\mathbb{E}\left[\tilde{S}_{k_{n}}\right]}{k_{n}}\right| \geqslant \varepsilon\right] \leqslant \frac{1}{k_{n}^{2} \varepsilon^{2}} \cdot \operatorname{var}\left(\tilde{S}_{k_{n}}\right)=\frac{1}{k_{n}^{2} \varepsilon^{2}} \sum_{i=1}^{k_{n}} \operatorname{var}\left(\tilde{X}_{i}\right) \\
& \quad \leqslant \frac{1}{k_{n}^{2} \varepsilon^{2}} \sum_{i=1}^{k_{n}} \mathbb{E}\left[\left(\tilde{X}_{i}\right)^{2}\right] .
\end{aligned}
$$

It therefore suffices to show that

$$
s:=\sum_{n=1}^{\infty}\left(\frac{1}{k_{n}^{2}} \sum_{i=1}^{k_{n}} \mathbb{E}\left[\left(\tilde{X}_{i}\right)^{2}\right]\right)=\sum_{\substack{(i, n) \in \mathbb{N}^{2}, i \leqslant k_{n}}} \frac{1}{k_{n}^{2}} \cdot \mathbb{E}\left[\left(\tilde{X}_{i}\right)^{2}\right]<\infty
$$

To this end note that

$$
s=\sum_{i=1}^{\infty}\left(\sum_{n: k_{n} \geqslant i} \frac{1}{k_{n}^{2}}\right) \cdot \mathbb{E}\left[\left(\tilde{X}_{i}\right)^{2}\right] .
$$

We will show in the following that there exists a constant c such that

$$
\begin{equation*}
\sum_{n: k_{n} \geqslant i} \frac{1}{k_{n}^{2}} \leqslant \frac{c}{i^{2}} \tag{2.4}
\end{equation*}
$$

This will then imply that

$$
\begin{aligned}
s & \stackrel{(2.4)}{\leqslant} c \sum_{i=1}^{\infty} \frac{1}{i^{2}} \cdot \mathbb{E}\left[\left(\tilde{X}_{i}\right)^{2}\right]=c \sum_{i=1}^{\infty} \frac{1}{i^{2}} \cdot \mathbb{E}\left[1_{\left\{X_{1}<i\right\}} \cdot X_{1}^{2}\right] \\
& \leqslant c \sum_{i=1}^{\infty}\left(\frac { 1 } { i ^ { 2 } } \sum _ { l = 1 } ^ { i } l ^ { 2 } \cdot P \left[X_{1} \in[l-1, l[])\right.\right. \\
& =c \sum_{l=1}^{\infty}(l^{2} \cdot \underbrace{\left(\sum_{i=l}^{\infty} \frac{1}{i^{2}}\right)}_{\leqslant 2 l^{-1}} \cdot P\left[X_{1} \in[l-1, l[])\right. \\
& \leqslant 2 c \sum_{l=1}^{\infty} l \cdot P[X_{1} \in[l-1, l[]=2 c \sum_{l=1}^{\infty} \mathbb{E}[\underbrace{l \cdot 1_{\left\{X_{1} \in[l-1, l]\right\}}}_{\leqslant\left(X_{1}+1\right) \cdot 1_{\left\{X_{1} \in[l-1, l]\right\}}}] \\
& \leqslant 2 c \cdot\left(\mathbb{E}\left[X_{1}\right]+1\right)<\infty,
\end{aligned}
$$

where we used the fact that

$$
\sum_{i=l}^{\infty} \frac{1}{i^{2}} \leqslant \frac{1}{l^{2}}+\sum_{i=l+1}^{\infty} \frac{1}{(i-1) i}=\frac{1}{l^{2}}+\sum_{i=l+1}^{\infty}\left(\frac{1}{i-1}-\frac{1}{i}\right)=\frac{1}{l^{2}}+\frac{1}{l} \leqslant \frac{2}{l}
$$

It remains to show (2.4). To this end note that

$$
\begin{aligned}
& \left\lfloor\alpha^{n}\right\rfloor=k_{n} \leqslant \alpha^{n}<k_{n}+1 \\
\Rightarrow \quad & k_{n}>\alpha^{n}-1 \stackrel{\alpha>1}{\geqslant} \alpha^{n}-\alpha^{n-1}=\underbrace{\left(\frac{\alpha-1}{\alpha}\right)}_{=: c_{\alpha}} \alpha^{n} .
\end{aligned}
$$

Let n_{i} be the smallest natural number satisfying $k_{n_{i}}=\left\lfloor\alpha^{n_{i}}\right\rfloor \geqslant i$, hence $\alpha^{n_{i}} \geqslant i$, then

$$
\sum_{n: k_{n} \geqslant i} \frac{1}{k_{n}^{2}} \leqslant c_{\alpha}^{-2} \sum_{n \geqslant n_{i}} \frac{1}{\alpha^{2 n}}=c_{\alpha}^{-2} \cdot \frac{1}{1-\alpha^{-2}} \cdot \alpha^{-2 n_{i}} \leqslant \frac{c_{\alpha}^{-2}}{1-\alpha^{-2}} \cdot \frac{1}{i^{2}} .
$$

Corollary 3.3. Let X_{1}, X_{2}, \ldots be pairwise independent, identically distributed (iid) with $X_{i} \geqslant 0$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega)=\mathbb{E}\left[X_{1}\right] \quad(\in[0, \infty]) \quad \text { P-a.s. }
$$

Proof. W.l.o.g. $\mathbb{E}\left[X_{1}\right]=\infty$. Then $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}(\omega) \wedge N\right) \xrightarrow{n \rightarrow \infty} \mathbb{E}\left[X_{1} \wedge N\right]$, P-a.s. for all N, hence

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega) \geqslant \frac{1}{n} \sum_{i=1}^{n}\left(X_{i}(\omega) \wedge N\right) \xrightarrow{n \rightarrow \infty} \mathbb{E}\left[X_{1} \wedge N\right]^{N \rightarrow \infty} \mathbb{E}\left[X_{1}\right] \quad P \text {-a.s. }
$$

Example 3.4. Growth in random media Let Y_{1}, Y_{2}, \ldots be i.i.d., $Y_{i}>0$, with $m:=$ $\mathbb{E}\left[Y_{i}\right]$ (existence of such a sequence later!)

Define $X_{0}=1$ and inductively $X_{n}:=X_{n-1} \cdot Y_{n}$
Clearly, $X_{n}=Y_{1} \cdots Y_{n}$ and $\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[Y_{1}\right] \cdots \mathbb{E}\left[Y_{n}\right]=m^{n}$, hence

$$
\mathbb{E}\left[X_{n}\right] \rightarrow\left\{\begin{array}{lll}
+\infty & \text { if } m>1 \\
1 & \text { if } m=1 \\
0 & \text { if } m<1 & \text { exponential growth (supercritical) } \\
\text { critical } \\
\text { exponential decay (subcritical) }
\end{array}\right.
$$

What will be the long-time behaviour of $X_{n}(\omega)$?
Surprisingly, in the supercritical case $m>1$, one may observe that $\lim _{n \rightarrow \infty} X_{n}=0$ with positive probability.

Explanation: Suppose that $\log Y_{i} \in \mathcal{L}^{1}$. Then

$$
\frac{1}{n} \log X_{n}=\frac{1}{n} \sum_{i=1}^{n} \log Y_{i} \xrightarrow{n \rightarrow \infty} \mathbb{E}\left[\log Y_{1}\right]=: \alpha \quad P \text {-a.s. }
$$

and
$\alpha<0$: $\exists \varepsilon>0$ with $\alpha+\varepsilon<0$, so that $X_{n}(\omega) \leqslant e^{n(\alpha+\varepsilon)} \forall n \geqslant n_{0}(\omega)$, hence P-a.s. exponential decay
$\alpha>0: \exists \varepsilon>0$ with $\alpha-\varepsilon>0$, so that $X_{n}(\omega) \geqslant e^{n(\alpha-\varepsilon)} \forall n \geqslant n_{0}(\omega)$, hence P-a.s. exponential growth
Note that Jensen's inequality

$$
\alpha=\mathbb{E}\left[\log Y_{1}\right] \leqslant \log \underbrace{\mathbb{E}\left[Y_{1}\right]}_{=m},
$$

and in general the inequality is strict, i.e. $\alpha<\log m$, so that it might happen that $\alpha<0$ although $m>1$ (!)

Illustration As a particular example let

$$
Y_{i}:= \begin{cases}\frac{1}{2}(1+c) & \text { with prob. } \frac{1}{2} \\ \frac{1}{2} & \text { with prob. } \frac{1}{2}\end{cases}
$$

, so that $\mathbb{E}\left[Y_{i}\right]=\frac{1}{4}(1+c)+\frac{1}{4}=\frac{1}{2}+\frac{1}{4} c$ (supercritical if $c>2$)
On the other hand

$$
\mathbb{E}\left[\log Y_{1}\right]=\frac{1}{2} \cdot\left[\log \left(\frac{1}{2}(1+c)\right)+\log \frac{1}{2}\right]=\frac{1}{2} \cdot \log \frac{1+c}{4} \stackrel{c<3}{<} 0
$$

Hence $X_{n} \xrightarrow{n \rightarrow \infty} 0 P$-a.s. with exponential rate for $c<3$, whereas at the same time for $c>2 \mathbb{E}\left[X_{n}\right]=m^{n} \nearrow \infty$ with exponential rate.

Back to Kolmogorov's law of large numbers:
Let $X_{1}, X_{2}, \ldots \in \mathcal{L}^{1}$ i.i.d. with $m:=\mathbb{E}\left[X_{i}\right]$. Then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega) \xrightarrow{n \rightarrow \infty} \mathbb{E}\left[X_{1}\right] \quad P \text {-a.s. }
$$

Define the "random measure"

$$
\begin{aligned}
\varrho_{n}(\omega, A) & :=\frac{1}{n} \sum_{i=1}^{n} 1_{A}\left(X_{i}(\omega)\right) \\
& =\text { "relative frequency of the event } X_{i} \in A^{"}
\end{aligned}
$$

Then

$$
\varrho_{n}(\omega, \cdot)=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(\omega)}
$$

is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ for fixed ω and it is called the empirical distribution of the first n observations

Proposition 3.5. For P-almost every $\omega \in \Omega$:

$$
\varrho_{n}(\omega, \cdot) \xrightarrow{n \rightarrow \infty} \mu:=P \circ X_{1}^{-1} \quad \text { weakly. }
$$

Proof. Clearly, Kolmogorov's law of large numbers implies that for any $x \in \mathbb{R}$

$$
\begin{aligned}
F_{n}(\omega, x) & \left.\left.:=\varrho_{n}(\omega,]-\infty, x\right]\right)=\frac{1}{n} \sum_{i=1}^{n} 1_{]-\infty, x]}\left(X_{i}(\omega)\right) \\
& \left.\left.\rightarrow \mathbb{E}\left[1_{]-\infty, x]}\left(X_{1}\right)\right]=P\left[X_{1} \leq x\right]=\mu(]-\infty, x\right]\right)=: F(x)
\end{aligned}
$$

P-a.s., hence for every $\omega \notin N(x)$ for some P-null set $N(x)$.
Then

$$
N:=\bigcup_{r \in \mathbb{Q}} N(r) .
$$

is a P-null set too, and for all $x \in \mathbb{R}$ and all $s, r \in \mathbb{Q}$ with $s<x<r$ and $\omega \notin N$:

$$
\begin{aligned}
F(s) & :=\lim _{n \rightarrow \infty} F_{n}(\omega, s) \leqslant \liminf _{n \rightarrow \infty} F_{n}(\omega, x) \\
& \leqslant \limsup _{n \rightarrow \infty} F_{n}(\omega, x) \leqslant \lim _{n \rightarrow \infty} F_{n}(\omega, r)=F(r) .
\end{aligned}
$$

Hence, if F is continuous at x, then for $\omega \notin N$

$$
\lim _{n \rightarrow \infty} F_{n}(\omega, x)=F(x)
$$

Now the assertion follows from the Portmanteau theorem.

