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1 Basic Notions

1 Probability spaces

Probability theory is the mathematical theory of randomness. The basic notion is that
of a random experiment, which is an event whose outcome is not predictable and can
only be determined after performing them and then observing the outcome.

Probability theory tries to quantify the possible outcomes by attaching a probability
to every event. This is of importance for example for an insurance company when asking
the question what is a fair price of an insurance against events like fire or death that
are events that can happen but need not happen.

The set of all possible outcomes of a random experiment is denoted by Q2. The set
2 may be finite, infintely countable or even uncountable.

Example 1.1. Examples of random experiments and corresponding :

(i) Coin tossing The possible outcomes of tossing a coin are either “head” or “tail”.
Denoting one outcome by “0" and the other one by “1"”, the set of all possible
outcomes is given by Q = {0,1}.

(i) Tossing a coin n times In this case any sequence of zeros and ones (alias heads
or tails) of length n are considered as one possible outcome; hence

Q = {(21,22,...,2n) | 2 € {0,1}} =: {0,1}"
is the space of all possible outcomes.
(iii) Tossing a coin infintely many times In this case
Q= {(zi)ien | 2 € {0,1}} =: {0, 1}".

In this case 2 is uncountable in contrast to the previous examples. We can identify
Q with the set [0,1] C R using the binary expansion

[e's}
T = E .Z'z'Q_z.
i=1

(iv) A random number between 0 and 1 2 = [0, 1].

(v) Continuous stochastic processes, e.g. Brownian motion on R Any continuous
real-valued function defined on [0,1] C R is a possible outcome. In this case
Q= ¢e([0,1]).
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Events
Subsets A C Q are called events. If w € A we say that A has occured.

e clementary events A = {w} for some w € Q
e the impossible event A = () and the certain event A = Q

e “A does not occur” A° =Q\ A

Combination of events

Aj U As, U A; “at least one of the events A; occur”
i
A NA,, ﬂAi “all of the events A; occur”’
i
lim sup A, := ﬂ U A “infinitely many of the A,, occur”
n—00 n m>n
liminf A, := U ﬂ A “all but finitely many of the A,, occur”
n—0o0
n m2n

Example 1.2. (i) Coin tossing “1 occurs”: A = {1}

(i) Tossing a coin n times “tossing k ones:

n

Zmi = k}.

i=1

A:{(wl,...,mn)e{o,l}”

(iii) Tossing a coin infinitely many times ‘relative frequency of 1 equals p™:

1 n
i 5 Y=
1=

A= {(xi)ieN e {0,1}"




(iv) random number 0 and 1. “number € [a,b]": A = [a,b] C Q =0,1].
(v) Continuous stochastic processes “exceeding level ¢

A={wee(o,1]) | Orgtaéclw(t) > c}.
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Let ©2 be countable. A probability function p on Q is a function

p:Q —[0,1] with Zp(w) =1.
wEeR

Given any subset A C (Q, its probability P(A) can then be defined by simply adding up

P(4) = 3 p(w).

weA

In the uncountable case, however, there is no reasonable way of adding up an uncount-
able set of numbers. There is no way to build a reasonable theory by starting with
probability functions specifying the probability of individual outcomes. The best way
out is to specify directly the probability of events. In the uncountable case it is not
possible in general to consider the power set P((2), i.e. the collection of all subsets of
Q (including the empty set () and the whole set Q) but only a certain subclass. On
the other hand A should satisfy some minimal requirements specified in the following
definition:

Definition 1.3. A C P(Q) is called a o-algebra if
(i) Qe A
(i) A € A implies A € A.

(i) A; € A, i €N, implies | 4; € A.
ieN



Remark 1.4. (i) Let A be a o-algebra. Then:
e ) =Q°c A
o A, € A,i€N, implies
Nai=(U4) ea
ieN ieN

o Ay,..., A, € A implies

LHJA,'E.A and ﬁAiEA

i=1 i=1
(consider A, =0 for all m > n, resp. Ay, = Q for all m > n).
o A; €A, i €N, implies

ﬂUAmG.A and UﬂAmGA.

n mzn n m2n

(ii) the power set P() is a o-algebra.

(i) Let I be an index set (not necessarily countable) and for any i € I, let A; be a
o-algebra. Then (;.; A; is again a o-algebra.
(iv) Typical construction of a o-algebra Let Ay # () be a class of events. Then
o(Ap) := ﬂ B.
B is o-algebra,

AoCB

o(Ag) is the smallest o-algebra containing Ag. o(Aq) is called the o-algebra
generated by Ag.

Example 1.5. Let Q be a topological space, and A, be the collection of open subsets
of Q. Then B(Q) := o(A,) is called the Borel-c-algebra of Q, or o-algebra of Borel-

subsets.
Example of Borel-subsets: closed sets, countable unions of closed sets, etc...

Note: not every subset of a topological space is a Borel-subset, e.g. B(R) # P(R).

Definition 1.6. Let Q # 0 and A C P(Q) a o-algebra. A mapping P : A — [0,00] is
called a measure (on (Q, A)) if:

. P(@) =0
P(U A,.) = iP(Ai) (“o-additivity")
i€EN i=1

for all pairwise disjoint A; € A, i € N.



P is called a probability measure if in addition
e P(Q) =

In this case (2, A, P) is called a probability space. The pair (2, A) of a set {2 together
with a o-algebra is called a measurable space.

Example 1.7. (i) Coin tossmg Let A := P(Q) = {0,{0},{1},{0,1} }.
Tossing a fair coin means “head” and ' ta|I have equal probability 0.5, hence:

P({0}) == P({1}) == %; P®):=0, P({0,1}):=1.

(iii) Tossing a coin infinitely many times Q = {0, 1}".
Let A := o(Ag) where

Aog:={BCQ|3IneNand By € P({0,1}"),
such that B = By x {0,1} x {0,1} x ... }.

An event B is contained in Ay if it depends on finitely many tosses.
Fix Z1,...,Z, € {0,1} and define

({ x1,%2,. E {0 ].} |.'L'1 =T1y...3Tp =Ty, ):: 27",

E.Ao

P can be extended to a probability measure on A = o(Ap). For this probability
measure we have that

P({(xl,wz,...) € {0,1}N

(Proof: Later!)

(v) Continuous stochastic processes 2 = C([0, 1]), P = Wiener measure (“Brown-
ian motion”) For fixed o € Ry and «, 8 € R we have that

P({w | wlto) € [0 A1}) = s / e da

(Gaussian or normal distribution).

. . »
What is now the probability P({w | Orgtagxlw(t) >c}) 7

Answer to this question: Later!
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Remark 1.8. Let (2,.A, P) be a probability space, and let A4, ..., A, € A be pairwise
disjoint. Then

P(U A,.) =3 P(4))
i<n i=1
(simply let A,, = 0 for all m > n). In particular:
A,BeEA, ACB= P(B)=P(A)+ P(B\A)
= P(B\ A) = P(B) — P(4),
and P(A°) = P(Q\ A) = P(Q) — P(A) =1— P(A).
P is subadditive, that is, for A,B € A
P(AUB) =P(AU[B\ (AN B)])
= P(A)+ P(B)— P(ANB)
< P(A) + P(B), (1.1)
and by induction one obtains Sylvester's formula:

Let I be a finite index set, A;, i € I, be a collection of subsets in A (not necessarily
disjoint). Then

P(UA,») - Z(—1)|JI*1-P(ﬂAj) (1.2)

iel Jcl, jed
J£0

n
I={L,...,n} Z(_l)k—l . Z P(A;, N---NA;).
=1 1< <--<in <n

Propaosition 1.9. Let A be a o-algebra, and P : A — Ry be a mapping with P(Q2) = 1.
Then the following are equivalent:



(i) P is a probability measure.

(ii) P is additive, that is, A,B € A, AN B = () implies P(AUB) = P(A) + P(B),
and

continuous from below, that is, A; € A, i € N, with A; C A1 for all i € N,
implies

(UA)— lim P(4;).

71— 00
€N

(iii) P is additive and continuous from above, that is A; € A, i € N, with A; D A;11
for all i € N, implies

(ﬂA)_ lim P(A4;).

71— 00
i€N

Corollary 1.10 (o-subadditivity). Let A;, i € N, be a sequence of subsets in A (not
necessarily pairwise disjoint). Then:

P(G A,-) < iP(A

Proof.

A;) = lim P A; 1<1) lim " P(A;) = 3 P(A;). O
p(04) 2 i p((4) 2 S5

=1

Lemma 1.11 (Borel-Cantelli). Let A; € A, i € N. Then

o

Y PA)<oo = P(ﬂ U 4m )
i=1 neENm>n
—_———
ZZIiHULS;PAn
Proof. Since
U4 N U 4n
m2n neNm2n

the continuity from above of P implies that

1.10 0
P (limsu A = hm P A < lim P(A
202 i (U 40) i 3
since Y00 P(A,,) < oo. O



Example 1.12. (i) Uniform distribution on [0,1] Let Q@ = [0,1] and A be the
Borel-o-algebra on (= o({[a,b] | 0 < @ < b < 1})). Let P be the restriction
of the Lebesgue measure on the Borel subset of R to [0,1]. Then (Q, A, P) is a
probability space. The probability measure P is called the uniform distribution on
[0,1], since P([a,b]) =b—a for any 0 < a < b <1 (translation invariance).

(i) Dirac-measure Let Q # ) and wy € Q. Let A be an arbitrary o-algebra on
(e.g. A=DP(Q)). Then

1 fwgeA

P(A) :=14(wo) := {0 if wo ¢ A.

defines a probability measure on A. P is called the Dirac-measure in wgy, denoted
by P = 6,, or P =¢,,.

(iii) Convex combinations of probability measures Let Q # () and A be a o-algebra
of subsets of 2. Let I be a countable index set. Let P;, i € I, be a family of
probability measures on (Q2,.4), and a; € [0,1], i € I, be such that ), ; a; = 1.
Then P:=} . ;a;- P;is again a probability measure on (£2, A).

P := Zai-dwi

i€l

This holds in particular for

ifw,-eﬂ,iel.

2 Discrete models

Throughout the whole section
o Q) # () countable
e A=P(Q) and
e w € () an elementary event.

Proposition 2.1. (i) Let p : Q — [0,1] be a function with 0 < p(w) < 1 for all
w€Qand) op(w) =1 (pis called a probability distribution). Then
P(A) = Z p(w) VACQ
weA

defines a probability measure on (Q2, A).

(ii) Every probability measure P on (Q2,.A) is of this form, with p(w) := P({w}) for
allw € Q.

Proof. (i)
P=> pw)-d,.

w€eQ

10



(i) Exercise. O

Example 2.2 (Laplace probability space). Fundamental example in the discrete case
that forms the basis of many other discrete models.
Let © be a nonempty finite set (that is 0 < || < 00). Define

1
p(w)zﬁ Yw € Q.

|A|  number of convenient outcomes

P(A) = = .
(4) 19] number of possible outcomes

Hence measure theoretic problems reduce to combinatorial problems in the discrete
case.

P is said to be the uniform distribution on €1, because every elementary event w € )
has the same probability ﬁ

Example 2.3. (i) random permutationslLet M := {1,...,n} and Q := all permutations of M.
Then || = nl. Let P be the uniform distribution on €.

Problem: What is the probability P("at least one fixed point’)?
Consider the event A; := {w]|w(i) = i} (fixed point at position ). Then
Sylvester's formula (cf. (1.2)) implies that

P(“at least one fixed point”) = P(U Ai)

i=1

DM Y Py NN 4y)
k=1

1< < <ip<n

={=Bl(k pos. fixed)

Consequently,

“ o . my o = (_l)k _ ~ (—l)k n—oo 1
P(*no fixed p0|nt)—1+z —Z —e

and thus for all & € {0,...,n}:

P(“exactly k fixed points")

—k —k
1K (=
— ! -
= (n— TN !
=0 7 =0 7
N—~— ~ ~- d
aII poss. all w n — k positions
outcomes with k positions without fixed points

fixed

11
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Asymptotics as n — oc:

n—k (_

P(“exactly k fixed points”) =

™[

1 1) noo
' .
k! 4!

Jj=0
(Poisson distribution with parameter A = 1).

Recall: Poisson distribution with parameter A (> 0)
o0
_ AF
Ty =€ /\ZF - 0.
k=0

n experiments with state space S, |S| <

Q:={w=(z1,...,2n) | z; €S}, Q=9

Let P be the uniform distribution on €.
Fix a subset Sy C S, such that z; € Sy is called a “success”, hence p := % is

the probability of success.
What is the probability of the event A} = “(exactly) k successes’, k=0,...,n?

_ |Ak| _[(n |S()|k|S\S()|"7k _(m) . n—
Py = Ll - (k) = (k) pE(1 = p)nt

(Binomial distribution with parameters n, p).
Recall: Binomial distribution with parameters n,p

n

Bl =5 =3 () o -p* b

k=0

Let p := P("Success in the i-th experiment”), ¢ = 1,...,n, and consider the
asymptotics of the binomial distribution as n — oo for p,, := % Then

HROICHN

L ek ()

kL nk

o0, AF
%y-e—* (k=0,1,2,...)

(Poisson distribution with parameter \).



(iii) Urn model (for example: opinion polls, samples, ...) We consider an urn
containing N balls, K red and N — K black. Suppose that n < N balls are
sampled without replacement. What is the probability that exactly & balls in the
sample are red?

typical application: suppose that a small lake contains an (unknown) number N
of fish. To estimate N one can do the following: K fish will be marked by red
and after that n (n < N) fish are “sampled” from the lake. If k£ is the number of
marked fish in the sample, N =K- % is an estimation of the unknown number
N.

Model:

Let © be all subsets of {1,..., N} having cardinality n, hence

Q:={weP({1,....,N}) ||| =n}, |Q= (]:)

and let P be the uniform distribution on Q. Consider the event A;, := “exactly &

red”. Then
K\ /N-K
= () (5 2%)
so that
_ WG i
P(Ag) = (N) (k=0,...,n) hypergeometric distr.

Asymptotics for N — 0o, K — oo with p:= £ and n fixed:

P(Ay) — (:) PPA—-p"F  (k=0,...,n)

3 Transformations of probability spaces

Throughout this section let (2,.4) and (€, .A) be measurable spaces.

Definition 3.1. A mapping 7' : (2 — Q is called A/fl—measurable (or simply measur-
able), if T-1(A) € Aforall A€ A.
Notation:

{TeAy=T"A) ={we|T(w) e A}.
Remark 3.2. (i) Clearly, if A := P(Q) then every mapping T : Q — ) is measurable.

(i) Sufficient criterion for measurability Suppose that A= a(ﬁp) for some collection
of subsets Ag C P(). ThenT is A/ A-measurable, if T='(A) € A forall A € Ay.

13



(iii) Let Q,Q be topological spaces, and A, A be the associated Borel o-algebras.
Then:

T :Q — Q) is continuous = T is A/A-measurable.

(iv) Let (Q;,A;), i = 1,2,3, be measurable spaces, and T; : A; — A1, i@ = 1,2,
measurable mappings. Then:

T5 0Ty is Ay /As-measurable.
Proof. (i) {A € P(Q)|T-'(A) € A} is a o-algebra containing Ay. Consequently,

o(Ao) C {AeP() | T~ (A) € A}.

(iii) Easy consequence of (ii).
(iv) Exercise. O

Definition 3.3. Let T : ) — Q be a mapping and let A be a o-Algebra of subsets of
Q. The system

o(T) = {T~'(A) | A€ A}

is a o-algebra of subsets of ; o(T) is called the o-algebra generated by T'. More
precisely: o(T) is the smallest o-algebra A, such that T' is A/A-measurable.

Proposition 3.4. Let T : Q — Q be .A/fl—measurable and P be a probability measure
on (Q,A). Then

P(A):=T(P)(A):= P(T"'(A)) =: P[T € 4], AcA,

defines a probability measure on (0, A). P is called the induced measure on (Q,.A) or
the distribution of T' under P.
Notation: P = PoT~! or P =T(P).

Proof. Clearly, P(A) 2 0 for all Ae A, P(0) =0and P() = 1. For pairwise disjoint
A; € A, i €N, T71(A4;) are pairwise disjoint too, hence

Pis o] o]

P(UA)=p(r(U4)) 2™ Pt = S P, O
i€EN 1EN i=1 i=1
ﬁ—/
U T-1(4)

1EN

Remark 3.5. Let T(Q) be countable, so that T(Q) = {@; |i € N}, then

14



Proof. For any A € A can be written as

{T € /1} = U {@i}

{ieN | T=w; €A}

so that
P(A) = P[T € 4 = ;P[T =& - 1,@(@;) = (; P[T = & -5@,.)(/1). O

:65,' (A)

Example 3.6. Infinitely many coin tosses: existence of a probability measure.
Let Q2 :=[0,1] and A be the Borel o-algebra on [0,1]. Let P be the restriction of the
Lebesgue measure on [0, 1]. Let

Q:={@ = (zn)nen | : € {0,1} Vi € N} = {0,1}".
Define X; : 0 — {0,1} by

Xi((@n)nen) ==z, €N,
and let

A=o({{X;=1}|i€N}).

Note that A = o(Ag), where Ajg is the algebra of cylindrical subsets of Example 1.7
(iii). The binary expansion of some w € [0, 1] defines a mapping

T:0-Q
w »—>T(w) = (le,T2w,...),

with

T1 (w) L W)

1 Q : 32 3 1 Q

1
2

(and similar for Ts, Ty, ...). Notethat T; = X;oT foralli € N. T'is A/fl—measurable,
since

T~'({X; = 1}) = {T; = 1} = finite union of intervals € A.

Define P := P oT~'. For fixed (z1,...,z,) € {0,1}" we now obtain
n
PIX1=21,...,Xp = zn] = P(ﬂ{X,- - xi})
i=1

= PJinterval of length 27" =27".

15



Hence, for any fixed n, P coincides with the probability measure for n coin tosses (

= uniform distribution on binary sequences of length n). We have thus shown the

existence of a probability measure Pon (9, A) and solved part of the problem of 1.7.
Uniqueness of P later!

4 Random variables

Let (©2,.A) be a measurable space.

Definition 4.1. A random variable(on (2, A)) is a (A-) measurable map X : Q@ — R
resp. X :Q — R (with R := RU{—00,+00}), where R, resp. R, is endowed with the
Borel o- algebra

(Note: B(R)={BCR|BNRe€BR)})

Remark 4.2. (i) X : Q — R is a random variable if for allc € R {X < c} € A.
(i) If A = P(R), then every function from Q to R is a random variable on (Q, A).

(iii) Let X be a random variable on (Q,A) and h : R — R (resp. R — R) be a
measurable mapping. Then h(X) is a random variable too.

Examples: |X|, X2, | X P, e¥,

(iv) The family of random variables on (2,.A) is closed under countable operations.

In particular, if X1, X, ... are random variables, then

o Zz (7% Xz'
e sup; X;, inf; X;

e limsup;_ , ., X;, liminf; ,. X;
are random variables too.

Proof. (i) Obvious, since o({] — 00,¢c] : ¢ € R}) = B(R). It suffices to assume
{X < ¢} € A forall ¢ € Q or any other dense subset of R (Exercise!).

(i) and (iii) Obvious.
(iv) for example:

e supremum

{supX <c} = ﬂ{X c} € A.

i€N A
e sSum
{xX+y<ct= | {X<r}m{Y<s}eA O
r,s€Q
r+s<c GA

Important examples

16



Example 4.3. (i) Indicator functions of an event A € A:

1 if A
wr 1la(w) = I we alternative notation I 4
0 ifwgA

is a random variable, because

0 ife<O
{la<c}=¢A4° if0g<ex1
Q ife>1.

(i) simple random variables
n
X:Zci'lfln c ER, A; € A,
i=1

Note: any finite-valued random variable is simple, because X (Q) = {c1,...,¢n}
implies

X :ZcilAi for Xﬁl({ci}) =: A;.
i
Proposition 4.4 (Structure of random variables on (2, A)). Let X be a random
variable on (2, A). Then:
() X =X+ — X, with
Xt :=max(X,0), X~ :=—min(X,0) (random variables!).
(ii) Let X > 0. Then there exists a sequence of simple random variables X, n € N,
with X, < Xny1 and X = limp,_yeo Xn.
Proof. (of (ii))

n2"—-1 .

)
Xni= Y galigeex<igy T rlixen
=0

Let (2, A, P) be a probability space.
Definition 4.5. Let X be a random variable on (Q,A) with

min(/X+ dP,/X* dP) < o0. (1.3)

Then

E[X] ::/XdP (:/QX dP)

is called the expectation of X (w.r.t. P).

17



Definition/Construction

of the integral w.r.t. P
Let X be a random variable.

1. f X =14, A € A, define

/X dP := P(A).
2. If X =37 ¢-1a;, ¢ €R, A; € A, define

/XdP = ic’P(A’)

(independent of the particular representation of X)

3. X >0, then there exist X, simple, X,, > 0 (see 4.4) with X,, /* X. Define

/X dP:= lim [ X, dP (€ [0,00)).

n—oe
(independent of the particular choice for X,,!)

4. for general X, decompose X = X+ — X~ and define

(E[X] =) /X dpP := /X+ dP—/X‘ dPp.
(well-defined, if (1.3) satisfied.)
Definition 4.6. The set of all P-integrable random variables is defined by
L' =LY Q,A,P) = {X rv. | E[|X]] < oo}.
In the following let us introduce the following notion: A property E of points w € 2
holds P-almost surely (P-a.s.), if there exists a measurable null-set N, i.e. aset N € A

with P[N] = 0, such that every w € Q\ N has property E.
If

N:={Xrv.|X =0 P-as.}

then the quotient space

L' = £JI/N

is a Banach space w.r.t. the norm E[|X]|].

18



Remark 4.7. Special case: X random variable, X > 0, X (Q) countable. Then

“3.” and
above

E[X] = ]E[ Z z- 1{X:z}] 22 Z z - P[X =z (1.4)

2EX(Q) 2€X(Q)
Similarly for X not necessarily finite, but E[X] well-defined:
EX]= Y z-PX=z]— Y (-2)-P[X=a]
zeX(Q), TEX(Q),

20 z<0

If, in addition, Q is countable, and X > 0, then

X=> Xw)-14y, and
weR

EX]=) Xw) Ellg]=) Xw)-P{w}) =) pw)

w€eR weR w€eR
=:p(w)

Example 4.8. Infinitely many coin tosses with a fair coin Let = {0,1}. A and
P asin 3.6

(i) Expectation of the i'" coin toss X;((z5)nen) := z;

E[X ](14)1'P[Xi=1]+0‘P[Xi20]=%.

(i) Expectation of number of “successes”

Sp = X1+ -+ X, = number of “successes’ (= Ones) in n tosses

Then
P[S, = k] = > P[Xlle,...,Xn:;cn]:<Z>-2",k:O,l,...,n
(w1,...,$n)€{0,1}"
mit
i+ Frn=Fk
Hence

(14)Zk PlS, =K =3 k- () n=Z.
k=1

Easier: Once we have noticed that E[-] is linear (see next proposition):

19



(iii) Waiting time until first success Let

T(w) := min{n € N| X, (w) = 1}

= waiting time until first success.

Then
PIT=kK=PXi ==X 1=0, X =1] =27,
so that
E[T] (g)ik'P[TIk]Zik-T’“ = %ik (%)k_l -2
k=1 k=1 k=1

(Recall: dlq(ﬁ) = diq Y d* =Y kgt
Remark 4.9. X =Y P-as., ie. P[X =Y] =1, implies E[X] = E[Y].
Proposition 4.10. X — E[X] is a positive linear functional on L!, i.e.

(i) X 2 0 P-a.s. implies E[X] > 0.

(i) ]E[Z ¢ X] =Y ¢ -E[Xi].
i=1 i=1
((i) and (ii) imply monotonicity of E[-]: X <Y = E[X] <E[Y].)
Proof. See text books on measure theory. O

In addition X — E[X] is continuous w.r.t. monotone increasing sequences, i.e. the
following proposition holds:

Proposition 4.11 (monotone integration, B. Levi). Let X, random variables with
0<X1 <X2 < .... Then:

nh%rréO E[X,] = E[HILII;O Xn].

Proof. See text books on measure theory. O

Corollary 4.12. Let X,, > 0, n € N, be random variables. Then

]E[i Xn] - i E[X,].

Lemma 4.13 (Fatou’s lemma). Let X;, > 0, n € N, be random variables (or more
general X,, >Y € L'). Then

E [lirn inf Xn] < liminf E[X,,].

n—o0 n—oo
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Proof.
s . . Levi .. .
Bl o] = E| iy (jnf X0)] =" Jim Efjnt 0]

< lim inf E[Xg] = liminf E[X,].
n— 00

n—ooc k>2n

O

Proposition 4.14 (Lebesgue’s dominated convergence). Let X,,, n € N be ran-
dom variables and Y € L' with |X,| <Y P-a.s. Suppose that the pointwise limit

lim,_.o X, exists P-a.s., then
]E[ lim Xn] = lim E[X,].
TL—> 00 n—00
Proof.

Fat
E[Y — limsup X,,] = E[liminf (Y — X,)] < liminf E[Y — X,,]
n—s 00 n—oo n—oo

>0
>0

= E[Y] — limsup E[X,].
n—0o0
Next, liminf,,_,., X,, =limsup,, ,., X, =lim, . X, P-a.s. implies

Fatou
E[lim X,] =E[liminfX,] < liminf E[X,] < limsup E[X,]
n—00 n—oo

n—0oQ n—oo

< E[Iimsuan] = ]E[ lim Xn]

n—oco n—00

O

Example 4.15. Tossing a fair coin Consider the following simple game: A fair coin
is thrown and the player can invest an arbitrary amount of Euros on either “head” or
“tail". If the right side shows up, the player gets twice his investment back, otherwise

nothing.

Suppose now a player plays the following bold strategy: he doubles his investment
until his first success. Assuming the initial investment was 1 Euro, the investment in

the n** round is given by
Xn = 2nt. 1{T>n—1}7
where T' = waiting time until the first "'1"". Then

E[X,]=2""'-P[T>n-1]=1.
N———r

whereas on the other hand lim, ,,, X, = 0 P-a.s. (more precisely: for all w #

(0,0,0,...)).
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5 Inequalities
Let (2, A, P) be a probability space.

Proposition 5.1 (Jensens’ inequality). Let h be a convex function defined on some
interval I C R, X in L' with X(Q) C I. Then E(X) € I and
h(E[X]) < E[h(X)].

Proof. W.l.o.g. we may asssume that X not P-as. equal to a constant function.
Then z¢ := E[X] € I. Since h is convex, there exists an affine linear function £ with
£(xg) = h(zo) and £ < h (“support tangent line").

Consequently,

monotonicity

h(ELX]) = (E[X]) "EVE[(X)] < E[R(X)]. O
Example 5.2.
E[X]? < E[X2].
Moreover, for 0 < p < ¢:
E[1X7]7 <E[X|7]* .
=1 X|lp =1 X|lq

Proof. h(z) := |z|7 is convex. Since (|X|An)” € L' for n € N, we obtain that

(E[(x1An)"]))? <E[(X]1An)7],
which implies the assertion taking the limit n — oo. O
Definition 5.3. For 1 < p < o let

LP:={X | X rv. and E[|X[?] < oo}.
L? is called the set of p-integrable random variables.

Remark 5.4. (i) If 1 < p < q then L9 C LP.

22



(i) Let N = {X|X rv. and X =0 P-a.s.}, andp > 1. Then N C LP? is a linear
subspace and the quotient space

LP

LP .=
N
is a Banach space w.r.t. ||-||, (i.e. a complete normed vector space)

Proposition 5.5. Let X be a random variable, h > 0 monotone increasing. Then
h(c) PIX > ¢] < E[h(X)] Ve > 0.
Proof.
h(c) PIX > ¢] < h(c) P[h(X) > h(c)] = E[h(c) Lin(x)2h(e)}]
< E[R(X)]. O
Corollary 5.6. (i) Markov inequality h(x) = |z| (increasing on R, ). Then

P[IX| > < % E[|X]] Ve>o0.

In particular,
E[|X]]=0 = |X|=0 P-as.

E[|X|]] <oo = |X|<oo P-as.

(ii) Chebychev’s inequality h(z) = 2% and X € L? implies

P[|X ~E[X]| > c] < C% E[(X —E[X])2] (: Varc(QX)).

6 Variance and Covariance

Let (2, A, P) be a probability space.
E[X] = "average value"" of X (w), w € Q (forecast value)

Remark 6.1. Let P be the uniform distribution on Q = {wy,...,w,}, then
1 , .
E[X] = - ZX(wi) = arithmetic mean ofX (w1), ..., X (wy) -
i=1
Definition 6.2. Let X € L. Then
var(X) := 0?(X) := E[(X - ]E[X])2] (€ [0, 0))

is called the variance of X (mean square forecast error)
The variance is a measure for fluctuations of X around E[X], resp. a measure for
“dispersion” or for “risk”.

o(X) := y/var(X) is called standard deviation.
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Remark 6.3. (i)

var(X) = ]E[(X - ]E[X])2] =E[X2) — (B[X])".

(i) var(X) =0 <« P[X=E[X]] =1
ie. X behaves deterministically
(iii) var(X) <o & X €L’
Definition 6.4. Let X, Y € L2, Then
cov(X,Y) := ]E[(X —E[X])(Y - ]E[Y])] — E[XY] - E[X] - E[Y]

is called the covariance of X and Y.

cov(X,Y)
X)Y) = —"—""

is said to be the correlation of X and Y.

Remark 6.5 (properties of the covariance). (i) Let X € L. Then

var(aX 4 b) = a® - var(X).

(i) Let X,Y € L2. Then

var(X +Y) = var(X) + var(Y) + 2 cov(X,Y).

Definition 6.6. Two random variables X,Y € L2 are called uncorrelated, if

cov(X,Y)=0 (& var(X+Y)=var(X)+var(Y)).
Proposition 6.7 (Cauchy-Schwarz). Let X andY € L2. Then
X.-Yel' and |cov(X,Y)| <o(X)-a(Y)
(resp. o(X,Y) € [-1,1]).
Proof. Let X,Y € L2. Then X +Y € L2, hence
2- XY =(X+Y) -X?-Y? el
Proof of the inequality: W.l.o.g. let var(X) > 0 and var(Y) > 0

(otherwise X = E[X] P-ass. or Y = E[Y] P-a.s., so that
cov(X,Y) = 0 and die inequality is trivial)

24

(1.5)



Let a := Z((Q Then

o<el(x-m-o )
- ]E[(X - ]E[X])2] —2a- E[(X - E[X])(Y - E[Y])]
+a?-E[ (v - E[Y))’]

=0%(X) —2a-cov(X,Y) +a* - o?(Y)

o(X)

— 942 5.
=20%(X) —2- 755

-cov(X,Y). O

Example 6.8. Tossing a coin with probability p € [0, 1] for success
Q= {w=(21,22,...) | 2 € {0,1}} = {0, 1},
X;: Q- {0,1} mit X;((&n)nen) =i, €N,
A=c({{Xi=1}|ieN}).

Then there exists a unique probability measure P = P, on (2, A) with

n n
> s n— T;
=1

PX;, =21,.... X, =] =p= -(1-p)

existence for p = 1 in example 3.6, existence for general p # 1 later, uniqueness later).
2 2 q
Then P[X; =1] =pand P[X; =1, X; = 1] = p? for all i # j. Consequently,

EX]=p and var(X;)=E[X?] - E[X;’ = p—p* = p(1 - p)

and for i # j
COV(XZ',X]') = E[XZX]] —p2 =0

so that X, X5, ... are pairwise uncorrelated (in fact even independent, see below)
Let S, := X1 + --- + X, be the number of successes. Then

E[S,) =np and var(S,) =np(l —p).

If X := 2%, 27"X,, then

oo o o
_ Levi _ —
E[X] = ]E[ZQ "Xn] SN ER X =Y 2 =p
n=1 n=1 n=1

and using Levi and the fact that X, X5, ... are pairwise uncorrelated, we conclude that

-p(1—p).

Q| =

var(X) = 3272 . p(1 —p) =
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Finally, let T' be the waiting time until the first “success’. Then
BT =n]=PBp[X;=-=X,1=0, X, = 1]
=(1-p)"'p  (geometric distribution)

then

E[T] =E[Y n-ligem| =Y n BT =n]=Y n-(1-p"'p=",
n=1 n=1 n=1

and analogously

7 The (strong and the weak) law of large numbers
Let
¢ (Q,A,P) be a probability space
e X1, Xo,... € L? rv. with
— X uncorrelated, i.e. cov(X;,X;) =0fori#j
— bounded variances, i.e. sup;cy var(X;) < co.
——r

=0”(Xy)
::o’?
Let
Spi=X1+--+ X,

so that S"T(‘") is the arithmetic mean of the first n observations X;(w), ..., X,(w)

(“empirical mean”)
Our aim in this section is to show that randomness in the empirical mean vanishes
for increasing n, i.e.

Sn(w) n large E[Sh]

n n

resp.

S
n(W) n large m

if E[X;]=m.
n

Remark 7.1. W.l.o.g. we may assume that E[X;] = 0 for all i, because:

[ X,’ =X; — E[X,] “centered”

26



e cov(X;, X;) = cov(X;, X;) =0 fori # j
e var(X;) = var(Xj;).

Proposition 7.2.

2
lim E[(&_%) ] .
n—oo n n
Sh 2 )
(resp. nlgfgoE[(; - m) :| =0 if E[X;] =m)
Proof.
Sn E[Sa]\2] _ Sny _ 1
E[(?‘T) ] = () = (s
Bienaymé 1 " 9 1 n—oo
= FZU,~<E const. ——— 0. O

i=1

Remark 7.3. mere functional analytic fact: in the Hilbert space L? = L2/~ (with the
scalar product (X,Y) = E[X - Y] and norm ||-|| = (-, -)2), the arithmetic mean of
bounded, orthogonal vectors converges to zero:

Spl2 1
|22 = = - lsali? = = ZHX 2 2=

Chebychev's inequality immediately implies the following:

Proposition 7.4 ("Weak law of large numbers"). Let X;, X,... € L*(Q,A, P)
uncorrelated r.v. with bounded variances and E[X;] = m V i. Then for all ¢ > 0:

lim Pﬂﬁ—m‘ ;e] -0.
n

n—oo

'convergence in probability of 57" towards m "

Proof. Chebychev’s inequality implies

P[‘%—m‘)s] <l var(i)—)Oﬁn—)oo

&-2
O
Example 7.5. Bernoulli experiments with parameter p € [0,1] Let X;(w) = z; and
P,[X; = 1] = p, hence E,[X;] = p and var(X;) = p(1 —p) (< 1)
Then

PPU == —p‘ 26] 27 0; (L7)

~

rel. freq.

of lllll
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(J. Bernoulli: Ars Conjectandi)

Interpretation of the success probability p as relative frequency.
Problem: to infer p from (1.7) one uses a probabilistic statement w.r.t. a probability
measure P, that is defined with the help of p.

Example 7.6. Application: uniform approximation of f € (‘?([O, 1]) with Bernstein
polynomials
Let

) =Y 1(5) (1) -prt =30 1(5) Bis. =w
k k=0

0

()]

€ > 0: f uniformly continuous = 3§ = §(¢) > 0 such that

sup |f(z) - f(y)| <e.
z,y€[0,1],
|z—y|<o

Consequently,

1Ba6) = 1) = 5,1 (32) - 50| | < | 1£(22) - 0|
= Ep[ f(%) - f@)‘ ‘ 1{5:—p|<a}] “EP[ f(%) _f@)‘ ‘ 1{S:—p|>a}]
<5-Pp[ % —p‘ gé] +2||f||oopp[ %—p‘ >6] .
\Sﬁp(ltp)é45£n ’
Consequently,

limsup ||Bp — flleo <€ Ve >0, hence lim ||B, — f|leo =0.
n—oo

n—o0
From convergence in probability to a.s.-convergence:

Lemma 7.7. Let Zy,Z5,... ber.v. on (2, A, P). If for alle >0

o0

> Pl|Znl 2 €] < o0

n=1

(= "fast convergence in probability towards 0”), then
P({w | ILm Zn(w) =0}) =1.

(= “almost sure convergence towards 0").
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Proof. The lemma of Borel-Cantelli (Lemma 1.11) implies that for all € > 0
P(limsup{|Zn| > E}) =0.
n—oo
It follows that for all k£ € N there exists N, € A with P [Ng] = 0 such that

1
limsup|Z,(w)| <+ Vwe€Q\ Ny,

n— oo

Hence for all w ¢ N :=J,2; Ni (note that P[N] = 0!)
lim |Zn(w)| =0.

n—0o0

O

Proposition 7.8 ("Strong law of large numbers"). Let X, X5,... € L?(Q, A, P)

be uncorrelated with sup;cy 0?(X;) = ¢ < oo. Then:

f Sn(@) _ E[Sh]

n—00 n n

=0 P-as.

Sn(w)

(resp., if E[X;] = m: limp 00 =m P-as.).
Proof. Again w.l.o.g. we may assume that E[X;] = 0.

1. Step Fast convergence in probability towards 0 along the subsequence n;, = k?

Foralle >0
S Chebychev ] LS
k2 ebychev _ c
P|:‘ L2 > :| < WV&I‘(S}#) = W Zvar(X,-) S 2212
=1

Consequently, Lemma 7.7 implies that

T CO R S ¢ Ny with P[N;] =0.
k—o0 k2
2. Step Let Dy = maxXpegic(k41)2|St — Sk2|. We will show in the following fast
convergence in probability of % towards 0:
Foralle > 0:
D k2 +2k
k
P[p >E:| :P( U {|Sl _Sk2| >Ek2})
I=k?
k2 +2k+1
. 2k+1)(2k+1)-¢
< Y PUIS - Sel > k) < BEFDEE
l:k2+1 Chebychev -
% 521k4 (l*kg) ¢
<2k+1
9c
T 2k2
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Lemma 7.7 now implies that

. Dp(w)
klggo k2

=0 Yw ¢ Ny with P[NQ] =0.

3. Step Forn € Nand k = k(n) € N with k2 < n < (k + 1)? we obtain that

Su@)| _ [Se@)] + Dr(®) s
n = k2 ’

0 VYw¢NUN, O

Example 7.9. Bernoulli experiments with p € [0, 1]

%ZXi(w) — p Ppy-as. (E. Borel 1909)

i=1

Consider the experiment of tossing a fair coin (p = 3), ¥; :=2X; —1

1
2
= position of a particle undergoing a "random walk" on Z

Increasing refinement of the random walk yields the Brownian motion:

The strong law of large numbers implies that S"T(‘") — 0 P-as.
In particular, fluctuations are growing smaller than linear.

A precise description of the order of fluctuations is provided by the law of the iterated
logarithm:

. Sn(w)

| —_— =41 P —a.s.
17rln_>s;1)p v2nloglogn + @8
lim inf Sn(w) -1 P —a.s.

n—oo y/2nloglogn -
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8 Convergence and uniform integrability

Definition 8.1. Let X, X;, X5,... be rv. on (2,4, P).
(i) LP-convergence (p > 1)

lim E[|X, - X[’] =0

n—oe
(alternative notation lim,_, || X, — X||, = 0)
(i) Convergence in probability

Ve>0: 1i_>m P X,-X|>¢]=0.

(iii) P-a.s. convergence

P[lim X,=X]|=1.

n— 00

Proposition 8.2 (Comparison of the three types of convergence).

(i) (ii)

if sup| X, | € LP
nEN
(resp. | X |? unif. int.)
along some
subsequence

(iii)

Proof. (i)=(ii): Chebychev’s inequality implies:

_x|p
P[|Xn—X|26]<M

ep
(i) = (ii):
{lm X, =X}=( J [ {|Xn—X|<%}.

k=1 m=1n>2m

[\ /

=: Ay

Then Plimp—00 Xn = X| = 1 implies P(A) =1 for all k € N. Continuity of
P from above (cf. Proposition 1.9) implies that

1= Pl4,] 2’;@@!?( N {in-x1< %})

n>m

1
< limsupP[|Xm —X| < E] <1

m—o0
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Consequently,

1
lim P[|Xm - X|> E] =0.

m—0o0

(ii)=(i): Y :=sup,en|Xn| € LP, limy, 00 Xp = X P-a.s. implies | X| <Y
In particular, | X, — X|P < 2PYP € L1,
lim,, 00| Xpn — X|P = 0 P-a.s. now implies with Lebesgue’s dominated conver-
gence

lim E[|X, — X|"] = 0.
n—oo

(ii)=(iii): VI € N we can find by iteration a subsequence 3(ny (1)), of (nx(l - 1)),
such that

0 1 1 1
ZP[P%U) - X[ > j] < (5)
k=1

Here, we let n4(0) = k. Extracting the diagonal sequence ((ny(k)), we conclude

that forall l e N

iP|X —X|>l <i1k<oo

k=1 k=1

k

Lemma 7.7 now implies

lerr;oXnk(k) =X P-as. O

Remark 8.3. The diagram can be complemented as follows:

o (ii)= (i) holds, if sup,, x| Xn| € LP (resp. |X,|P uniformly integrable)(see Propo-
sition 8.4 and Remark 8.8 below)

e in general (i)# (iii) and (iii)# (i) (hence (ii)# (i) too). For examples: see Exer-
cises.

The next Proposition is the definitive version of Lebesgue’s theorem on dominated
convergence.

Proposition 8.4. Let X, € L' and X be r.v. Then the following statements are
equivalent:

. . — - 1
(i) nh_)ngoXn—X in L*.
(i) lim X, = X in probability and (X, )nen uniformly integrable.
n— oo
Corollary 8.5. lim,, ., X,, = X P-a.s. and (X,,)nen uniformly integrable implies

lim E[X,] = E[X].

n—oe
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Definition 8.6. A family (X;);c; C L' of r.v. is called uniformly integrable if

lim sup/ | X;| dP =0.
o0 el J{|Xi|zc}

=:E[1gx;)3c3[Xil]

Lemma 8.7 (e-0 criterion). Let (X;);c; C L'. Then the following statements are
equivalent:

(i) (Xi)ier is uniformly integrable.

(if) sup;er E[|X;|] < 0o and Ve >0 38 > 0 such that

PA<s§ = /|X,~|dP<s Viel.
A

Proof. (i)=>(ii): Jc such that sup;cy f{|X,-|>c}|Xi| dP < 1 Consequently,
sup/|x,-| dp = sup{/ IXi| dP+/ IXi| dP}
iel iel LJ{xi|<c} {I1X:i|zc}

<c+1<o0.
Let £ > 0. Then there exists ¢ > 0 such that

sup/ | X;| dP < =
iel Jyxi|zc} 2

For § := 5= and A € A mit P[A] < J we now conclude

/|X,~|dP:/ |X,~|dP+/ IX;| dP
A AN{| X;|<c} AN{|X:i|>c}

gc/ dP+/ |Xi| dP < ¢ P[A] + £ <.
A {1Xi1>c} 2

(ii)=(i): Let e > 0 and § be as in (ii). Let c be so large such that Markov's inequality

implies
1
—-suwpE[|X;]] <6 = P[Xi|>c] <= -E[|Xi]] <4.
C eI c
It follows in particular that
/ | X;|dP <e Viel = sup/ | X;| dP <e. O
{IXi[Ze} i€l J{|X;[>c}
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Remark 8.8. (i) Existence of dominating integrable r.v. implies uniform integrability:
|X;|<Yell'Viel

Lebesgue ¢ oo
_—

= / |X;| dP < / Y dP =E[l{ys - Y] 0,
{1X:|>c} {v>c}

since Liysey - Y <="% 0 P-a.s. (Markov's inequality)
In particular, I finite = (X;)ic; C L' uniformly integrable.

(i) Let (X;)icr. (Yi)icr be uniformly integrable, o, 3 € R
= (aX;+ BY:);cr  uniformly integrable
(see Exercises)
Proof of Proposition 8.4. (i)=(ii): see Exercises. (Hint: Use Lemma 8.7).
(ii)=(i): a) X € L, because there exists a subsequence (ny,) such that limy_, oo X,,, =

X P-a.s., so that

. Fatou
E[|IX]] = Efliminf| Xy, [} < liminf E[|Xp, |] < sup E[|Xy[] < co.

b) W.lo.g. X = 0 (because (X,)nen uniformly integrable implies (X,, —
X)nen uniformly integrable too by Remark 8.8)

Let € > 0. Then there exists § > 0 such that for all A € A with P(4) < §
it follows that [,|X,|dP < §.

Since X,, — 0 in probability, there exists ng € N, such that P[|Xn| > %] <
6 Vn > ng. Hence, for n > ng

E[|X,] =/ X, dP+/ X, dP < &,
{1%a1<5} (1%.25)

[\ / [\ /
~" ~"

<% <%

and thus lim,_, ., E[| X,[] = 0. O

Corollary 8.9. lim, .., X,, = X in probability and (|Xn|p)n oy uniformly integrable,
p>0

= lim X,, =X inkP.

n—oo
Proof. lim,, .| X, — X [P — 0 in probability and since

| X0 — X[P <2 (|Xnf? + |XP),
(|IXn — X|P)nen is uniformly integrable too. Proposition 8.4 implies

lim E[|X, — X|?] = 0. m

n—oe

34



Proposition 8.10. Let g : [0,00[ — [0, 00[ be measurable with lim,_, 92) _ .

Then ’

supE [g(]X;i])] < o0 = (Xi)icr uniformly integrable
icl

Proof. Let & > 0. Choose ¢ > 0, such that 22 > Lsup. . E[g(|X;)] + 1 forz >c.
Then

| X
| Xi| dP = 9(1Xil) - dp
/{anc} {1Xi[2c} g(1%l)

g

< : g(|X;))dP<e VieIO
sg;E[g(lle)]H / (1%:1)

J

Example 8.11. (i) p > 1, sup; E[| X;|P] < o0 = (X;)icr uniformly integrable

(ii) ("finite entropy condition")
sup]E[|Xi| -10g+(|Xi|)] < o0 = (Xi)ier uniformly integrable (1.8)
icl

Example 8.12. Application to the strong law of large numbers Let X7, X5,... be
rv. in L1(Q, A, P) with E[X;] = m for all i € N. Suppose that

Sn 1 " n—o0
— = X, ——— P —a.s. 1.9
o ”igl f m a.s (1.9)

Problem: Under what conditions do we have L!-convergence?

We have seen in Proposition 7.8 that (1.9) holds if sup;cy E[X?] < o0 and (X;)en
uncorrelated (“L2-case”). We will see below that (1.9) always holds if X; € L! are
pairwise independent, identically distributed.

Solution:

sup]E[|X,-| -log+(|Xi|)] < oo implies lim 5t o in gl
ieN

n—oo N
In particular, in the situation of Proposition 7.8 it follows that lim,, ST" =m in

L
Proof: g(x) := z -log™ (x) ist monotone increasing and convex. Consequently,

|Snl monotonicity 1 convexity 1
E Q(T) < E g(ﬁ ;|Xz|> < E[E zz;g(|Xz|)] < const. Vn .

Consequently, (=) is uniformly integrable and thus

neN

. n .
lim =2 =m in L',
n—oo M
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One complementary remark concerning Lebesgue's dominated convergence theorem.

Proposition 8.13. Let X,, >0, lim X, = X P-fs. (or in probability). Then
n—oo
lim X, =X ink!
n—oQ

& li_>m E[X,] = E[X] and E[X]< oco.

Proof. "‘="": Obvious.

n ‘<:" ':
X+X,= XVX, + XAX,
—— —
=sup{X,X,} =inf{X,X,}
Then
lim E[X A X,] =5 E[X]

n— o0

and thus

lim E[X VX, =E[X].

n—0o0
Now | X, — X| = (X V X,,) — (X A X,,) implies

lim E[|X, — X|] = E[X] - E[X] = 0. O

n—o0
LP-completeness

Proposition 8.14 (Riesz-Fischer). Let 1 < p < 00 and X,, € LP with

lim /|Xn — Xp|P dP =0.

n,m—co
Then there exists a r.v. X € LP such that

(i) lim X,, =X P-as. along some subsequence,
k—o0

(i) lim X,=X inkP.
n—oo

Proof. See text books on measure theory. O
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