TU Darmstadt Fachbereich Mathematik Wilhelm Stannat

WS 2007/08 23.01.08

Probability Theory 14. Aufgabenblatt

Gruppenübungen

Aufgabe G40:

The conditional variance is defined as

$$Var[X|Y] := E[(X - E[X|Y])^2|Y],$$

Prove (and interpret) the following formula for the total variance,

Var[X] = E[Var[X|Y] + Var[E[X|Y]].

Aufgabe G41:

Let Y_1, \ldots, Y_{n+1} be random variables. Prove that for every $X \in \mathcal{L}^2$

$$E\left[(E[X|Y_1,\ldots,Y_{n+1}]-X)^2\right] \le E\left[(E[X|Y_1,\ldots,Y_n]-X)^2\right],$$

and interpret this in terms of prediction.

Aufgabe G42:

Consider a prediction problem in which the set of allowable predictors is $V = \{aY + b : a, b \in \mathbb{R}\}$, where $Y \in \mathcal{L}^2$ and $\sigma^2 = Var[Y] > 0$.

- (a) Show that $Z_1 = (Y E[Y])/\sigma$ and $Z_2 \equiv 1$ constitute an orthonormal basis of V.
- (b) Show that for $X \in \mathcal{L}^2$

$$\widehat{X} = \frac{Cov(X,Y)}{\sigma^2}(Y - E[Y]) + E[X]$$

is the orthogonal projection in \mathcal{L}^2 of X onto V.

Aufgabe G43:

Let Ω be a set and \mathcal{A} its σ -algebra. Let μ and ν be measures on \mathcal{A} with $\nu \leq \mu$ and μ σ -finite (i.e. there exist $A_n \in \mathcal{A}$ with $\mu(A_n) < \infty$ and $\bigcup_{n=1}^{\infty} A_n = \Omega$). Prove the existence of an \mathcal{A} -measurable function f with values $0 \leq f \leq 1$ and $\nu = f\mu$.

Hausübungen

Aufgabe H39**:

A random vector $X = (X_1, \ldots, X_n)$ has a multivariate normal distribution with mean vector m and covariance matrix $Q = CC^T$, if X = CY + m, where $Y = (Y_1, \ldots, Y_n)$ and Y_1, \ldots, Y_n are N(0, 1)-distributed.

- (i) Suppose that (X_1, X_2) has a multivariate normal distribution. Show that the following are equivalent:
 - (a) X, Y are independent.
 - (b) X, Y are uncorrelated.
- (ii) Suppose that (X_1, X_2) has a multivariate normal distribution. Show that the orthogonal projection \hat{X}_1 of X_1 onto the subspace $V = \{aX_2 + b : a, b \in \mathbb{R}\}$ satisfies the definition of $E[X_1|X_2]$. In this case, prediction and linear prediction are synonymous.

Aufgabe H40***:

Let X, W be two independent multivariate normal-distributed random variables with mean vectors m_X , $m_W = 0$ and covariance matrices Q_X , Q_W . Furthermore let Y = BX + W. Show that

$$E[X|Y] = Q_X B^T (BQ_X B^T + Q_W)^{-1} (Y - Bm_X) + m_X.$$

Hint: Show that (X, W) has a multivariate normal distribution, hence (X, Y) has a multivariate normal distribution, too. Now, use the multivariate analogue of H39, (ii).