TU Darmstadt
Fachbereich Mathematik
Wilhelm Stannat

Probability Theory

14. Aufgabenblatt

Gruppenübungen

Aufgabe G40:

The conditional variance is defined as

$$
\operatorname{Var}[X \mid Y]:=E\left[(X-E[X \mid Y])^{2} \mid Y\right] .
$$

Prove (and interpret) the following formula for the total variance,

$$
\operatorname{Var}[X]=E[\operatorname{Var}[X \mid Y]+\operatorname{Var}[E[X \mid Y]] .
$$

Aufgabe G41:

Let Y_{1}, \ldots, Y_{n+1} be random variables. Prove that for every $X \in \mathcal{L}^{2}$

$$
E\left[\left(E\left[X \mid Y_{1}, \ldots, Y_{n+1}\right]-X\right)^{2}\right] \leq E\left[\left(E\left[X \mid Y_{1}, \ldots, Y_{n}\right]-X\right)^{2}\right]
$$

and interpret this in terms of prediction.

Aufgabe G42:

Consider a prediction problem in which the set of allowable predictors is $V=$ $\{a Y+b: a, b \in \mathbb{R}\}$, where $Y \in \mathcal{L}^{2}$ and $\sigma^{2}=\operatorname{Var}[Y]>0$.
(a) Show that $Z_{1}=(Y-E[Y]) / \sigma$ and $Z_{2} \equiv 1$ constitute an orthonormal basis of V.
(b) Show that for $X \in \mathcal{L}^{2}$

$$
\widehat{X}=\frac{\operatorname{Cov}(X, Y)}{\sigma^{2}}(Y-E[Y])+E[X]
$$

is the orthogonal projection in \mathcal{L}^{2} of X onto V.

Aufgabe G43:

Let Ω be a set and \mathcal{A} its σ-algebra. Let μ and ν be measures on \mathcal{A} with $\nu \leq \mu$ and $\mu \sigma$-finite (i.e. there exist $A_{n} \in \mathcal{A}$ with $\mu\left(A_{n}\right)<\infty$ and $\cup_{n=1}^{\infty} A_{n}=\Omega$). Prove the existence of an \mathcal{A}-measurable function f with values $0 \leq f \leq 1$ and $\nu=f \mu$.

Hausübungen

Aufgabe H39**:

A random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ has a multivariate normal distribution with mean vector m and covariance matrix $Q=C C^{T}$, if $X=C Y+m$, where $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ and Y_{1}, \ldots, Y_{n} are $N(0,1)$-distributed.
(i) Suppose that $\left(X_{1}, X_{2}\right)$ has a multivariate normal distribution. Show that the following are equivalent:
(a) X, Y are independent.
(b) X, Y are uncorrelated.
(ii) Suppose that $\left(X_{1}, X_{2}\right)$ has a multivariate normal distribution. Show that the orthogonal projection \widehat{X}_{1} of X_{1} onto the subspace $V=\left\{a X_{2}+b\right.$: $a, b \in \mathbb{R}\}$ satisfies the definition of $E\left[X_{1} \mid X_{2}\right]$. In this case, prediction and linear prediction are synonymous.

Aufgabe H40***:

Let X, W be two independent multivariate normal-distributed random variables with mean vectors $m_{X}, m_{W}=0$ and covariance matrices Q_{X}, Q_{W}. Furthermore let $Y=B X+W$. Show that

$$
E[X \mid Y]=Q_{X} B^{T}\left(B Q_{X} B^{T}+Q_{W}\right)^{-1}\left(Y-B m_{X}\right)+m_{X}
$$

Hint: Show that (X, W) has a multivariate normal distribution, hence (X, Y) has a multivariate normal distribution, too. Now, use the multivariate analogue of H39, (ii).

