TU Darmstadt Fachbereich Mathematik Wilhelm Stannat

WS 2007/08 21.11.07

Probability Theory 7. Aufgabenblatt

Gruppenübungen

The following model of a random walk on \mathbb{Z} will be considered in G21, H19 and H21:

Let $\Omega = \{\omega = (x_1, \ldots, x_N | x_i \in \{-1, 1\}\}$ and let P be the uniform distribution on Ω and $X_i(\omega) = x_i$. Consider the random walk

 $S_n = X_1 + \ldots + X_n$ $(n = 0, 1, \ldots, N)$

of a particle on \mathbb{Z} with starting point 0. For $0 < a \in \mathbb{N}$ let

 $T_a = \min\{n > 0 \mid S_n = a\}$

be the first time that the particle hits level a.

Aufgabe G21 (Reflection principle):

Prove that

$$P[S_n = a - c, T_a \le n] = P[S_n = a + c]$$

for every $c \in \mathbb{N}$.

Aufgabe G22 (Arcsin-law):

Let S_n (n = 1, 2..., 2N) be the random walk from above,

$$T_0(\omega) = \min\{n > 0 \,|\, S_n(\omega) = 0\}$$

be the first time that the particle returns to 0 and

$$L(\omega) = \max\{0 \le n \ne 2N \mid S_n(\omega) = 0\}$$

be the last time, the particle visits 0. For the distribution of L we then have that

$$P[L=2n] = P[S_{2n}=0] \cdot P[S_{2N-2n}=0] = 2^{-2N} \binom{2n}{n} \binom{2N-2n}{N-n}$$

(see H20).

Show that this implies that the distribution μ_N of $\frac{L}{2N}$ for $N \uparrow \infty$ converges weakly to the distribution with density

$$f(x) = \frac{1}{\pi\sqrt{x(1-x)}} \quad (0 < x < 1)$$

and distribution function

$$F(x) = \frac{2}{\pi} \arcsin \sqrt{x}.$$

Hausübungen

Aufgabe H19:

Prove the following two identities for the distribution of T_a :

$$P[T_a \le n] = P[S_n \notin [-a, a-1]],$$

$$P[T_a = n] = \frac{1}{2}(P[S_{n-1} = a-1] - P[S_{n-1} = a+1]) = \frac{a}{n}P[S_n = a]$$

Aufgabe H20:

With the notation of G22 show that

$$P[T_0 > 2n] = P[S_{2n} = 0]$$

and

$$P[L=2n] = P[S_{2n}=0] \cdot P[S_{2N-2n}=0] = 2^{-2N} \binom{2n}{n} \binom{2N-2n}{N-n}$$

 $("discrete\ arcsin-distribution").$

Aufgabe H21:

Given the random walk $S_n, n \in \mathbb{N}$, on \mathbb{Z} . Prove that

$$\limsup_{n \uparrow \infty} S_n = +\infty, \quad \liminf_{n \uparrow \infty} S_n = -\infty \quad \text{P-a.s.}$$