Probability Theory 5. Aufgabenblatt

Gruppenübungen

Aufgabe G15:

Let $(X_i)_{i\in I}$ and $(Y_i)_{i\in I}$ be random variables on a probability space (Ω, \mathcal{A}, P) which are uniformly integrable and $\alpha, \beta \in \mathbb{R}$. Show that $(\alpha X_i + \beta Y_i)_{i\in I}$ is uniformly integrable, too.

Aufgabe G16:

Consider a probability measure P on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and define the cumulative distribution function (cdf) $F: \mathbb{R} \to [0,1]$ by $F(x) = P(]-\infty, x[)$. Show that in this exercise only(!)

- (i) F is non-decreasing,
- (ii) F is left continuous,
- (iii) $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$,
- (iv) for all $x \in \mathbb{R}$, $\lim_{y \downarrow x} F(y) \lim_{y \uparrow x} F(y) = P(\lbrace x \rbrace) = 0$.

Aufgabe G17:

- (a) Recall that if $X_n \to X$ in probability then $P_{X_n} \to P_X$ weakly. Show that if X is P-a.s. constant, then the converse is also true.
- (b) Give an example for which $\lim_{n\to\infty} P_{X_n} = P_X$ weakly, but $(X_n)_n$ is not converging in probability.

Hausübungen

Aufgabe H13:

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables on (Ω, \mathcal{A}, P) with $X_n \to X$ in \mathcal{L}^1 . Show that $(X_n)_{n\in\mathbb{N}}$ is uniformly integrable.

Aufgabe H14:

Let $\Omega =]0,1]$ and $P = \lambda|_{\mathcal{A}}$ be the Lebesgue measure on $\mathcal{A} = \mathcal{B}(]0,1]$). Define

$$A_{2^i+k} :=]\frac{k}{2^i}, \frac{k+1}{2^i}], \quad 0 \le k < 2^i, \quad i \in \mathbb{N}_0,$$

$$Y_n := 1_{A_n}, \quad \widetilde{Y}_n := n^{\frac{1}{p}} \cdot 1_{[0,\frac{1}{n}[}, \quad n \in \mathbb{N}.$$

Prove that:

- (i) $Y_n \to 0$ in \mathcal{L}^p for p > 0 ($\Rightarrow Y_n \to 0$ in probability).
- (ii) $Y_n \not\to 0$ P-a.s.
- (iii) $\widetilde{Y}_n \to 0$ P-a.s. ($\Rightarrow \widetilde{Y}_n \to 0$ in probability).
- (iv) $\widetilde{Y}_n \not\to 0$ in \mathcal{L}^p for p > 0.

Aufgabe H15:

Let μ_n, μ be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and assume that the sequence (μ_n) converges vaguely to μ , i.e., $\lim_{n\to\infty} \int f d\mu_n = \int f d\mu$ for all continuous real functions f on \mathbb{R} with compact support. Show that (μ_n) converges to μ weakly.