TU Darmstadt Fachbereich Mathematik Wilhelm Stannat

WS 2007/08 17.10.07

Probability Theory 2. Aufgabenblatt

Gruppenübungen

Aufgabe G5:

Let \mathcal{A}_i be σ -algebras of subsets of Ω_i , i = 1, 2, and $T : \Omega_1 \to \Omega_2$ be a mapping. Prove:

- (i) $\{T^{-1}(B) \mid B \in \mathcal{A}_2\}$ is the smallest σ -algebra \mathcal{A} of subsets of Ω_1 for which T is $\mathcal{A}/\mathcal{A}_2$ -measurable.
- (ii) $\{B \subset \Omega_2 \mid T^{-1}(B) \in \mathcal{A}_1\}$ is the largest σ -algebra \mathcal{A}' of subsets of Ω_2 for which T is $\mathcal{A}_1/\mathcal{A}'$ -measurable.

Aufgabe G6:

Show that every continuous mapping $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ is $\mathcal{B}(\mathbb{R}^d)/\mathcal{B}(\mathbb{R}^{d'})$ -measurable.

Aufgabe G7 (Factorization lemma):

Let (Ω, \mathcal{A}) and (Ω', \mathcal{A}') be measurable spaces, $T : \Omega \to \Omega'$ be a \mathcal{A}/\mathcal{A}' -measurable mapping and $\sigma(T)$ the σ -algebra of subsets of Ω generated by T. Show that every $\sigma(T)$ -measurable random variable $X : \Omega \to \mathbb{R}$ can be written as

$$X = f(T)$$

with $f: \Omega' \to \mathbb{R}$ measurable.

Hausübungen

Aufgabe H5:

Consider the model for infinitely many fair coin tosses from example 3.6. For $n \in \mathbb{N}$ let

$$\ell_n((x_n)_{n\in\mathbb{N}}) := \max\{k \ge 1 | x_n = \ldots = x_{n+k-1} = 1\}$$

be the number of consecutive ones starting from the n-th coin toss ("run"). Let $\max \emptyset =: 0$. For a given sequence $r_1, r_2, \ldots \in \mathbb{N}_0$ consider the events $E_n = \{\ell_n \ge r_n\}$.

(i) Show with the lemma of Borel-Cantelli that

$$P[\ell_n \ge r_n \text{ infinitely often }] = 0$$

if $\sum_{n=1}^{\infty} 2^{-r_n} < \infty$.

(ii) For the particular sequence $r_n = (1 + \epsilon) \log_2 n$, $\epsilon > 0$, (i) implies that $P[\ell_n \ge (1 + \epsilon) \log_2 n \text{ infinitely often }] = 0$. With this show that

$$P[\limsup_{n \to \infty} \frac{\ell_n}{\log_2 n} > 1] = 0.$$

Aufgabe H6:

Let P be the Lebesgue-measure on [0,1]. For $a \in [0,1]$ let $T_a : [0,1] \to \mathbb{R}$ be defined by

$$T_a(x) = \begin{cases} a+x & \text{if } a+x \leq 1, \\ a+x-1 & \text{if } a+x > 1. \end{cases}$$

- (a) Show that T_a is a measurable bijection of [0,1] and $T_a(P) = P$.
- (b) $a, b \in [0, 1]$ should be called equivalent if a b is a rational number. Show that this is indeed an equivalence relation.
- (c) Let M be a subset of [0, 1] which contains exactly one element from every equivalence class. Show that the sets $T_a(M), a \in [0, 1] \cap \mathbb{Q}$, form a partition of [0,1].
- (d) Show that M is not a Borel subset of [0,1].