TU Darmstadt Fachbereich Mathematik Wilhelm Stannat

WS 2007/08 10.10.07

Probability Theory 1. Aufgabenblatt

Gruppenübungen

Aufgabe G1:

Let \mathcal{A} be a collection of subsets of Ω . Prove that \mathcal{A} is an algebra if and only if $\Omega \in \mathcal{A}$, $A^c \in \mathcal{A}$ if $A \in \mathcal{A}$, and $A \cup B \in \mathcal{A}$ if $A, B \in \mathcal{A}$.

Aufgabe G2:

Which of the following algebras of subsets of Ω is a σ -algebra?

- (a) $A_1 = \{A \subset \Omega \mid A \text{ or } A^c \text{ is finite}\}$
- (b) $A_2 = \{A \subset \Omega \mid A \text{ or } A^c \text{ is countable}\}$

Aufgabe G3:

Let A_i be σ -algebras of subsets of Ω_i , i = 1, 2, and $T : \Omega_1 \to \Omega_2$ be a mapping. Prove that $\{T^{-1}(B)|B \in A_2\}$ and $\{B \subset \Omega_2|T^{-1}(B) \in A_1\}$ are σ -algebras.

Aufgabe G4:

Let Ω be an infinite set.

(i) Let A_1 be the algebra defined in G2 (a) and let Ω be countable. Show that the set function

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ finite} \\ +\infty & \text{if } A^c \text{ finite} \end{cases}$$

is finitely additive, but not σ -additive.

(ii) Let \mathcal{A}_2 be the algebra defined in G2 (b) and let Ω be uncountable. Prove that the set function

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ countable} \\ 1 & \text{if } A^c \text{ countable} \end{cases}$$

is a measure.

Hausübungen

Aufgabe H1:

Let \mathcal{A} be the Borel σ -algebra on the closed interval [0,1]. Prove that

$$A = \sigma(\{[a, b] : 0 \le a < b \le 1\}).$$

Aufgabe H2:

Let \mathcal{A} be a σ -algebra of subsets of Ω , $P: \mathcal{A} \to \mathbb{R}_+$ with $P(\Omega) = 1$. Prove that the following statements are equivalent:

- (a) P is a probability measure.
- (b) P is finitely additive and $\bigcap_{n\in\mathbb{N}}A_n\neq\emptyset$ for any sequence (A_n) of subsets of \mathcal{A} with $A_n\supset A_{n+1}$ for all $n\in\mathbb{N}$ and $\inf_{n\in\mathbb{N}}P(A_n)>0$.

Aufgabe H3:

Let \mathcal{P} be the set of all probability measures on a countable set Ω .

- (i) Show that \mathcal{P} is convex.
- (ii) Characterize the extremal points of \mathcal{P} .
- (iii) Prove that every $P \in \mathcal{P}$ can be written as a convex combination

$$P = \sum_{i} \alpha_{i} P_{i} , \qquad \alpha_{i} \ge 0 , \sum_{i} \alpha_{i} = 1$$

with P_i extremal.

Aufgabe H4:

Recall that the hypergeometric distribution with parameters $N, K, n \in \mathbb{N}$, $K, n \leq N$, is given by

$$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, \qquad k = 0, \dots, n.$$

Prove that for $N \to \infty$ and $K \to \infty$ with $p = \frac{K}{N}$ constant, the hypergeometric distribution converges towards the binomial distribution with parameter n, p.