Fachbereich Mathematik

Prof. Dr. J.H. Bruinier Martin Fuchssteiner Kay Schwieger

WS 2007/2008 25./26.10.07

Lineare Algebra I

2. Übung

Gruppenübungen

(G1)

Entscheiden Sie, ob die folgenden Mengen Untervektorräume des \mathbb{R}^2 bzw. \mathbb{R}^3 sind. Skizzieren Sie U_1, U_2 und U_3 .

- (a) $U_1 = \{ u \in \mathbb{R}^2 \mid u_1 + u_2 = 0 \}$
- (b) $U_2 = \{ u \in \mathbb{R}^2 \mid u = \binom{2}{1} + 2 \cdot \binom{\cos t}{\sin t}, 0 \le t \le 2\pi \}$
- (c) $U_3 = \{ u \in \mathbb{R}^2 \mid u = r \cdot (\frac{2}{3}) \text{ oder } u = s \cdot (\frac{3}{-2}), r, s \in \mathbb{R} \}$
- (d) $U_4 = \{ u \in \mathbb{R}^3 \mid 3u_3 = 2(u_1 u_2) + 5 \}$

(G 2)

(a) Löse folgendes Gleichungssystem:

- (b) Skizziere die Lösungsmenge. Welches geometrische Objekt wird druch die Menge gebildet?
- (c) Löse das folgende Gleichungssystem:

Welches geometrisch Objekt wird durch die Lösungsmenge beschrieben? Vergleiche dies mit der Lösungsmenge aus (a).

(G 3)

Wir betrachten die folgenden Teilmenge des \mathbb{R}^3 :

$$E_1 := \left\{ x \in \mathbb{R}^3 \mid x_1 + x_2 = 0 \right\},$$

$$E_2 := \left\{ \lambda \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \mid \lambda, \mu \in \mathbb{R} \right\}.$$

- (a) Zeige, dass E_1 und E_2 lineare Teilräume des \mathbb{R}^3 sind.
- (b) Skizziere E_1 und E_2 und mache dir so klar, dass E_1 und E_2 Ebenen im \mathbb{R}^3 sind.
- (c) Schneiden sich die Ebenen? Bestimme ggf. die Schnittmenge $E_1 \cap E_2$. Welches geometrische Objekt wird durch $E_1 \cap E_2$ gebildet?

Hausübungen

(A 1) (10 Punkte)

Sei $\alpha \in \mathbb{R}$. Wir betrachten folgende Teilmengen des \mathbb{R}^3 :

$$A := \left\{ \lambda \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\},$$

$$B_{\alpha} := \left\{ \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \mid \lambda, \mu \in \mathbb{R} \right\}.$$

- (a) Zeige, dass A und B_{α} für jedes α ein Untervektorraum des \mathbb{R}^3 ist.
- (b) Welche geometrischen Objekte werden durch A bzw. B_{α} beschrieben?
- (c) Für welche $\alpha \in \mathbb{R}$ gilt $A \subseteq B_{\alpha}$?

(A 2) (10 Punkte)

(a) Sei $\alpha \in \mathbb{R}$ fest. Löse das lineare folgende Gleichungssystem:

Wir bezeichnen mit $V_{\alpha}\subseteq\mathbb{R}^3$ die Lösunsmenge. Welches geometrische Objekt wird durch V_{α} gebildet?

- (b) Berechne die Schnittmenge von V_{α} mit der x-y-Ebene $E := \{x \in \mathbb{R}^3 \mid x_3 = 0\}.$
- (c) Zeige, dass die Menge der Schnittpunkte

$$V := \bigcup_{\alpha \in \mathbb{R}} V_{\alpha} \cap E := \{ x \in \mathbb{R}^3 \mid \exists \alpha \in \mathbb{R} : \quad x \in V_{\alpha} \cap E \}$$

ein linearer Teilraum ist.

(A 3) (10 Punkte)

Wir betrachten die drei Punkte $p_1 = (0, 1, 1)$, $p_2 = (1, 2, 1)$ und $p_3 = (1, 0, 2)$ im \mathbb{R}^3 und bezeichnen mit $E \subseteq \mathbb{R}^3$ die Ebene, welche die Punkte p_1, p_2 und p_3 enthält.

- (a) Ist die Ebene E ein linearer Teilraum?
- (b) Wir betrachten die folgende Gerade im \mathbb{R}^3 :

$$g = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0\\2\\-1 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\}.$$

Bestimme die Schnittmenge der Geraden g mit der Ebene E.