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3 Weak Law of Large Numbers

As previously: 0 < a,, T oco.

In the sequel: (X,)nen pairwise uncorrelated.
Particular case, (X, )nen pairwise independent and X, € £2 for every n € N, see
Theorem II1.5.6.

Theorem 1 (Khintchine). If

nhHrgo a_ Z\/ar =0,

=1

then

i Zn: ) - 0.

Proof. Without loss of generality E(X,) = 0 for every n € N. For ¢ > 0 the
Chebyshev-Markov inequality and Bienaymé’s Theorem yield

P({li sl h)= 5 v 8) - 5 Yo v 0

(7% Qp,

]

Remark 1. Assume that sup,.y Var(X,) < co. Then Theorem 1 is applicable for
any sequence (ay)neny With lim, . a,/y/n = co.

Example 1. Consider an independent sequence (X,,),en with

1 1
PHX, = =1-— PHX, ==+ = —
y 0b nlog(n + 1) d n}) 2nlog(n + 1)
Hence n
( n) 07 Var( n) ].Og(n + 1)’
and

I <& 1
— S Var(X) < ———.
n? ; ar(Xi) < log(n + 1)

Thus 1/n - S, . 0 due to Theorem 1, but 1/n-S, 2% 0 does not hold, see Ubung
11.2.

4 Characteristic Functions

We use the notation (-,-) and || - || for the euclidean inner product and norm. Recall
that 9M(R*) denotes the class of all probability measures on (R¥,B;).

Given: a probability measure i € 9M(R¥).
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Definition 1. f : R¥ — C is p-integrable if Rf and Sf are p-integrable, in which

case
/fd,u:/%fd,quz-/%fdu.

Definition 2. The mapping 7i : R¥ — C with

Aly) = / exp(ulr,y)) u(ds),  yeRE,

is called the Fourier transform of p.

Example 1.

(i) For a discrete probability measure

o
n= § :O[j.gl’j
j=1

we have
iy) = a; - exp(e(;, ).
j=1

For instance, if ;1 = 7(\) is the Poisson distribution with parameter A > 0, then

. =N
fi(y) = exp(— Z—, p(2jy) = exp(—A) - exp(A - exp(1y))
1

_ exp(r- (expley) — 1),
(ii) If p = f - A\ then
Aly) = / exp(t(z,9)) - F(z) Me(de).

For any Ap-integrable function f, the right-hand side defines its Fourier trans-
form, see also Analysis or Funktionalanalysis. For instance, if p is the k-
dimensional standard normal distribution, i.e.,

fx) = (2m) 2 - exp(~||z[/2),

then
ily) = exp(—[ly[I*/2).
See Bauer (1996, p. 187) for the case k = 1. Use Fubini’s Theorem for k > 1.

Theorem 1.

(i) 7 is uniformly continuous on R¥

(i) [fi(y)| < 1= 7(0) for y € R¥,
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(iii) forn € N, ay,...,a, € C, and yy, ..., y, € RF,

> a;w - fily; —ye) >0

jl=1
(positive semi-definite).
Proof. Ad (i): Observe that
lexp(e(z, y1)) — exp(e(z, y2))| < llz]l - llyr — gel.
For € > 0 take r > 0 such that u(B) > 1 — ¢, where B = {x € R¥ : ||z|| < r}. Then
) = At)| < [ fespota,m)) = explote.pa)) o) +2-¢
<refl =gl +2-e
Properties (ii) and (iii) are easily verified. O

Remark 1. Bochner’s Theorem states that every continuous, positive semi-definite
function ¢ : R* — C with (0) = 1 is the Fourier transform of a probability measure
on (R* B;). See Bauer (1996, p. 184) for references.

In the sequel: X,Y,... are k-dimensional random vectors on a probability space
(Q,2(, P).

Definition 3. The characteristic function of X is given by
¢x = Px.

Remark 2. Due to Theorem 11.9.1

extn) = [ explole.s) Prtdn) = [ explu(X(@).) Pld)
Theorem 2.
(i) For every linear mapping T : R¥ — R’
prox = px o T".

(ii) For independent random vectors X and Y

PX+y = Px Py

In particular, for a € R¥,

©xta = exp((a, ) - px.
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Proof. Ad (i): Let z € RY. Use Prox = T(Px) to obtain

erox(2) = [ expllT(), ) Prlde) = ox(T'(2)
Ad (ii): Let z € R¥. Fubini’s Theorem and Theorem II1.5.5 imply

exiv(z) = [ explola+9.2) P (o) = ex() - or (o)

Corollary 1 (Convolution Theorem). For probability measures p; € M(R),
i1 ¥ i = fii - fl.
Proof. Use Theorem 2.(ii) and Theorem III.5.8. O
Example 2. For ;= N(m,0?) with 0 > 0 and m € R
fi(y) = exp(my) - exp(—0y*/2).
See Example 1.(ii) and Theorem 2.

Lemma 1. For z € R and 0 > 0
[ o)1) N0.072)dy) = [ exp(~(z - 2)?/(20%) n(d).
Proof. See Génssler, Stute (1977, p. 92). ]
Lemma 2. For ¢, > 0 with lim,,_,,, 0, =0,
N(0,02) % - p.

Proof. Consider independent random variables X,, and Y such that X,, ~ N(0,02)
and Y ~ p. Then X, o 0, and therefore X,, +Y =il Y, which implies

X, +Y Ly

Theorem 3 (Uniqueness Theorem). For probability measures u; € 9(R¥),
M1 = M2 <~ i = fip.

Proof. ‘=" holds by definition. ‘<=’: See Bauer (1996, Thm. 23.4) or Billingsley (1979,
Sec. 29) for the case k > 1. Here: the case k = 1. For 0 > 0 and A € ‘B

N(O.0%) () = [ [ Lale o+ 0) NO.07)(d2) ).
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and
/ Lu(z 4 2) N(0,06%)(dz) = 2m0?) 2+ [ 14(z + 2) - exp(—2%/(202)) M\ (d2)

exp(—(z — x)%/(20%)) M\ (d2).

—

= (2702)7V/2.
Therefore
N(0,0%) # j1j(A) = (2m0?) /2. / [ el - 2 /(20%) (o) Mo ().
Use Lemma 1 to conclude that
Vo >0: N(0,6%) %y = N(0,0?) * pio.

Then, by Lemma 2 and Corollary 111.3.1, p1 = po. [

Example 3. For independent random variables X; and X, with X; ~ 7(\;) we have
X1 +X2 ~ 7T()\1 + )\2)

Proof: Theorem 2 and Example 1.(i) yield

Px1+x:(y) = exp(Ar - (exp(wy) — 1)) - exp(Az - (exp(wy) — 1))
= exp((A1 + A2) - (exp(ey) — 1)).

Use Theorem 3.

Lemma 3. For every € > 0 and every probability measure p € 9(R),

e € Rila 2 1/2)) < 7/e- [ (1= Ra) dy
Proof. Clearly
Riy) = | cos(ay) ).

Hence, with the convention sin(0)/0 = 1,

e / (1 RAW)) dy = 1/c /[ ) / (1 cos(zy)) p(dr) M (dy)

:/R<1/g./05(1—cos(xy))dy> p(dz)

— [ (1= sin(ea)/(e0)) ()
> inf (1 —sin(2)/2) - p({z € R : Jex| > 1}).

INETES!

Finally,
inf (1 —sin(z)/z) > 1/7.

l2[>1
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Theorem 4 (Continuity Theorem, Lévy).
(i) Let p, p, € M(RF) for n € N. Then

~

o ——p = Yy eRY: lim fi(y) = fly).

(i) Let u, € M(RF) for n € N, and let ¢ : R¥ — C be continuous at 0. Then

Yy eR": lim fin(y) =@(y) = FuEMRY):i=p A — p.

Proof. Ad (i): Note that = — exp(2(z,y)) is bounded and continuous on R*.

Ad (ii): See Bauer (1996, Thm. 23.8) or Billingsley (1979, Sec. 29) for the case k > 1.
Here: the case k = 1.

We first show that
{{tn : n € N} is tight. (1)

By Lemma 3
pn({z € R: || = 1/e}) < cn(e)

with .

ole) =7/ [ (1= Rl dy
The dominated convergence theorem and the continuity of ¢ at 0 yield

nll_{rolo cn(e) = c(e)
with .
o) = 7fe- [ (1=Rp)
if € is sufficiently small. Given § > 0 take € > 0 such that
c(e) <4/2.
Furthermore, take ng € N such that, for every n > ny,
len(e) —c(e)] < 6/2.

Hence, for n > ny,

p{z € R :Ja] = 1/}) <6,
and hereby we get (1).
Thus, by Prohorov’s Theorem,

{ptn : n € N} is relatively compact. (2)

We fix a probability measure p € 9(R) such that j,,, — p for a suitable subsequence
of (ftn)nen. By assumption and (i), we get i1 = ¢ as well as the following fact:

if 1, — v for any subsequence (ji, )ren, then v = p, (3)

see Theorem 3.

We claim that i, — g. Due to Remarks I11.2.3 and I11.3.4.(ii) it suffices to show
that every subsequence of (p,)nen contains a subsequence that converges weakly to p.
The latter property follows from (2) and (3). O
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Corollary 2. Weak convergence in 9(R¥) is equivalent to pointwise convergence of
Fourier transforms.

Example 4. Let u,, = B(n,p,) and assume that

lim n-p,=A>0.

Then
fh — ().
Proof: Ubung 11.4.

5 The Central Limit Theorem

Given: a triangular array of random variables X, where n € N and k € {1,...,r,}
with r, € N.

Assumptions:
(1) Xnr € £2 for every n € Nand k € {1,...,7,},
(ii) (Xu1,- ., Xnr,) independent for every n € N.

Put

k=1
and

o2, = Var(X,.), s2 = Var(S,) = Z o2,

Additional assumption:
(iii) s2 > 0 for every n € N.

Normalization

1 - Xnk - E(Xnk)
Sr=—-5,= _
sy, ; Sn,
for n € N. Clearly

E(S!) =0 A Var(S!) = 1.

*

Question: convergence in distribution of (S}),en?

For notational convenience: all random variables X, are defined on a common prob-
ability space (2,2, P).

Example 1. (X, )uey i.i.d. with X; € £2 and Var(X;) = 02 > 0. Put m = E(X)),
take
T'n =N, Xnk = Xk

Then "
g — Dot X —n-m
" Vn-o '
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In the sequel we assume, without loss of generality,
E(Xnk) =0 VAN Sp — 1

forn e Nand k € {1,...,r,}, hence
S =2 Ko
k=1
(Otherwise, consider the random variables (X,x — E(Xnx))/Sn.)
Definition 1.

(i) Lyapunov condition

Tn

36>0: lim Y E(X.[*") = 0.
k=1

n—oo

(ii) Lindeberg condition
Ve>0: limZ/ X2, dP =0.

(iii) Feller condition
lim max Var(X,;) = 0.

n—oo 1<k<ry,

(iv) The random variables X, are asymptotically negligible if

Ve>0: lim max P({|X.| >¢})=0.

n—oo 1<k<ry,

Lemma 1. The conditions from Definition 1 satisfy
(i) = (ii) = (iii) = (iv).

Moreover, (iii) implies lim,, .., 7, = 00.

Proof. From

1 1
/ X2, dP < — - Xuk[27dP < = B X [*)
{| Xnk|>e} € J{Xuklze} <
we get ‘(i) = (ii)". From
Var(X,;) <& + / X2, dP
{‘Xnk‘zf}

we get ‘(ii) = (iii)’. The Chebyshev-Markov inequality yields ‘(iii) = (iv)’. Finally,

1 =Var(S!) <r,- max Var(X,),

1<k<ry

so that (iii) implies lim,, .., 7, = 00. O
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Example 2. Example 1 continued in the case m = 0. We take r,, = n and
X
Vn-o

a 1
S =g [ e
=1 Y {1 Xnk|>e} 0% J{x1|>ev/m-o}

Hence the Lindeberg condition is satisfied.

Xnk =

to obtain

In the sequel
Pnk = PXp

denotes the characteristic function of X,,.

Lemma 2. Fory € Rand € > 0
[eur(y) = (L= 02 /2 42 <y (= Iyl o +/ X2, dP).
{|Xnk|=e}
Proof. For u € R
lexp(wu) — (1 + w — v*/2)| < min(u?, [u]?/6),
see Billingsley (1979, Eqn. (26.4)). Hence

:‘E exp(z - Xy - y)) (1+Z'Xnk'y—XZk'yz/2)|

§|yl3-/ s-szdeQ-/ X2, dP
{|Xnkl<e} {|Xnk|>e}

§€“y’3'gik+92'/ X2, dP.
{| X5k >e}

Lemma 3. Put
Hsonk — exp(—y°/2), y€R.

If the Lindeberg condition is satisfied, then
VyeR: lim A,(y) =

Proof. Since |pnr(y)| < 1 and |exp(—0o2, /2 - y?)| < 1, we get

Tn

y)| = |ﬂ puily) — [ exp(~02/2- 1)

k=1

< Z\sonk — exp(—0py/2 - )]
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by induction, see Billingsley (1979, Lemma 27.1).

We assume
2 2
2 <
B ey s L
which holds for fixed y € R if n is sufficiently large, see Lemma 1. Using
0<u<1/2 = |exp(—u)— (1 —u)| <u?

and Lemma 2 we obtain

AnW)] <) lonn(y) = (L= 02/2-97) [+ ) om /4y
k=1 k=1

§y2'<5'|y|+2/ XdeP>+y4/4. max Uik
k=1 Y {|Xnk|>e}

1<k<ry
for every ¢ > 0. Thus Lemma 1 yields

limsup [A,(y)] < [yf* - e.

n—oo

Theorem 1 (Central Limit Theorem). The following properties are equivalent:
(1) (Xnk)nk satisfies the Lindeberg condition.
(ii) Psx — N(0,1) and (X,x)nx satisfies the Feller condition.

(iii) Pss: 5 N(0,1) and the random variables X, are asymptotically negligible.

Proof. ‘(i) = (ii)’: Due to Lemma 1 we only have to prove the weak convergence.
Recall that fi(y) = exp(—y?/2) for the standard normal distribution p. Consider the
characteristic function ¢, = g of S}. By Theorem 4.2.(ii)

Pn = f[ Pnks
k=1

and therefore Lemma 3 implies

~

VyeR: lim on(y) = p(y).

It remains to apply Corollary 4.2.
Lemma 1 yields ‘(ii) = (iii)’. See Billingsley (1979, p. 314-315) for the proof of ‘(iii)
= (i) O

Corollary 1. Let (X, )nen be i.i.d. with X; € £2 and ¢% = Var(X;) > 0. Then

Do Xk —n-B(X) a4
Vn-o

where Z ~ N(0,1).
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Proof. Theorem 1 and Example 2. O

Example 3. Example 2 continued, and Corollary 1 reformulated. Let

1 x
d(r) = —- exp(—u?/2) du, reR,
@)= o=+ [ exni-tf2
denote the distribution function of the standard normal distribution, and let

b = sup| P({S, < - Vi - 0}) — ®(a)| = sup| P({S, < 2}) ~ ®(x/ (V- 0))]. (1)

zeR

Due to the Central Limit Theorem and Theorem I11.3.2

lim 6,, = 0.

n—oo

Theorem 2 (Berry-Esséen). Let (X,,),en be iid. with X; € £3 E(X;) = 0, and
Var(X;) = 0% > 0. For 4, given by (1)

CE(1X 3 1
vneN: 5, <RI 1
o NLD
Proof. See Génssler, Stute (1977, Section 4.2). O
Example 4. Example 3 continued with
1
Py, =5 (er+em). (2)

Since (—X,)nen is 1.i.d. as well, and since P_x, = Px,, we have
P({S2n < 0}) = P({S5n 2 0}),

which yields

P({Son <0}) = 5 - (1 4+ P({S2n = 0})).

N | —

From Example 1.3 we know that

P({Shn = 0}) & .

and therefore

1

1

2/

Hence the upper bound from Theorem 2 cannot be improved in terms of powers of n.

- P({Sy = 0}) ~

N —

Example 5. Example 3 continued, i.e., (X, )nen is i.i.d. with X; € £2 E(X;) = 0,
and Var(X;) = ¢ > 0. Recall that S,, =>""" | X;.
Let

B. = {limsup S,,/v/n > c}, c> 0.

n—oo
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Using Remark 1.2.(ii) we get
P(B.) > P(limsup{S,/v/n > c}) > limsup P({S,/v/n > c}) =1 —®(c/o) > 0.

n—oo n—oo

Kolmogorov’s Zero-One Law yields
P(B.) =1,

and therefore

P({limsup S, /vt = 00}) = P( n BC) 1

By symmetry
P({liminf S, /v/n = —oc0}) = 1.
In particular, for P, given by (2),
P(limsup{S, =0}) =1,

n—oo

see also Example 1.3 and Ubung 10.2.

6 Law of the Iterated Logarithm

Given: an i.i.d. sequence (X, )nen of random variables on (2,2, P).

Definition 1. (S,)neny with S, = >, X is called the associated random walk.

In the sequel we assume
X,eg? A EX)=0 A Var(X;)=0?>0.

Remark 1. For every € > 0, with probability one,
S

li =0
nLIEO \/ﬁ . <log n)1/2+5 ’

see Remark 2.2. On the other hand, with probability one,

n . . STL
limsup—= =00 A liminf —= = —o0,

see Example 5.5.

Question: precise description of the fluctuation of (S, (w))nen for P-almost every w?
In particular: existence of a deterministic sequence (vy(n)),en of positive reals such
that, with probability one,

limsupizl A liminf Sn =—17
n—oo (1) n—oo 7y(n)

Notation: L((uy,)nen) is the set of all limit points in R of a sequence (uy, )nen in R.
Let

v(n) = v/2n - log(logn) - 2, n > 3,

where log denotes the logarithm with base e.
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Theorem 1 (Strassen’s Law of the Iterated Logarithm).

<( S > ) — _1’ 1 .

Proof. See Bauer (1996, §33). O

Corollary 1 (Hartman and Wintner’s Law of the Iterated Logarithm).
With probability one,

Sh n
limsup——=1 A liminfS— =—1.
n—oo V(1) n—oo y(n)
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o-additive mapping, 17
o-algebra, 3
generated by a class of sets, 5

in mean-square, 29
in probability, 54
weak, 56

generated by a family of mappings, 9 convolution, 70
counting measure, 18

o-continuity at (), 19
o-continuity from above, 19
o-continuity from below, 19
o-finite mapping, 23
o-subadditivity, 19

absolutely continuous distribution, 51

absolutely continuous measure, 34
abstract integral, 27
additive mapping, 17
algebra, 3
generated by a class of sets, 5
almost everywhere, 27
almost surely, 27
asymptotically negligible, 91

Bernoulli distribution, 50
binomial distribution, 50
Borel-o-algebra, 7

Cauchy distribution, 52
characteristic function, 86
closed set, 7
closed w.r.t.
intersections, 3
unions, 3
compact set, 7
complete measure space, 24
completion of a measure space, 25
content, 17
convergence
almost everywhere, 29
in £P, 29
in distribution, 56
in mean, 29

covariance, 70
cylinder set, 15

Dirac measure, 18

discrete distribution, 50
discrete probability measure, 18
distribution, 49

distribution function, 53
Dynkin class, 4

generated by a class of sets, 5

empirical distribution, 83
empirical distribution function, 83
essential supremum, 31

essentially bounded function, 31
event, 49

expectation, 52

exponential distribution, 51

Feller condition, 91
finite mapping, 23

Fourier transform

of a probability measure, 85
of an integrable function, 85

geometric distribution, 50

iid, 76

identically distributed, 49
image measure, 46
independence

of a family of classes, 66
of a family of events, 65
of a family of random elements, 67

integrable function, 27
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complex-valued, 85

integral, 27
of a complex-valued function, 85
of a non-negative function, 26
of a simple function, 25
over a subset, 32

joint distribution, 68

kernel, 36
o-finite, 36
Markov, 36

Lévy distance, 60

Lebesgue measurable set, 25
Lebesgue pre-measure, 18
limes inferior, 74

limes superior, 74
Lindeberg condition, 91
Lyapunov condition, 91

marginal distribution, 69
measurable

mapping, 8

rectangle, 13

set, 8

space, 8
measure, 17

with density, 32
measure space, 18
monotonicity, 19
monotonicity of the integral, 26
Monte Carlo algorithm, 82

normal distribution
multidimensional
standard, 32
one-dimensional, 51

open set, 7
outer measure, 21

Poisson distribution, 50

positive semi-definite function, 86
pre-measure, 17

probability density, 32
probability measure, 17
probability space, 18

product o-algebra, 14
product (measurable) space, 14
product measure, 45
n factors, 43
two factors, 40
product measure space, 45
n factors, 43
two factors, 40

quasi-integrable mapping, 27

random element, 49
random variable, 49
random vector, 49
random walk, 95

relatively compact set of measures, 61

section

of a mapping, 37

of a set, 38
semi-algebra, 3
simple function, 11
square-integrable function, 28
standard deviation, 52
subadditivity, 19

tail o-algebra, 73

tail (terminal) event, 73
tightness, 61
topological space, 6
trace-o-algebra, 7

unbiased estimator, 82
uncorrelated random variables, 70
uniform distribution

on a finite set, 18, 50

on a subset of R*, 32, 51
uniform integrability, 62

variance, 52

with probability one, 27
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