3 Weak Law of Large Numbers

As previously: $0 < a_n \uparrow \infty$.

In the sequel: $(X_n)_{n\in\mathbb{N}}$ pairwise uncorrelated.

Particular case, $(X_n)_{n\in\mathbb{N}}$ pairwise independent and $X_n\in\mathfrak{L}^2$ for every $n\in\mathbb{N}$, see Theorem III.5.6.

Theorem 1 (Khintchine). If

$$\lim_{n \to \infty} \frac{1}{a_n^2} \cdot \sum_{i=1}^n \operatorname{Var}(X_i) = 0,$$

then

$$\frac{1}{a_n} \cdot \sum_{i=1}^n (X_i - \mathrm{E}(X_i)) \stackrel{P}{\longrightarrow} 0.$$

Proof. Without loss of generality $E(X_n) = 0$ for every $n \in \mathbb{N}$. For $\varepsilon > 0$ the Chebyshev-Markov inequality and Bienaymé's Theorem yield

$$P\left(\left\{\left|\frac{1}{a_n} \cdot S_n\right| \ge \varepsilon\right\}\right) \le \frac{1}{\varepsilon^2} \cdot \operatorname{Var}\left(\frac{1}{a_n} \cdot S_n\right) = \frac{1}{\varepsilon^2} \cdot \frac{1}{a_n^2} \cdot \sum_{i=1}^n \operatorname{Var}(X_i). \tag{1}$$

Remark 1. Assume that $\sup_{n\in\mathbb{N}} \operatorname{Var}(X_n) < \infty$. Then Theorem 1 is applicable for any sequence $(a_n)_{n\in\mathbb{N}}$ with $\lim_{n\to\infty} a_n/\sqrt{n} = \infty$.

Example 1. Consider an independent sequence $(X_n)_{n\in\mathbb{N}}$ with

$$P({X_n = 0}) = 1 - \frac{1}{n\log(n+1)}, \qquad P({X_n = \pm n}) = \frac{1}{2n\log(n+1)}.$$

Hence

$$E(X_n) = 0,$$
 $Var(X_n) = \frac{n}{\log(n+1)},$

and

$$\frac{1}{n^2} \cdot \sum_{i=1}^n \operatorname{Var}(X_i) \le \frac{1}{\log(n+1)}.$$

Thus $1/n \cdot S_n \stackrel{P}{\longrightarrow} 0$ due to Theorem 1, but $1/n \cdot S_n \stackrel{P\text{-a.s.}}{\longrightarrow} 0$ does not hold, see Übung 11.2.

4 Characteristic Functions

We use the notation $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ for the euclidean inner product and norm. Recall that $\mathfrak{M}(\mathbb{R}^k)$ denotes the class of all probability measures on $(\mathbb{R}^k, \mathfrak{B}_k)$.

Given: a probability measure $\mu \in \mathfrak{M}(\mathbb{R}^k)$.

Definition 1. $f: \mathbb{R}^k \to \mathbb{C}$ is μ -integrable if $\Re f$ and $\Im f$ are μ -integrable, in which case

$$\int f \, d\mu = \int \Re f \, d\mu + i \cdot \int \Im f \, d\mu.$$

Definition 2. The mapping $\widehat{\mu}: \mathbb{R}^k \to \mathbb{C}$ with

$$\widehat{\mu}(y) = \int \exp(i\langle x, y \rangle) \,\mu(dx), \qquad y \in \mathbb{R}^k,$$

is called the Fourier transform of μ .

Example 1.

(i) For a discrete probability measure

$$\mu = \sum_{j=1}^{\infty} \alpha_j \cdot \varepsilon_{x_j}$$

we have

$$\widehat{\mu}(y) = \sum_{j=1}^{\infty} \alpha_j \cdot \exp(i\langle x_j, y \rangle).$$

For instance, if $\mu = \pi(\lambda)$ is the Poisson distribution with parameter $\lambda > 0$, then

$$\widehat{\mu}(y) = \exp(-\lambda) \cdot \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \cdot \exp(ijy) = \exp(-\lambda) \cdot \exp(\lambda \cdot \exp(iy))$$
$$= \exp(\lambda \cdot (\exp(iy) - 1)).$$

(ii) If $\mu = f \cdot \lambda_k$ then

$$\widehat{\mu}(y) = \int \exp(i\langle x, y \rangle) \cdot f(x) \, \lambda_k(dx).$$

For any λ_k -integrable function f, the right-hand side defines its Fourier transform, see also Analysis or Funktionalanalysis. For instance, if μ is the k-dimensional standard normal distribution, i.e.,

$$f(x) = (2\pi)^{-k/2} \cdot \exp(-\|x\|^2/2),$$

then

$$\widehat{\mu}(y) = \exp(-\|y\|^2/2).$$

See Bauer (1996, p. 187) for the case k = 1. Use Fubini's Theorem for k > 1.

Theorem 1.

- (i) $\widehat{\mu}$ is uniformly continuous on \mathbb{R}^k ,
- (ii) $|\widehat{\mu}(y)| \le 1 = \widehat{\mu}(0)$ for $y \in \mathbb{R}^k$,

(iii) for $n \in \mathbb{N}$, $a_1, \ldots, a_n \in \mathbb{C}$, and $y_1, \ldots, y_n \in \mathbb{R}^k$,

$$\sum_{j,\ell=1}^{n} a_j \cdot \overline{a_\ell} \cdot \widehat{\mu}(y_j - y_\ell) \ge 0$$

(positive semi-definite).

Proof. Ad (i): Observe that

$$\left| \exp(i\langle x, y_1 \rangle) - \exp(i\langle x, y_2 \rangle) \right| \le ||x|| \cdot ||y_1 - y_2||.$$

For $\varepsilon > 0$ take r > 0 such that $\mu(B) \ge 1 - \varepsilon$, where $B = \{x \in \mathbb{R}^k : ||x|| \le r\}$. Then

$$\left|\widehat{\mu}(y_1) - \widehat{\mu}(y_2)\right| \le \int_B \left|\exp(i\langle x, y_1\rangle) - \exp(i\langle x, y_2\rangle)\right| \mu(dx) + 2 \cdot \varepsilon$$

$$\le r \cdot \|y_1 - y_2\| + 2 \cdot \varepsilon.$$

Properties (ii) and (iii) are easily verified.

Remark 1. Bochner's Theorem states that every continuous, positive semi-definite function $\varphi : \mathbb{R}^k \to \mathbb{C}$ with $\varphi(0) = 1$ is the Fourier transform of a probability measure on $(\mathbb{R}^k, \mathfrak{B}_k)$. See Bauer (1996, p. 184) for references.

In the sequel: X, Y, \ldots are k-dimensional random vectors on a probability space $(\Omega, \mathfrak{A}, P)$.

Definition 3. The characteristic function of X is given by

$$\varphi_X = \widehat{P_X}$$
.

Remark 2. Due to Theorem II.9.1

$$\varphi_X(y) = \int_{\mathbb{R}^k} \exp(i\langle x, y \rangle) P_X(dx) = \int_{\Omega} \exp(i\langle X(\omega), y \rangle) P(d\omega).$$

Theorem 2.

(i) For every linear mapping $T: \mathbb{R}^k \to \mathbb{R}^\ell$

$$\varphi_{T \circ X} = \varphi_X \circ T^t.$$

(ii) For independent random vectors X and Y

$$\varphi_{X+Y} = \varphi_X \cdot \varphi_Y.$$

In particular, for $a \in \mathbb{R}^k$,

$$\varphi_{X+a} = \exp(i\langle a, \cdot \rangle) \cdot \varphi_X.$$

Proof. Ad (i): Let $z \in \mathbb{R}^{\ell}$. Use $P_{T \circ X} = T(P_X)$ to obtain

$$\varphi_{T \circ X}(z) = \int_{\mathbb{R}^k} \exp(i\langle T(x), z \rangle) P_X(dx) = \varphi_X(T^t(z)).$$

Ad (ii): Let $z \in \mathbb{R}^k$. Fubini's Theorem and Theorem III.5.5 imply

$$\varphi_{X+Y}(z) = \int_{\mathbb{R}^{2k}} \exp(i\langle x+y,z\rangle) P_{(X,Y)}(d(x,y)) = \varphi_X(z) \cdot \varphi_Y(z).$$

Corollary 1 (Convolution Theorem). For probability measures $\mu_j \in \mathfrak{M}(\mathbb{R})$,

$$\widehat{\mu_1 * \mu_2} = \widehat{\mu_1} \cdot \widehat{\mu_2}.$$

Proof. Use Theorem 2.(ii) and Theorem III.5.8.

Example 2. For $\mu = N(m, \sigma^2)$ with $\sigma \geq 0$ and $m \in \mathbb{R}$

$$\widehat{\mu}(y) = \exp(imy) \cdot \exp(-\sigma^2 y^2/2).$$

See Example 1.(ii) and Theorem 2.

Lemma 1. For $z \in \mathbb{R}$ and $\sigma > 0$

$$\int \exp(-iyz) \cdot \widehat{\mu}(y) N(0, \sigma^{-2})(dy) = \int \exp(-(z-x)^2/(2\sigma^2)) \mu(dx).$$

Proof. See Gänssler, Stute (1977, p. 92).

Lemma 2. For $\sigma_n > 0$ with $\lim_{n\to\infty} \sigma_n = 0$,

$$N(0, \sigma_n^2) * \mu \xrightarrow{\mathrm{w}} \mu.$$

Proof. Consider independent random variables X_n and Y such that $X_n \sim N(0, \sigma_n^2)$ and $Y \sim \mu$. Then $X_n \xrightarrow{\mathfrak{L}^2} 0$, and therefore $X_n + Y \xrightarrow{\mathfrak{L}^2} Y$, which implies

$$X_n + Y \stackrel{\mathrm{d}}{\longrightarrow} Y.$$

Theorem 3 (Uniqueness Theorem). For probability measures $\mu_j \in \mathfrak{M}(\mathbb{R}^k)$,

$$\mu_1 = \mu_2 \qquad \Leftrightarrow \qquad \widehat{\mu}_1 = \widehat{\mu}_2.$$

Proof. ' \Rightarrow ' holds by definition. ' \Leftarrow ': See Bauer (1996, Thm. 23.4) or Billingsley (1979, Sec. 29) for the case k > 1. Here: the case k = 1. For $\sigma > 0$ and $A \in \mathfrak{B}$

$$N(0,\sigma^2) * \mu_j(A) = \int \int 1_A(z+x) N(0,\sigma^2)(dz) \,\mu_j(dx),$$

and

$$\int 1_A(z+x) N(0,\sigma^2)(dz) = (2\pi\sigma^2)^{-1/2} \cdot \int 1_A(z+x) \cdot \exp(-z^2/(2\sigma^2)) \lambda_1(dz)$$
$$= (2\pi\sigma^2)^{-1/2} \cdot \int_A \exp(-(z-x)^2/(2\sigma^2)) \lambda_1(dz).$$

Therefore

$$N(0,\sigma^2) * \mu_j(A) = (2\pi\sigma^2)^{-1/2} \cdot \int_A \int \exp(-(z-x)^2/(2\sigma^2)) \,\mu_j(dx) \,\lambda_1(dz).$$

Use Lemma 1 to conclude that

$$\forall \sigma > 0 : N(0, \sigma^2) * \mu_1 = N(0, \sigma^2) * \mu_2.$$

Then, by Lemma 2 and Corollary III.3.1, $\mu_1 = \mu_2$.

Example 3. For independent random variables X_1 and X_2 with $X_j \sim \pi(\lambda_j)$ we have $X_1 + X_2 \sim \pi(\lambda_1 + \lambda_2)$.

Proof: Theorem 2 and Example 1.(i) yield

$$\varphi_{X_1+X_2}(y) = \exp(\lambda_1 \cdot (\exp(\imath y) - 1)) \cdot \exp(\lambda_2 \cdot (\exp(\imath y) - 1))$$
$$= \exp((\lambda_1 + \lambda_2) \cdot (\exp(\imath y) - 1)).$$

Use Theorem 3.

Lemma 3. For every $\varepsilon > 0$ and every probability measure $\mu \in \mathfrak{M}(\mathbb{R})$,

$$\mu(\{x \in \mathbb{R} : |x| \ge 1/\varepsilon\}) \le 7/\varepsilon \cdot \int_0^\varepsilon (1 - \Re \widehat{\mu}(y)) \, dy.$$

Proof. Clearly

$$\Re\widehat{\mu}(y) = \int_{\mathbb{R}} \cos(xy) \, \mu(dx).$$

Hence, with the convention $\sin(0)/0 = 1$,

$$1/\varepsilon \cdot \int_{0}^{\varepsilon} (1 - \Re\widehat{\mu}(y)) \, dy = 1/\varepsilon \cdot \int_{[0,\varepsilon]} \int_{\mathbb{R}} (1 - \cos(xy)) \, \mu(dx) \, \lambda_{1}(dy)$$

$$= \int_{\mathbb{R}} \left(1/\varepsilon \cdot \int_{0}^{\varepsilon} (1 - \cos(xy)) \, dy \right) \, \mu(dx)$$

$$= \int_{\mathbb{R}} (1 - \sin(\varepsilon x) / (\varepsilon x)) \, \mu(dx)$$

$$\geq \inf_{|z| > 1} (1 - \sin(z) / z) \cdot \mu(\{x \in \mathbb{R} : |\varepsilon x| \ge 1\}).$$

Finally,

$$\inf_{|z|>1} (1 - \sin(z)/z) \ge 1/7.$$

Theorem 4 (Continuity Theorem, Lévy).

(i) Let $\mu, \mu_n \in \mathfrak{M}(\mathbb{R}^k)$ for $n \in \mathbb{N}$. Then

$$\mu_n \xrightarrow{\mathbf{w}} \mu \qquad \Rightarrow \qquad \forall y \in \mathbb{R}^k : \lim_{n \to \infty} \widehat{\mu_n}(y) = \widehat{\mu}(y).$$

(ii) Let $\mu_n \in \mathfrak{M}(\mathbb{R}^k)$ for $n \in \mathbb{N}$, and let $\varphi : \mathbb{R}^k \to \mathbb{C}$ be continuous at 0. Then

$$\forall y \in \mathbb{R}^k : \lim_{n \to \infty} \widehat{\mu_n}(y) = \varphi(y) \qquad \Rightarrow \qquad \exists \, \mu \in \mathfrak{M}(\mathbb{R}^k) : \widehat{\mu} = \varphi \wedge \mu_n \xrightarrow{\mathbf{w}} \mu.$$

Proof. Ad (i): Note that $x \mapsto \exp(i\langle x, y \rangle)$ is bounded and continuous on \mathbb{R}^k .

Ad (ii): See Bauer (1996, Thm. 23.8) or Billingsley (1979, Sec. 29) for the case k > 1. Here: the case k = 1.

We first show that

$$\{\mu_n : n \in \mathbb{N}\}\$$
is tight. $\tag{1}$

By Lemma 3

$$\mu_n(\{x \in \mathbb{R} : |x| \ge 1/\varepsilon\}) \le c_n(\varepsilon)$$

with

$$c_n(\varepsilon) = 7/\varepsilon \cdot \int_0^{\varepsilon} (1 - \Re \widehat{\mu_n}(y)) \, dy.$$

The dominated convergence theorem and the continuity of φ at 0 yield

$$\lim_{n \to \infty} c_n(\varepsilon) = c(\varepsilon)$$

with

$$c(\varepsilon) = 7/\varepsilon \cdot \int_0^{\varepsilon} (1 - \Re \widehat{\varphi}(y)) \, dy,$$

if ε is sufficiently small. Given $\delta > 0$ take $\varepsilon > 0$ such that

$$c(\varepsilon) \le \delta/2$$
.

Furthermore, take $n_0 \in \mathbb{N}$ such that, for every $n \geq n_0$,

$$|c_n(\varepsilon) - c(\varepsilon)| < \delta/2.$$

Hence, for $n \geq n_0$,

$$\mu_n(\{x \in \mathbb{R} : |x| \ge 1/\varepsilon\}) \le \delta,$$

and hereby we get (1).

Thus, by Prohorov's Theorem,

$$\{\mu_n : n \in \mathbb{N}\}\$$
 is relatively compact. (2)

We fix a probability measure $\mu \in \mathfrak{M}(\mathbb{R})$ such that $\mu_{n_k} \xrightarrow{w} \mu$ for a suitable subsequence of $(\mu_n)_{n \in \mathbb{N}}$. By assumption and (i), we get $\widehat{\mu} = \varphi$ as well as the following fact:

if
$$\mu_{n_k} \xrightarrow{\mathbf{w}} \nu$$
 for any subsequence $(\mu_{n_k})_{k \in \mathbb{N}}$, then $\nu = \mu$, (3)

see Theorem 3.

We claim that $\mu_n \xrightarrow{w} \mu$. Due to Remarks III.2.3 and III.3.4.(ii) it suffices to show that every subsequence of $(\mu_n)_{n\in\mathbb{N}}$ contains a subsequence that converges weakly to μ . The latter property follows from (2) and (3).

Corollary 2. Weak convergence in $\mathfrak{M}(\mathbb{R}^k)$ is equivalent to pointwise convergence of Fourier transforms.

Example 4. Let $\mu_n = B(n, p_n)$ and assume that

$$\lim_{n \to \infty} n \cdot p_n = \lambda > 0.$$

Then

$$\mu_n \stackrel{\mathrm{w}}{\longrightarrow} \pi(\lambda).$$

Proof: Übung 11.4.

5 The Central Limit Theorem

Given: a triangular array of random variables X_{nk} , where $n \in \mathbb{N}$ and $k \in \{1, \ldots, r_n\}$ with $r_n \in \mathbb{N}$.

Assumptions:

- (i) $X_{nk} \in \mathfrak{L}^2$ for every $n \in \mathbb{N}$ and $k \in \{1, \dots, r_n\}$,
- (ii) $(X_{n1}, \ldots, X_{nr_n})$ independent for every $n \in \mathbb{N}$.

Put

$$S_n = \sum_{k=1}^{r_n} (X_{nk} - \mathbf{E}(X_{nk}))$$

and

$$\sigma_{nk}^2 = \text{Var}(X_{nk}),$$
 $s_n^2 = \text{Var}(S_n) = \sum_{k=1}^{r_n} \sigma_{nk}^2.$

Additional assumption:

(iii) $s_n^2 > 0$ for every $n \in \mathbb{N}$.

Normalization

$$S_n^* = \frac{1}{s_n} \cdot S_n = \sum_{k=1}^{r_n} \frac{X_{nk} - E(X_{nk})}{s_n}$$

for $n \in \mathbb{N}$. Clearly

$$E(S_n^*) = 0$$
 \wedge $Var(S_n^*) = 1$.

Question: convergence in distribution of $(S_n^*)_{n\in\mathbb{N}}$?

For notational convenience: all random variables X_{nk} are defined on a common probability space $(\Omega, \mathfrak{A}, P)$.

Example 1. $(X_n)_{n\in\mathbb{N}}$ i.i.d. with $X_1\in\mathcal{L}^2$ and $\mathrm{Var}(X_1)=\sigma^2>0$. Put $m=\mathrm{E}(X_1)$, take

$$r_n = n, X_{nk} = X_k.$$

Then

$$S_n^* = \frac{\sum_{k=1}^n X_k - n \cdot m}{\sqrt{n} \cdot \sigma}.$$

In the sequel we assume, without loss of generality,

$$E(X_{nk}) = 0 \quad \land \quad s_n = 1$$

for $n \in \mathbb{N}$ and $k \in \{1, \ldots, r_n\}$, hence

$$S_n^* = \sum_{k=1}^{r_n} X_{nk}$$

(Otherwise, consider the random variables $(X_{nk} - E(X_{nk}))/s_n$.)

Definition 1.

(i) Lyapunov condition

$$\exists \, \delta > 0 : \lim_{n \to \infty} \sum_{k=1}^{r_n} \mathrm{E}(|X_{nk}|^{2+\delta}) = 0.$$

(ii) Lindeberg condition

$$\forall \varepsilon > 0: \lim_{n \to \infty} \sum_{k=1}^{r_n} \int_{\{|X_{nk}| \ge \varepsilon\}} X_{nk}^2 dP = 0.$$

(iii) Feller condition

$$\lim_{n\to\infty} \max_{1\le k\le r_n} \operatorname{Var}(X_{nk}) = 0.$$

(iv) The random variables X_{nk} are asymptotically negligible if

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \max_{1 \le k \le r_n} P(\{|X_{nk}| > \varepsilon\}) = 0.$$

Lemma 1. The conditions from Definition 1 satisfy

$$(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv).$$

Moreover, (iii) implies $\lim_{n\to\infty} r_n = \infty$.

Proof. From

$$\int_{\{|X_{nk}| \ge \varepsilon\}} X_{nk}^2 dP \le \frac{1}{\varepsilon^{\delta}} \cdot \int_{\{|X_{nk}| \ge \varepsilon\}} |X_{nk}|^{2+\delta} dP \le \frac{1}{\varepsilon^{\delta}} \cdot \mathrm{E}(|X_{nk}|^{2+\delta})$$

we get '(i) \Rightarrow (ii)'. From

$$\operatorname{Var}(X_{nk}) \le \varepsilon^2 + \int_{\{|X_{nk}| > \varepsilon\}} X_{nk}^2 dP$$

we get '(ii) \Rightarrow (iii)'. The Chebyshev-Markov inequality yields '(iii) \Rightarrow (iv)'. Finally,

$$1 = \operatorname{Var}(S_n^*) \le r_n \cdot \max_{1 \le k \le r_n} \operatorname{Var}(X_{nk}),$$

so that (iii) implies $\lim_{n\to\infty} r_n = \infty$.

Example 2. Example 1 continued in the case m = 0. We take $r_n = n$ and

$$X_{nk} = \frac{X_k}{\sqrt{n} \cdot \sigma}$$

to obtain

$$\sum_{k=1}^{n} \int_{\{|X_{nk}| \ge \varepsilon\}} X_{nk}^2 dP = \frac{1}{\sigma^2} \cdot \int_{\{|X_1| \ge \varepsilon \cdot \sqrt{n} \cdot \sigma\}} X_1^2 dP.$$

Hence the Lindeberg condition is satisfied.

In the sequel

$$\varphi_{nk} = \varphi_{X_{nk}}$$

denotes the characteristic function of X_{nk} .

Lemma 2. For $y \in \mathbb{R}$ and $\varepsilon > 0$

$$\left|\varphi_{nk}(y) - (1 - \sigma_{nk}^2/2 \cdot y^2)\right| \le y^2 \cdot \left(\varepsilon \cdot |y| \cdot \sigma_{nk}^2 + \int_{\{|X_{nk}| \ge \varepsilon\}} X_{nk}^2 dP\right).$$

Proof. For $u \in \mathbb{R}$

$$\left| \exp(\imath u) - (1 + \imath u - u^2/2) \right| \le \min(u^2, |u|^3/6),$$

see Billingsley (1979, Eqn. (26.4)). Hence

$$\begin{aligned} |\varphi_{nk}(y) - (1 - \sigma_{nk}^{2}/2 \cdot y^{2})| \\ &= |\operatorname{E}(\exp(i \cdot X_{nk} \cdot y)) - \operatorname{E}(1 + i \cdot X_{nk} \cdot y - X_{nk}^{2} \cdot y^{2}/2)| \\ &\leq \operatorname{E}(\min(y^{2} \cdot X_{nk}^{2}, |y|^{3} \cdot |X_{nk}|^{3})) \\ &\leq |y|^{3} \cdot \int_{\{|X_{nk}| < \varepsilon\}} \varepsilon \cdot X_{nk}^{2} dP + y^{2} \cdot \int_{\{|X_{nk}| \ge \varepsilon\}} X_{nk}^{2} dP \\ &\leq \varepsilon \cdot |y|^{3} \cdot \sigma_{nk}^{2} + y^{2} \cdot \int_{\{|X_{nk}| \ge \varepsilon\}} X_{nk}^{2} dP. \end{aligned}$$

Lemma 3. Put

$$\Delta_n(y) = \prod_{k=1}^{r_n} \varphi_{nk}(y) - \exp(-y^2/2), \qquad y \in \mathbb{R}.$$

If the Lindeberg condition is satisfied, then

$$\forall y \in \mathbb{R} : \lim_{n \to \infty} \Delta_n(y) = 0.$$

Proof. Since $|\varphi_{nk}(y)| \leq 1$ and $|\exp(-\sigma_{nk}^2/2 \cdot y^2)| \leq 1$, we get

$$|\Delta_n(y)| = \left| \prod_{k=1}^{r_n} \varphi_{nk}(y) - \prod_{k=1}^{r_n} \exp(-\sigma_{nk}^2/2 \cdot y^2) \right|$$

$$\leq \sum_{k=1}^{r_n} \left| \varphi_{nk}(y) - \exp(-\sigma_{nk}^2/2 \cdot y^2) \right|$$

by induction, see Billingsley (1979, Lemma 27.1).

We assume

$$\max_{1 \le k \le r_n} \sigma_{nk}^2 \cdot y^2 \le 1 \,,$$

which holds for fixed $y \in \mathbb{R}$ if n is sufficiently large, see Lemma 1. Using

$$0 \le u \le 1/2 \quad \Rightarrow \quad |\exp(-u) - (1-u)| \le u^2$$

and Lemma 2 we obtain

$$|\Delta_{n}(y)| \leq \sum_{k=1}^{r_{n}} |\varphi_{nk}(y) - (1 - \sigma_{nk}^{2}/2 \cdot y^{2})| + \sum_{k=1}^{r_{n}} \sigma_{nk}^{4}/4 \cdot y^{4}$$

$$\leq y^{2} \cdot \left(\varepsilon \cdot |y| + \sum_{k=1}^{r_{n}} \int_{\{|X_{nk}| \geq \varepsilon\}} X_{nk}^{2} dP\right) + y^{4}/4 \cdot \max_{1 \leq k \leq r_{n}} \sigma_{nk}^{2}$$

for every $\varepsilon > 0$. Thus Lemma 1 yields

$$\limsup_{n \to \infty} |\Delta_n(y)| \le |y|^3 \cdot \varepsilon.$$

Theorem 1 (Central Limit Theorem). The following properties are equivalent:

- (i) $(X_{nk})_{n,k}$ satisfies the Lindeberg condition.
- (ii) $P_{S_n^*} \xrightarrow{\mathrm{w}} N(0,1)$ and $(X_{nk})_{n,k}$ satisfies the Feller condition.
- (iii) $P_{S_n^*} \xrightarrow{\mathbf{w}} N(0,1)$ and the random variables X_{nk} are asymptotically negligible.

Proof. '(i) \Rightarrow (ii)': Due to Lemma 1 we only have to prove the weak convergence. Recall that $\widehat{\mu}(y) = \exp(-y^2/2)$ for the standard normal distribution μ . Consider the characteristic function $\varphi_n = \varphi_{S_n^*}$ of S_n^* . By Theorem 4.2.(ii)

$$\varphi_n = \prod_{k=1}^{r_n} \varphi_{nk},$$

and therefore Lemma 3 implies

$$\forall y \in \mathbb{R} : \lim_{n \to \infty} \varphi_n(y) = \widehat{\mu}(y).$$

It remains to apply Corollary 4.2.

Lemma 1 yields '(ii) \Rightarrow (iii)'. See Billingsley (1979, p. 314–315) for the proof of '(iii) \Rightarrow (i)'.

Corollary 1. Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d. with $X_1\in\mathfrak{L}^2$ and $\sigma^2=\mathrm{Var}(X_1)>0$. Then

$$\frac{\sum_{k=1}^{n} X_k - n \cdot E(X_1)}{\sqrt{n} \cdot \sigma} \stackrel{d}{\longrightarrow} Z$$

where $Z \sim N(0,1)$.

Proof. Theorem 1 and Example 2.

Example 3. Example 2 continued, and Corollary 1 reformulated. Let

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x} \exp(-u^2/2) \, du, \qquad x \in \mathbb{R}$$

denote the distribution function of the standard normal distribution, and let

$$\delta_n = \sup_{x \in \mathbb{R}} \left| P(\{S_n \le x \cdot \sqrt{n} \cdot \sigma\}) - \Phi(x) \right| = \sup_{x \in \mathbb{R}} \left| P(\{S_n \le x\}) - \Phi(x/(\sqrt{n} \cdot \sigma)) \right|. \tag{1}$$

Due to the Central Limit Theorem and Theorem III.3.2

$$\lim_{n\to\infty} \delta_n = 0.$$

Theorem 2 (Berry-Esséen). Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d. with $X_1 \in \mathfrak{L}^3$, $\mathrm{E}(X_1) = 0$, and $\mathrm{Var}(X_1) = \sigma^2 > 0$. For δ_n given by (1)

$$\forall n \in \mathbb{N} : \delta_n \le \frac{6 \cdot \mathrm{E}(|X_1|^3)}{\sigma^3} \cdot \frac{1}{\sqrt{n}}.$$

Proof. See Gänssler, Stute (1977, Section 4.2).

Example 4. Example 3 continued with

$$P_{X_1} = \frac{1}{2} \cdot (\varepsilon_1 + \varepsilon_{-1}). \tag{2}$$

Since $(-X_n)_{n\in\mathbb{N}}$ is i.i.d. as well, and since $P_{-X_1}=P_{X_1}$, we have

$$P(\{S_{2n} \le 0\}) = P(\{S_{2n} \ge 0\}),$$

which yields

$$P(\{S_{2n} \le 0\}) = \frac{1}{2} \cdot (1 + P(\{S_{2n} = 0\})).$$

From Example 1.3 we know that

$$P(\{S_{2n}=0\}) \approx \frac{1}{\sqrt{\pi n}},$$

and therefore

$$\delta_{2n} \ge P(\{S_{2n} \le 0\}) - \frac{1}{2} = \frac{1}{2} \cdot P(\{S_{2n} = 0\}) \approx \frac{1}{2\sqrt{\pi n}}.$$

Hence the upper bound from Theorem 2 cannot be improved in terms of powers of n.

Example 5. Example 3 continued, i.e., $(X_n)_{n\in\mathbb{N}}$ is i.i.d. with $X_1 \in \mathcal{L}^2$, $E(X_1) = 0$, and $Var(X_1) = \sigma^2 > 0$. Recall that $S_n = \sum_{i=1}^n X_i$.

Let

$$B_c = \{ \limsup_{n \to \infty} S_n / \sqrt{n} \ge c \}, \qquad c > 0.$$

Using Remark 1.2.(ii) we get

$$P(B_c) \ge P(\limsup_{n \to \infty} \{S_n/\sqrt{n} > c\}) \ge \limsup_{n \to \infty} P(\{S_n/\sqrt{n} > c\}) = 1 - \Phi(c/\sigma) > 0.$$

Kolmogorov's Zero-One Law yields

$$P(B_c) = 1,$$

and therefore

$$P(\{\limsup_{n\to\infty} S_n/\sqrt{n} = \infty\}) = P\left(\bigcap_{c\in\mathbb{N}} B_c\right) = 1.$$

By symmetry

$$P(\{\liminf_{n\to\infty} S_n/\sqrt{n} = -\infty\}) = 1.$$

In particular, for P_{X_1} given by (2),

$$P(\limsup_{n\to\infty} \{S_n = 0\}) = 1,$$

see also Example 1.3 and Übung 10.2.

6 Law of the Iterated Logarithm

Given: an i.i.d. sequence $(X_n)_{n\in\mathbb{N}}$ of random variables on $(\Omega, \mathfrak{A}, P)$.

Definition 1. $(S_n)_{n\in\mathbb{N}}$ with $S_n = \sum_{k=1}^n X_k$ is called the associated random walk.

In the sequel we assume

$$X_1 \in \mathfrak{L}^2 \quad \wedge \quad \mathrm{E}(X_1) = 0 \quad \wedge \quad \mathrm{Var}(X_1) = \sigma^2 > 0.$$

Remark 1. For every $\varepsilon > 0$, with probability one,

$$\lim_{n \to \infty} \frac{S_n}{\sqrt{n} \cdot (\log n)^{1/2 + \varepsilon}} = 0,$$

see Remark 2.2. On the other hand, with probability one,

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} = \infty \quad \land \quad \liminf_{n \to \infty} \frac{S_n}{\sqrt{n}} = -\infty,$$

see Example 5.5.

Question: precise description of the fluctuation of $(S_n(\omega))_{n\in\mathbb{N}}$ for P-almost every ω ? In particular: existence of a deterministic sequence $(\gamma(n))_{n\in\mathbb{N}}$ of positive reals such that, with probability one,

$$\limsup_{n \to \infty} \frac{S_n}{\gamma(n)} = 1 \quad \land \quad \liminf_{n \to \infty} \frac{S_n}{\gamma(n)} = -1?$$

Notation: $L((u_n)_{n\in\mathbb{N}})$ is the set of all limit points in $\overline{\mathbb{R}}$ of a sequence $(u_n)_{n\in\mathbb{N}}$ in \mathbb{R} . Let

$$\gamma(n) = \sqrt{2n \cdot \log(\log n) \cdot \sigma^2}, \qquad n \ge 3$$

where log denotes the logarithm with base e.

Theorem 1 (Strassen's Law of the Iterated Logarithm). With probability one,

$$L\left(\left(\frac{S_n}{\gamma(n)}\right)_{n\in\mathbb{N}}\right) = [-1, 1].$$

Proof. See Bauer (1996, §33).

Corollary 1 (Hartman and Wintner's Law of the Iterated Logarithm). With probability one,

$$\limsup_{n \to \infty} \frac{S_n}{\gamma(n)} = 1 \quad \land \quad \liminf_{n \to \infty} \frac{S_n}{\gamma(n)} = -1.$$

Literature

- H. Bauer, *Probability Theory*, de Gruyter, Berlin, 1996.
- P. Billingsley, *Probability and Measure*, Wiley, New York, first edition 1979, third edition 1995.
- Y. S. Chow, H. Teicher, *Probability Theory*, Springer, New York, first editon 1978, third edition 1997.
- R. M. Dudley, *Real Analysis and Probability*, Cambridge University Press, Cambridge, 2002.
- J. Elstrodt, Maß- und Integrationstheorie, Springer, Berlin, first edition 1996, fifth edition, 2007.
- K. Floret, Maß- und Integrationstheorie, Teubner, Stuttgart, 1981.
- P. Gänssler, W. Stute, Wahrscheinlichkeitstheorie, Springer, Berlin, 1977.
- E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer, Berlin, 1965.
- A. Irle, Finanzmathematik, Teubner, Stuttgart, 1998.
- A. Klenke, Wahrscheinlichkeitstheorie, Springer, Berlin, first edition 2006, second edition 2008.
- K. R. Parthasarathy, *Probability Measures on Metric Spaces*, Academic Press, New York, 1967.
- A. N. Sirjaev, Wahrscheinlichkeit, Deutscher Verlag der Wissenschaften, Berlin, 1988.
- A. N. Shiryayev, *Probability*, Springer, New York, 1984.
- J. Yeh, Martingales and Stochastic Analysis, World Scientific, Singapore, 1995.

Index

σ -additive mapping, 17 σ -algebra, 3 generated by a class of sets, 5 generated by a family of mappings, 9	in mean-square, 29 in probability, 54 weak, 56 convolution, 70
σ -continuity at \emptyset , 19	counting measure, 18
σ -continuity from above, 19	covariance, 70
σ -continuity from below, 19	cylinder set, 15
σ -finite mapping, 23	Dirac measure, 18
σ -subadditivity, 19	discrete distribution, 50
absolutely continuous distribution, 51	discrete probability measure, 18
absolutely continuous measure, 34	distribution, 49
abstract integral, 27	distribution function, 53
additive mapping, 17	Dynkin class, 4
	generated by a class of sets, 5
algebra, 3 generated by a class of sets, 5 almost everywhere, 27 almost surely, 27 asymptotically negligible, 91	empirical distribution, 83 empirical distribution function, 83 essential supremum, 31
	essentially bounded function, 31
Bernoulli distribution, 50	event, 49 expectation, 52
binomial distribution, 50	exponential distribution, 51
Borel- σ -algebra, 7	exponential distribution, 51
Cauchy distribution, 52	Feller condition, 91
characteristic function, 86	finite mapping, 23
closed set, 7	Fourier transform
closed w.r.t.	of a probability measure, 85
intersections, 3	of an integrable function, 85
unions, 3 compact set, 7	geometric distribution, 50
complete measure space, 24	i.i.d, 76
completion of a measure space, 25	identically distributed, 49
content, 17	image measure, 46
convergence	independence
almost everywhere, 29	of a family of classes, 66
in \mathfrak{L}^p , 29	of a family of events, 65
in distribution, 56	of a family of random elements, 67
in mean, 29	integrable function, 27

INDEX 99

complex-valued, 85 integral, 27 of a complex-valued function, 85 of a non-negative function, 26 of a simple function, 25 over a subset, 32 joint distribution, 68	product σ -algebra, 14 product (measurable) space, 14 product measure, 45 n factors, 43 two factors, 40 product measure space, 45 n factors, 43 two factors, 40
kernel, 36 σ -finite, 36 Markov, 36	quasi-integrable mapping, 27 random element, 49
Lévy distance, 60 Lebesgue measurable set, 25 Lebesgue pre-measure, 18 limes inferior, 74	random variable, 49 random vector, 49 random walk, 95 relatively compact set of measures, 61
limes superior, 74	section
Lindeberg condition, 91	of a mapping, 37
Lyapunov condition, 91 marginal distribution, 69 measurable mapping, 8 rectangle, 13 set, 8 space, 8 measure, 17 with density, 32 measure space, 18 monotonicity, 19 monotonicity of the integral, 26 Monte Carlo algorithm, 82 normal distribution multidimensional standard, 32 one-dimensional, 51	of a set, 38 semi-algebra, 3 simple function, 11 square-integrable function, 28 standard deviation, 52 subadditivity, 19 tail σ -algebra, 73 tail (terminal) event, 73 tightness, 61 topological space, 6 trace- σ -algebra, 7 unbiased estimator, 82 uncorrelated random variables, 70 uniform distribution on a finite set, 18, 50 on a subset of \mathbb{R}^k , 32, 51 uniform integrability, 62
open set, 7	variance, 52
outer measure, 21 Poisson distribution, 50 positive semi-definite function, 86 pre-measure, 17 probability density, 32 probability measure, 17 probability space, 18	with probability one, 27