Chapter IV

Limit Theorems

Given: a sequence of random variables X,,, n € N, on a probability space (2,2, P).
Put

Sn:ZX“ n € N.

For instance, S,, might be the cumulative gain after n trials or (one of the coordinates
of) the position of a particle after n collisions.

Question: Convergence of S,,/a, for suitable weights 0 < a,, T 0o in a suitable sense?
Particular case: a, = n.

1 Zero-One Laws

Definition 1. For g-algebras 2, C 2, n € N, the corresponding tail o-algebra is
Ao = ) a( U mm)
neN m>n

and A € Uy is called a tail (terminal) event.

Example 1. Let 2, = o(X,,). Put € = Q);°, B. Then

A = ma({Xm:mZn})

neN

and
Aed, <& VneNICel: A={(X,, Xn1,...)€C}.

For instance,

{(Sn)nen converges}, {(S,/an)nen converges} € A,

and the function liminf, .. Sy/a, is As-B-measurable. However, S, as well as
liminf, .., S, are not 2A,.-B-measurable, in general. Analogously for the lim sup’s.
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74 CHAPTER 1V. LIMIT THEOREMS

Theorem 1 (Kolmogorov’s Zero-One Law). Let (2,,),en be an independent sequence
of o-algebras A, C A. Then

VAe,: P(A) €{0,1}.

Proof. We show that ., and 2., are independent (terminology), which implies
P(A) = P(A)- P(A) for every A € 2,,. Put

A=A U---UA,).
Note that 2., C 0(2,,41 U...). By Corollary II1.5.1 and Remark II1.5.1.(i)
A, A independent,

and therefore |,y A, and A, are independent, too. Thus, by Theorem II1.5.1,

0< U ﬁn> , A, independent.
neN

Finally,

mch(Ua(n) :a(Uﬁn).

neN

]

Corollary 1. Let X € 3(Q,2..). Under the assumptions of Theorem 1, X is constant
P-a.s.

Remark 1. Assume that (X,,),en is independent. Then

P({(Sn)nen converges}), P({(Sn/an)nen converges}) € {0, 1}.
In case of convergence P-a.s., lim, ., S,/a, is constant P-a.s.

Definition 2. Let A, € 2 for n € N. Then

linliann = U ﬂ A, limsup A,, = ﬂ U A,,.

neNm>n n—oo neNm>n

Remark 2.

(i) <lim inf An)c — lim sup A,

n—oo n—o0

(ii) P(lim inf An> <liminf P(A4,) < limsup P(4,) < P(lim sup An>.

n—0oo n—0oo n—o0 n—o0

(iii) If (Ap)nen is independent, then P(lim sup An) € {0, 1} (Borel’s Zero-One Law).

n—oo

Proof: Ubung 10.1
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Theorem 2 (Borel-Cantelli Lemma). Let A = limsup,,_,. A4, with 4, € 2.
(i) I >°0° P(A,) < oo then P(A) =0.
(i) If Y2, P(A,) = oo and (A, )nen is independent, then P(A) = 1.

Proof. Ad (i):

A)gp(UAm> gi::P(A

By assumption, the right-hand side tends to zero as n tends to oc.
Ad (ii): We have

P(A°) = P( hrrimfAc i ( ﬂ A )

n=1 m>n
Use 1 — z < exp(—=x) for x > 0 to obtain

14

V4 L
( ﬂ AC) [10 - P(4,0) < ] eso(=Pla) = expi= 3 Pl

By assumption, the right-hand side tends to zero as ¢ tends to co. Thus P(A¢) =0. O

Example 2. A fair coin is tossed an infinite number of times. Determine the prob-
ability that 0 occurs twice in a row infinitely often. Model: (X,,)nen is independent
and

PH{X,=0})=P{X,=1})=1/2, n € N.

Put
A, ={X, = X,,1 =0}
Then (As,)nen is independent and P(Ay,) = 1/4. Thus P(limsup,, ., A,) = 1.

Remark 3. A stronger version of Theorem 2.(ii) requires only pairwise independence,
see Bauer (1996, p. 70).

Example 3. Let (X,,),en be independent with
PU{X,=1})=p=1—-P{X, =—-1}), n €N,
with some constant p € [0,1]. Put

A =limsup{S, =0},

n—oo

and note that

AgéQloo:ﬂa({Xm:mzn}).

neN

Clearly
1/2- (S, +n) ~ B(n,p).
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Use Stirling’s Formula

to obtain
T

PUSw =00 = () 1 - T

where r = 4p - (1 —p) € [0, 1].

Suppose that
p#1/2.

Then r < 1, and therefore

ST P({S, = 0) = 3 P({Sa, = 0}) < .

The Borel-Cantelli Lemma implies
P(A)=0.
Suppose that
p=1/2.
Then - -
S P({Sh = 0}) = 3 P({Sa, = 0}) = 0,
n=0 n=0

but ({S,, = 0}),en is not independent. Using the Central Limit Theorem (De Moivre-
Laplace), one can show that P(A) = 1, see Ubung 10.2.

2 Strong Law of Large Numbers

Definition 1. (X,,).en independent and identically distributed (i.i.d.) if (X, )nen i8
independent and
VnéeN: PXn = PX

1

Throughout this section: (X,,),en independent.

Put
C = {(Sn)neN converges in R}.

By Remark 1, P(C) € {0, 1}.
First we provide sufficient conditions for P(C') = 1 to hold.

Theorem 1 (Hajek-Rényi inequality). If
by >by>--->0,>0

and

Vie{l,...,n}: X; € £2AE(X;) =0,
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then i
P({ sup by - |Sk| > 1}) < be - Var(X;).
1<k<n -
In particular, for by = --- = b, = 1/e > 0 (Kolmogorov’s inequality)

P({ sup |Sk| > 6}) < 5—12 - Var(S,,).

1<k<n

Proof. See Génssler, Stute (1977, p. 98) for the Hajek-Rényi inequality. Here: the
Kolmogorov inequality. Let 1 < k& < n. We show that

VBea({Xy,...,X3}): /Bs,idpg/BsidP. (1)
Note that
S2 = (S, — Sr)?+ 25,5, — S7 = (Sp — Sk)? + 25k(Sn — Sk) + S;.
Moreover, for B € o({X1,..., Xx}),

lg - Spis o({Xy,..., Xi})-B-measurable,
Sp — Sk is 0({ X1, ..., Xp})-B-measurable,

see Theorem I1.2.8. Use Theorem III.5.4 to obtain
1g - Sk, S, — Sk independent.
Hence Theorem III1.5.6 yields
E(1p - Sk - (S — Sk)) = E(1p - Sk) - E(S, — Sk) =0,
and thereby
E(1p-S2) >2-E(1p- Sk (S, — Sk) + E(1p - S§) = E(15 - S}).

This completes the proof of (1).
Put

k—1
A = ({1Se < e} n{ISk| = €}
/=1

Then Ay € o({X1,...,Xk}), and by (1)

e P({ sup |Sk| > 5}) =e%. ZH:P(A;.C) < z":/A SZdP
k=1 k=17 A

1<k<n
<> | Siap< / S2dP = Var(S,).
k=1 A% @
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Theorem 2. If
VneN: X, £2AE(X,) =0

and .
Z Var(X;) < oo,
i=1

then
P(C)=1.

Proof. Clearly

wel & Ve>03IneNVEeN|S, 1 x(w)— Sp(w)] <e.

Put
M = inf sup |S,1x — Sul.
neN pen
Then
C ={M =0}.

Let € > 0. For every n € N

{M >¢e} C {sup\SnJrk S| > 5},

keN
and

{ sup 1Suin—Sul > e} 1 {iggwm — Sl > e}

1<k<r

as r tends to oo. Hence

P{M >¢}) < TILIEOP<{ sup |Spir — Snl > 5})

1<k<r

and Kolmogorov’s inequality yields

n-+r o]

1
P({ sup |Sp+r — Sn >€}><— Var(X;) < — -
2 [ 2 s v
Thus P({M > €}) = 0 for every € > 0, which implies P({M > 0}) = 0. O

Example 1. Let (Y,,)nen be id.d. with Py, = 1/2- (1 +e_1). Then E(Y,) = 0 and
Var(Y,) =1, so that >7°  Y; - 3 converges P-a.s.

In the sequel: 0 < a,, T oco.

We now study convergence almost surely of (S,,/a,)nen-
Lemma 1 (Kronecker’s Lemma). For every sequence (z,),en in R
o0 n

Z i converges = lim 1 . sz =0.

. n—oo (,
=1 " "=l
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Proof. Put ¢ =Y x;/a; and ¢, = Y1, x;/a;. It is straightforward to verify that

n

n
1 1
—g xz‘:Cn——'E (ai_ai—l)'ci—l-
o —— p,

1=

i=2
Moreover, since a;_1 < a; and lim;_, ., a; = o0,

n

. 1
c= lim — - E (a; —a;—1) - ¢i_1.
1=

Theorem 3 (Strong Law of Large Numbers, £2 Case). If
= 1
VneN: X, e g2 Z—Q- < o0 (2)

then

n

LS - mx) B o

a
nooi=1

Proof. Put Y,, = 1/a, - (X, — E(X,,)). Then E(Y,,) = 0 and (Y,,)nen is independent.

Moreover,
o

= 1
> Var(yi) =) — - Var(X;) < oo.
i=1 J

i=1
Thus 2, Y; converges P-a.s. due to Theorem 2. Apply Lemma 1. O]
Remark 1. In particular, if (X,),ey is i.i.d. and X; € £%, then Theorem 3 with

a, = n implies

ZX =23 B(X),

see Einfithrung in die Stochastik. In fact, this conclusion already holds if X; € £,
see Theorem 4 below.

Remark 2. Assume
sup Var(X,,) < oo.

neN

Then another possible choice of a, in Theorem 3 is

a, = v/n - (logn)"/?**
for any € > 0, and we have

lim —Sn — E(Sh)

n—oo an

=0 P-a.s.

Note that lim,, ., a,/n = 0. Precise description of the fluctuation of S, (w) for P-a.e.
w € Q: law of the iterated logarithm, see Section 6. See also Ubung 10.2.
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Lemma 2. Let U;, V;, W € 3(Q,2() such that

Y P{U#Vi}) <o
i=1
Then
1 " P-a.s. 1 - P-a.s.
. 1% Z. f W,
- ; Uy — & - ; Vi —
Proof. The Borel-Cantelli Lemma implies P(limsup, . {U; # V;}) = 0. O

Lemma 3. For X € 3,(Q,2)

W

E(X)< Y P{X >k}) <EX)+1

iy
o

(Cf. Corollary 11.8.2.)

Proof. We have

Z / X dP,
k—1<X <k}

=1
and therefore

i {k—1<X<k:}:§:P{X>k:}

as well as
i P{k—-1<X<k})> iP({X>k})—1.

[
Theorem 4 (Strong Law of Large Numbers, i.i.d. Case). Let (X, ),en be i.i.d. Then

P-a.s.

3Z7e€3(QA): —-5,27 o X egh
in which case Z = E(X;) P-as.

Proof. ‘=" Clearly
P{|X1| > n}) = P(A,)

where
A, = {|X,| > n}.
Note that
1 Xn:l.gn_n__l.L.Sn_lp_aio
n n n n—1
Hence
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Since (A,)nen is independent, the Borel-Cantelli Lemma implies

i P(A,) < oo.

Use Lemma 3 to obtain E(|X;]) < oc.

‘<" Consider the truncated random variables

v _ {Xn if | X, < n

0 otherwise.

We have
=1
Z o Var(Y;) < oc. (3)
i=1
Proof: Observe that
Var(¥) < B(Y2) = ST B(Y? - g0 Vi)
k=1
=Y E(X] Lpoao | X)) <) K- P({k - 1< Xy < k}).
k=1 k=1
Thus
Zi_g'var(y;) <Y KPPk -1<X <k’})'zi—2
i=1 k=1 i=k
<23 k-P({k—-1<|X)| <k}) <2 (B(X1])+1) < oo,
k=1
cf. the proof of Lemma 3.
Moreover,
> P({X; #Y}) < oo, (4)
i=1

since, by Lemma 3,

ZP({Xi #£Yi}) =) P{IXi|=zi}) < ZP({IXl\ >i}) SE([X]) +1 < oo.

i=1

Furthermore,
lim E(Y,,) = E(X4), (5)

n—oo
according to the dominated convergence theorem.
We obtain

IBES
~L Y (Y- E(Y) o
n

=1
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from Theorem 3 and (3). Due to (5)

lim L3 (E(Y) - B(X) = 0.

n—oo M,
=1

Thus

SRS

D (Y- E(X)) =0,

Finally, by Lemma 2 and (4)

3

P-a.s

(X; — E(X;)) — 0.

1

S|

-
Il

Theorem 5. Let (X,,)en be i.i.d.
(i) If E(X]) < oo AE(X;") = oo then

1 P-a.s.
— -5, — oo.
n

(ii) If E(|X3|) = oo then

= oo P-a.s.

1
lim sup’ — - S
n

n—oo

Proof. (i) follows from Theorem 4, and (ii) is an application of the Borel-Cantelli
Lemma, see Génssler, Stute (1977, p. 131). m

Remark 3. We already have S,,/n Pag E(X,) if the random variables X, are iden-

tically distributed, P-integrable, and pairwise independent. See Bauer (1996, §12).

Remark 4. The basic idea of Monte-Carlo algorithms: to compute a quantity a € R
(i) find a probability measure p on (R, ) such that [,z u(dz) = a,
(i) take an i.i.d. sequence (X, )neny With Px, = p and approximate a by 1/n- S, (w).
Clearly S,,/n is an unbiased estimator for a, i.e.,
E (l . Sn> = a.
n

Due to the Strong Law of Large Numbers S, /n converges almost surely to a. If
X, € £%, then

E(% .S, — a>2 = Var(% .S, — a) = Vaur(l . Z(X’ — CL)) = % - Var(X3),
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i.e., the variance of X7 is the key quantity for the error of the Monte Carlo algorithm
in the mean square sense. Moreover,

n

Y (X = S /n)? S Var(X))

=1

1
n—1

provides a simple estimator for this variance, see Einfiihrung in die Stochastik.

Applications: see, e.g., Ubung 10.3 and 10.4.

Remark 5. Let (X,,),en be id.d. with u = Py, and corresponding distribution func-
tion F' = Fx,. Suppose that p is unknown, but observations X;(w), ..., X,(w) are
available for ‘estimation of u’.

Fix C' € 8. Due to Theorem 4
1 a P-a.s.
—-ZlcoXi — u(C).
[
The particular case C' = |—o00, z] leads to the definitions
L.
Fn(l',u)):—‘HZG{1,...,n}in(UJ)SlL‘H, r € R,
n
and
1 n
fn (W) = o D exiw
i=1

of the empirical distribution function F,(-,w) and the empirical distribution p,(-,w),
resp. We obtain

VeeRIAeUA: PA) =1A (\m €A lim Fy(z,w) :F(a:)>.
Therefore

JA€A: P(A)=1A (vqe@\m €A: lim Fy(qw) :F(q)),
which implies

JAe: P(A)zl/\(VwGA: Mn(-,w)Lu>,

see Helly’s Theorem (ii), p. 61, and Theorem II1.3.2.
A refined analysis yields the Glivenko-Cantelli Theorem

JAeA: P(A)=1A (Vu) € A: lim sup |F,(z,w) — F(x)| :()),

N0 zeR

see Einfilhrung in die Stochastik.



