Chapter IV

Limit Theorems

Given: a sequence of random variables X_n , $n \in \mathbb{N}$, on a probability space $(\Omega, \mathfrak{A}, P)$. Put

$$S_n = \sum_{i=1}^n X_i, \qquad n \in \mathbb{N}.$$

For instance, S_n might be the cumulative gain after n trials or (one of the coordinates of) the position of a particle after n collisions.

Question: Convergence of S_n/a_n for suitable weights $0 < a_n \uparrow \infty$ in a suitable sense? Particular case: $a_n = n$.

1 Zero-One Laws

Definition 1. For σ -algebras $\mathfrak{A}_n \subset \mathfrak{A}$, $n \in \mathbb{N}$, the corresponding tail σ -algebra is

$$\mathfrak{A}_{\infty} = \bigcap_{n \in \mathbb{N}} \sigma \bigg(\bigcup_{m \ge n} \mathfrak{A}_m \bigg),$$

and $A \in \mathfrak{A}_{\infty}$ is called a tail (terminal) event.

Example 1. Let $\mathfrak{A}_n = \sigma(X_n)$. Put $\mathfrak{C} = \bigotimes_{i=1}^{\infty} \mathfrak{B}$. Then

$$\mathfrak{A}_{\infty} = \bigcap_{n \in \mathbb{N}} \sigma(\{X_m : m \ge n\})$$

and

$$A \in \mathfrak{A}_{\infty} \quad \Leftrightarrow \quad \forall n \in \mathbb{N} \ \exists C \in \mathfrak{C} : \ A = \{(X_n, X_{n+1}, \dots) \in C\}.$$

For instance,

$$\{(S_n)_{n\in\mathbb{N}} \text{ converges}\}, \{(S_n/a_n)_{n\in\mathbb{N}} \text{ converges}\} \in \mathfrak{A}_{\infty},$$

and the function $\liminf_{n\to\infty} S_n/a_n$ is \mathfrak{A}_{∞} - $\overline{\mathfrak{B}}$ -measurable. However, S_n as well as $\liminf_{n\to\infty} S_n$ are not \mathfrak{A}_{∞} - $\overline{\mathfrak{B}}$ -measurable, in general. Analogously for the \limsup 's.

Theorem 1 (Kolmogorov's Zero-One Law). Let $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ be an independent sequence of σ -algebras $\mathfrak{A}_n\subset\mathfrak{A}$. Then

$$\forall A \in \mathfrak{A}_{\infty}: \ P(A) \in \{0,1\}.$$

Proof. We show that \mathfrak{A}_{∞} and \mathfrak{A}_{∞} are independent (terminology), which implies $P(A) = P(A) \cdot P(A)$ for every $A \in \mathfrak{A}_{\infty}$. Put

$$\overline{\mathfrak{A}}_n = \sigma(\mathfrak{A}_1 \cup \cdots \cup \mathfrak{A}_n).$$

Note that $\mathfrak{A}_{\infty} \subset \sigma(\mathfrak{A}_{n+1} \cup \dots)$. By Corollary III.5.1 and Remark III.5.1.(i)

$$\overline{\mathfrak{A}}_n, \mathfrak{A}_{\infty}$$
 independent,

and therefore $\bigcup_{n\in\mathbb{N}} \overline{\mathfrak{A}}_n$ and \mathfrak{A}_{∞} are independent, too. Thus, by Theorem III.5.1,

$$\sigma\left(\bigcup_{n\in\mathbb{N}}\overline{\mathfrak{A}}_n\right),\mathfrak{A}_{\infty}$$
 independent.

Finally,

$$\mathfrak{A}_{\infty} \subset \sigma \bigg(\bigcup_{n \in \mathbb{N}} \mathfrak{A}_n\bigg) = \sigma \bigg(\bigcup_{n \in \mathbb{N}} \overline{\mathfrak{A}}_n\bigg).$$

Corollary 1. Let $X \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A}_{\infty})$. Under the assumptions of Theorem 1, X is constant P-a.s.

Remark 1. Assume that $(X_n)_{n\in\mathbb{N}}$ is independent. Then

$$P(\{(S_n)_{n\in\mathbb{N}} \text{ converges}\}), P(\{(S_n/a_n)_{n\in\mathbb{N}} \text{ converges}\}) \in \{0,1\}.$$

In case of convergence P-a.s., $\lim_{n\to\infty} S_n/a_n$ is constant P-a.s.

Definition 2. Let $A_n \in \mathfrak{A}$ for $n \in \mathbb{N}$. Then

$$\liminf_{n \to \infty} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} A_m, \qquad \limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_m.$$

Remark 2.

(i)
$$\left(\liminf_{n\to\infty} A_n\right)^c = \limsup_{n\to\infty} A_n^c$$
.

(ii)
$$P\left(\liminf_{n\to\infty} A_n\right) \le \liminf_{n\to\infty} P(A_n) \le \limsup_{n\to\infty} P(A_n) \le P\left(\limsup_{n\to\infty} A_n\right)$$
.

(iii) If $(A_n)_{n\in\mathbb{N}}$ is independent, then $P\left(\limsup_{n\to\infty}A_n\right)\in\{0,1\}$ (Borel's Zero-One Law).

Proof: Übung 10.1

Theorem 2 (Borel-Cantelli Lemma). Let $A = \limsup_{n \to \infty} A_n$ with $A_n \in \mathfrak{A}$.

- (i) If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then P(A) = 0.
- (ii) If $\sum_{n=1}^{\infty} P(A_n) = \infty$ and $(A_n)_{n \in \mathbb{N}}$ is independent, then P(A) = 1.

Proof. Ad (i):

$$P(A) \le P\left(\bigcup_{m>n} A_m\right) \le \sum_{m=n}^{\infty} P(A_m).$$

By assumption, the right-hand side tends to zero as n tends to ∞ .

Ad (ii): We have

$$P(A^c) = P(\liminf_{n \to \infty} A_n^c) \le \sum_{n=1}^{\infty} P\left(\bigcap_{m > n} A_m^c\right).$$

Use $1 - x \le \exp(-x)$ for $x \ge 0$ to obtain

$$P\bigg(\bigcap_{m=n}^{\ell} A_m^c\bigg) = \prod_{m=n}^{\ell} (1 - P(A_m)) \le \prod_{m=n}^{\ell} \exp(-P(A_m)) = \exp(-\sum_{m=n}^{\ell} P(A_m)).$$

By assumption, the right-hand side tends to zero as ℓ tends to ∞ . Thus $P(A^c) = 0$.

Example 2. A fair coin is tossed an infinite number of times. Determine the probability that 0 occurs twice in a row infinitely often. Model: $(X_n)_{n\in\mathbb{N}}$ is independent and

$$P({X_n = 0}) = P({X_n = 1}) = 1/2,$$
 $n \in \mathbb{N}.$

Put

$$A_n = \{X_n = X_{n+1} = 0\}.$$

Then $(A_{2n})_{n\in\mathbb{N}}$ is independent and $P(A_{2n})=1/4$. Thus $P(\limsup_{n\to\infty}A_n)=1$.

Remark 3. A stronger version of Theorem 2.(ii) requires only pairwise independence, see Bauer (1996, p. 70).

Example 3. Let $(X_n)_{n\in\mathbb{N}}$ be independent with

$$P({X_n = 1}) = p = 1 - P({X_n = -1}),$$
 $n \in \mathbb{N},$

with some constant $p \in [0,1]$. Put

$$A = \limsup_{n \to \infty} \left\{ S_n = 0 \right\},\,$$

and note that

$$A \notin \mathfrak{A}_{\infty} = \bigcap_{n \in \mathbb{N}} \sigma(\{X_m : m \ge n\}).$$

Clearly

$$1/2 \cdot (S_n + n) \sim B(n, p)$$
.

Use Stirling's Formula

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

to obtain

$$P(\lbrace S_{2n} = 0 \rbrace) = {2n \choose n} \cdot p^n \cdot (1-p)^n \approx \frac{r^n}{\sqrt{\pi n}},$$

where $r = 4p \cdot (1 - p) \in [0, 1]$.

Suppose that

$$p \neq 1/2$$
.

Then r < 1, and therefore

$$\sum_{n=0}^{\infty} P(\{S_n = 0\}) = \sum_{n=0}^{\infty} P(\{S_{2n} = 0\}) < \infty.$$

The Borel-Cantelli Lemma implies

$$P(A) = 0.$$

Suppose that

$$p = 1/2$$
.

Then

$$\sum_{n=0}^{\infty} P(\{S_n = 0\}) = \sum_{n=0}^{\infty} P(\{S_{2n} = 0\}) = \infty,$$

but $(\{S_n = 0\})_{n \in \mathbb{N}}$ is not independent. Using the Central Limit Theorem (De Moivre-Laplace), one can show that P(A) = 1, see Übung 10.2.

2 Strong Law of Large Numbers

Definition 1. $(X_n)_{n\in\mathbb{N}}$ independent and identically distributed (i.i.d.) if $(X_n)_{n\in\mathbb{N}}$ is independent and

$$\forall n \in \mathbb{N} : P_{X_n} = P_{X_1}.$$

Throughout this section: $(X_n)_{n\in\mathbb{N}}$ independent.

Put

$$C = \{(S_n)_{n \in \mathbb{N}} \text{ converges in } \mathbb{R} \}.$$

By Remark 1, $P(C) \in \{0, 1\}$.

First we provide sufficient conditions for P(C) = 1 to hold.

Theorem 1 (Hajek-Rényi inequality). If

$$b_1 \geq b_2 \geq \cdots \geq b_n > 0$$

and

$$\forall i \in \{1, \dots, n\}: X_i \in \mathfrak{L}^2 \wedge \mathrm{E}(X_i) = 0,$$

then

$$P\left(\left\{\sup_{1\leq k\leq n}b_k\cdot|S_k|\geq 1\right\}\right)\leq \sum_{i=1}^nb_i^2\cdot\operatorname{Var}(X_i).$$

In particular, for $b_1 = \cdots = b_n = 1/\varepsilon > 0$ (Kolmogorov's inequality)

$$P\left(\left\{\sup_{1\leq k\leq n}|S_k|\geq \varepsilon\right\}\right)\leq \frac{1}{\varepsilon^2}\cdot \operatorname{Var}(S_n).$$

Proof. See Gänssler, Stute (1977, p. 98) for the Hajek-Rényi inequality. Here: the Kolmogorov inequality. Let $1 \le k \le n$. We show that

$$\forall B \in \sigma(\{X_1, \dots, X_k\}) : \int_B S_k^2 dP \le \int_B S_n^2 dP. \tag{1}$$

Note that

$$S_n^2 = (S_n - S_k)^2 + 2S_n S_k - S_k^2 = (S_n - S_k)^2 + 2S_k (S_n - S_k) + S_k^2$$

Moreover, for $B \in \sigma(\{X_1, \ldots, X_k\})$,

$$1_B \cdot S_k$$
 is $\sigma(\{X_1, \dots, X_k\})$ -**B**-measurable, $S_n - S_k$ is $\sigma(\{X_{k+1}, \dots, X_n\})$ -**B**-measurable,

see Theorem II.2.8. Use Theorem III.5.4 to obtain

$$1_B \cdot S_k$$
, $S_n - S_k$ independent.

Hence Theorem III.5.6 yields

$$E(1_B \cdot S_k \cdot (S_n - S_k)) = E(1_B \cdot S_k) \cdot E(S_n - S_k) = 0,$$

and thereby

$$E(1_B \cdot S_n^2) \ge 2 \cdot E(1_B \cdot S_k \cdot (S_n - S_k)) + E(1_B \cdot S_k^2) = E(1_B \cdot S_k^2).$$

This completes the proof of (1).

Put

$$A_k = \bigcap_{\ell=1}^{k-1} \{ |S_{\ell}| < \varepsilon \} \cap \{ |S_k| \ge \varepsilon \}.$$

Then $A_k \in \sigma(\{X_1, \dots, X_k\})$, and by (1)

$$\varepsilon^{2} \cdot P\left(\left\{\sup_{1 \leq k \leq n} |S_{k}| \geq \varepsilon\right\}\right) = \varepsilon^{2} \cdot \sum_{k=1}^{n} P(A_{k}) \leq \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2} dP$$
$$\leq \sum_{k=1}^{n} \int_{A_{k}} S_{n}^{2} dP \leq \int_{\Omega} S_{n}^{2} dP = \operatorname{Var}(S_{n}).$$

Theorem 2. If

$$\forall n \in \mathbb{N} : X_n \in \mathfrak{L}^2 \wedge \mathrm{E}(X_n) = 0$$

and

$$\sum_{i=1}^{\infty} \operatorname{Var}(X_i) < \infty,$$

then

$$P(C) = 1.$$

Proof. Clearly

$$\omega \in C \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists n \in \mathbb{N} \ \forall k \in \mathbb{N} \ |S_{n+k}(\omega) - S_n(\omega)| < \varepsilon.$$

Put

$$M = \inf_{n \in \mathbb{N}} \sup_{k \in \mathbb{N}} |S_{n+k} - S_n|.$$

Then

$$C = \{M = 0\}.$$

Let $\varepsilon > 0$. For every $n \in \mathbb{N}$

$$\{M > \varepsilon\} \subset \Big\{ \sup_{k \in \mathbb{N}} |S_{n+k} - S_n| > \varepsilon \Big\},$$

and

$$\left\{ \sup_{1 \le k \le r} |S_{n+k} - S_n| > \varepsilon \right\} \uparrow \left\{ \sup_{k \in \mathbb{N}} |S_{n+k} - S_n| > \varepsilon \right\}$$

as r tends to ∞ . Hence

$$P(\{M > \varepsilon\}) \le \lim_{r \to \infty} P\left(\left\{\sup_{1 \le k \le r} |S_{n+k} - S_n| > \varepsilon\right\}\right),$$

and Kolmogorov's inequality yields

$$P\left(\left\{\sup_{1\leq k\leq r}|S_{n+k}-S_n|>\varepsilon\right\}\right)\leq \frac{1}{\varepsilon^2}\cdot\sum_{i=n+1}^{n+r}\operatorname{Var}(X_i)\leq \frac{1}{\varepsilon^2}\cdot\sum_{i=n+1}^{\infty}\operatorname{Var}(X_i).$$

Thus $P(\{M>\varepsilon\})=0$ for every $\varepsilon>0$, which implies $P(\{M>0\})=0$.

Example 1. Let $(Y_n)_{n\in\mathbb{N}}$ be i.i.d. with $P_{Y_1}=1/2\cdot(\varepsilon_1+\varepsilon_{-1})$. Then $\mathrm{E}(Y_n)=0$ and $\mathrm{Var}(Y_n)=1$, so that $\sum_{i=1}^\infty Y_i\cdot\frac{1}{i}$ converges P-a.s.

In the sequel: $0 < a_n \uparrow \infty$.

We now study convergence almost surely of $(S_n/a_n)_{n\in\mathbb{N}}$.

Lemma 1 (Kronecker's Lemma). For every sequence $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R}

$$\sum_{i=1}^{\infty} \frac{x_i}{a_i} \text{ converges} \quad \Rightarrow \quad \lim_{n \to \infty} \frac{1}{a_n} \cdot \sum_{i=1}^{n} x_i = 0.$$

Proof. Put $c = \sum_{i=1}^{\infty} x_i/a_i$ and $c_n = \sum_{i=1}^{n} x_i/a_i$. It is straightforward to verify that

$$\frac{1}{a_n} \cdot \sum_{i=1}^n x_i = c_n - \frac{1}{a_n} \cdot \sum_{i=2}^n (a_i - a_{i-1}) \cdot c_{i-1}.$$

Moreover, since $a_{i-1} \leq a_i$ and $\lim_{i \to \infty} a_i = \infty$,

$$c = \lim_{n \to \infty} \frac{1}{a_n} \cdot \sum_{i=2}^{n} (a_i - a_{i-1}) \cdot c_{i-1}.$$

Theorem 3 (Strong Law of Large Numbers, \mathfrak{L}^2 Case). If

$$\forall n \in \mathbb{N}: X_n \in \mathfrak{L}^2 \quad \wedge \quad \sum_{i=1}^{\infty} \frac{1}{a_i^2} \cdot \operatorname{Var}(X_i) < \infty$$
 (2)

then

$$\frac{1}{a_n} \cdot \sum_{i=1}^n (X_i - \mathrm{E}(X_i)) \stackrel{P\text{-a.s.}}{\longrightarrow} 0.$$

Proof. Put $Y_n = 1/a_n \cdot (X_n - E(X_n))$. Then $E(Y_n) = 0$ and $(Y_n)_{n \in \mathbb{N}}$ is independent. Moreover,

$$\sum_{i=1}^{\infty} \operatorname{Var}(Y_i) = \sum_{i=1}^{\infty} \frac{1}{a_i^2} \cdot \operatorname{Var}(X_i) < \infty.$$

Thus $\sum_{i=1}^{\infty} Y_i$ converges P-a.s. due to Theorem 2. Apply Lemma 1.

Remark 1. In particular, if $(X_n)_{n\in\mathbb{N}}$ is i.i.d. and $X_1\in\mathfrak{L}^2$, then Theorem 3 with $a_n=n$ implies

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i \stackrel{P\text{-a.s.}}{\longrightarrow} E(X_1),$$

see Einführung in die Stochastik. In fact, this conclusion already holds if $X_1 \in \mathcal{L}^1$, see Theorem 4 below.

Remark 2. Assume

$$\sup_{n\in\mathbb{N}} \operatorname{Var}(X_n) < \infty.$$

Then another possible choice of a_n in Theorem 3 is

$$a_n = \sqrt{n} \cdot (\log n)^{1/2 + \varepsilon}$$

for any $\varepsilon > 0$, and we have

$$\lim_{n \to \infty} \frac{S_n - \mathcal{E}(S_n)}{a_n} = 0 \text{ P-a.s.}$$

Note that $\lim_{n\to\infty} a_n/n = 0$. Precise description of the fluctuation of $S_n(\omega)$ for P-a.e. $\omega \in \Omega$: law of the iterated logarithm, see Section 6. See also Übung 10.2.

Lemma 2. Let $U_i, V_i, W \in \mathfrak{Z}(\Omega, \mathfrak{A})$ such that

$$\sum_{i=1}^{\infty} P(\{U_i \neq V_i\}) < \infty.$$

Then

$$\frac{1}{n} \cdot \sum_{i=1}^{n} U_i \stackrel{P\text{-a.s.}}{\longrightarrow} W \quad \Leftrightarrow \quad \frac{1}{n} \cdot \sum_{i=1}^{n} V_i \stackrel{P\text{-a.s.}}{\longrightarrow} W.$$

Proof. The Borel-Cantelli Lemma implies $P(\limsup_{i\to\infty} \{U_i \neq V_i\}) = 0.$

Lemma 3. For $X \in \mathfrak{Z}_{+}(\Omega,\mathfrak{A})$

$$E(X) \le \sum_{k=0}^{\infty} P(\{X > k\}) \le E(X) + 1.$$

(Cf. Corollary II.8.2.)

Proof. We have

$$E(X) = \sum_{k=1}^{\infty} \int_{\{k-1 < X \le k\}} X \, dP,$$

and therefore

$$E(X) \le \sum_{k=1}^{\infty} k \cdot P(\{k-1 < X \le k\}) = \sum_{k=0}^{\infty} P(\{X > k\})$$

as well as

$$E(X) \ge \sum_{k=1}^{\infty} (k-1) \cdot P(\{k-1 < X \le k\}) \ge \sum_{k=0}^{\infty} P(\{X > k\}) - 1.$$

Theorem 4 (Strong Law of Large Numbers, i.i.d. Case). Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d. Then

$$\exists Z \in \mathfrak{Z}(\Omega, \mathfrak{A}): \ \frac{1}{n} \cdot S_n \stackrel{P\text{-a.s.}}{\longrightarrow} Z \quad \Leftrightarrow \quad X_1 \in \mathfrak{L}^1,$$

in which case $Z = E(X_1)$ P-a.s.

Proof. ' \Rightarrow ': Clearly

$$P(\{|X_1| > n\}) = P(A_n)$$

where

$$A_n = \{|X_n| > n\}.$$

Note that

$$\frac{1}{n} \cdot X_n = \frac{1}{n} \cdot S_n - \frac{n-1}{n} \cdot \frac{1}{n-1} \cdot S_{n-1} \stackrel{P\text{-a.s.}}{\longrightarrow} 0.$$

Hence

$$P(\limsup_{n\to\infty} A_n) = 0.$$

Since $(A_n)_{n\in\mathbb{N}}$ is independent, the Borel-Cantelli Lemma implies

$$\sum_{n=1}^{\infty} P(A_n) < \infty.$$

Use Lemma 3 to obtain $E(|X_1|) < \infty$.

'←': Consider the truncated random variables

$$Y_n = \begin{cases} X_n & \text{if } |X_n| < n \\ 0 & \text{otherwise.} \end{cases}$$

We have

$$\sum_{i=1}^{\infty} \frac{1}{i^2} \cdot \text{Var}(Y_i) < \infty. \tag{3}$$

Proof: Observe that

$$\operatorname{Var}(Y_i) \le \operatorname{E}(Y_i^2) = \sum_{k=1}^i \operatorname{E}(Y_i^2 \cdot 1_{[k-1,k[} \circ |Y_i|))$$

$$= \sum_{k=1}^i \operatorname{E}(X_i^2 \cdot 1_{[k-1,k[} \circ |X_i|)) \le \sum_{k=1}^i k^2 \cdot P(\{k-1 \le |X_1| < k\}).$$

Thus

$$\sum_{i=1}^{\infty} \frac{1}{i^2} \cdot \text{Var}(Y_i) \le \sum_{k=1}^{\infty} k^2 \cdot P(\{k-1 \le |X_1| < k\}) \cdot \sum_{i=k}^{\infty} \frac{1}{i^2}$$

$$\le 2 \cdot \sum_{k=1}^{\infty} k \cdot P(\{k-1 \le |X_1| < k\}) \le 2 \cdot (\mathbb{E}(|X_1|) + 1) < \infty,$$

cf. the proof of Lemma 3.

Moreover,

$$\sum_{i=1}^{\infty} P(\{X_i \neq Y_i\}) < \infty, \tag{4}$$

since, by Lemma 3,

$$\sum_{i=1}^{\infty} P(\{X_i \neq Y_i\}) = \sum_{i=1}^{\infty} P(\{|X_i| \geq i\}) \leq \sum_{i=0}^{\infty} P(\{|X_1| > i\}) \leq \mathrm{E}(|X_1|) + 1 < \infty.$$

Furthermore,

$$\lim_{n \to \infty} \mathcal{E}(Y_n) = \mathcal{E}(X_1),\tag{5}$$

according to the dominated convergence theorem.

We obtain

$$\frac{1}{n} \cdot \sum_{i=1}^{n} (Y_i - E(Y_i)) \stackrel{P\text{-a.s.}}{\longrightarrow} 0$$

from Theorem 3 and (3). Due to (5)

$$\lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} (\mathrm{E}(Y_i) - \mathrm{E}(X_i)) = 0.$$

Thus

$$\frac{1}{n} \cdot \sum_{i=1}^{n} (Y_i - E(X_i)) \stackrel{P\text{-a.s.}}{\longrightarrow} 0.$$

Finally, by Lemma 2 and (4)

$$\frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \mathcal{E}(X_i)) \xrightarrow{P\text{-a.s.}} 0.$$

Theorem 5. Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d.

(i) If $E(X_1^-) < \infty \wedge E(X_1^+) = \infty$ then

$$\frac{1}{n} \cdot S_n \stackrel{P\text{-a.s.}}{\longrightarrow} \infty.$$

(ii) If $E(|X_1|) = \infty$ then

$$\limsup_{n \to \infty} \left| \frac{1}{n} \cdot S_n \right| = \infty \ P\text{-a.s.}$$

Proof. (i) follows from Theorem 4, and (ii) is an application of the Borel-Cantelli Lemma, see Gänssler, Stute (1977, p. 131). \Box

Remark 3. We already have $S_n/n \xrightarrow{P\text{-a.s.}} E(X_1)$ if the random variables X_n are identically distributed, P-integrable, and pairwise independent. See Bauer (1996, §12).

Remark 4. The basic idea of *Monte-Carlo algorithms*: to compute a quantity $a \in \mathbb{R}$

- (i) find a probability measure μ on $(\mathbb{R}, \mathfrak{B})$ such that $\int_{\mathbb{R}} x \, \mu(dx) = a$,
- (ii) take an i.i.d. sequence $(X_n)_{n\in\mathbb{N}}$ with $P_{X_1}=\mu$ and approximate a by $1/n\cdot S_n(\omega)$.

Clearly S_n/n is an unbiased estimator for a, i.e.,

$$E\left(\frac{1}{n}\cdot S_n\right) = a.$$

Due to the Strong Law of Large Numbers S_n/n converges almost surely to a. If $X_1 \in \mathcal{L}^2$, then

$$E\left(\frac{1}{n}\cdot S_n - a\right)^2 = Var\left(\frac{1}{n}\cdot S_n - a\right) = Var\left(\frac{1}{n}\cdot \sum_{i=1}^n (X_i - a)\right) = \frac{1}{n}\cdot Var(X_1),$$

i.e., the variance of X_1 is the key quantity for the error of the Monte Carlo algorithm in the mean square sense. Moreover,

$$\frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - S_n/n)^2 \stackrel{P\text{-a.s.}}{\longrightarrow} \operatorname{Var}(X_1)$$

provides a simple estimator for this variance, see Einführung in die Stochastik. Applications: see, e.g., Übung 10.3 and 10.4.

Remark 5. Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d. with $\mu = P_{X_1}$ and corresponding distribution function $F = F_{X_1}$. Suppose that μ is unknown, but observations $X_1(\omega), \ldots, X_n(\omega)$ are available for 'estimation of μ '.

Fix $C \in \mathfrak{B}$. Due to Theorem 4

$$\frac{1}{n} \cdot \sum_{i=1}^{n} 1_{C} \circ X_{i} \xrightarrow{P\text{-a.s.}} \mu(C).$$

The particular case $C =]-\infty, x]$ leads to the definitions

$$F_n(x,\omega) = \frac{1}{n} \cdot |\{i \in \{1,\ldots,n\} : X_i(\omega) \le x\}|, \qquad x \in \mathbb{R},$$

and

$$\mu_n(\cdot,\omega) = \frac{1}{n} \cdot \sum_{i=1}^n \varepsilon_{X_i(\omega)}$$

of the empirical distribution function $F_n(\cdot, \omega)$ and the empirical distribution $\mu_n(\cdot, \omega)$, resp. We obtain

$$\forall x \in \mathbb{R} \ \exists A \in \mathfrak{A} : \ P(A) = 1 \land \Big(\forall \omega \in A : \lim_{n \to \infty} F_n(x, \omega) = F(x) \Big).$$

Therefore

$$\exists A \in \mathfrak{A} : P(A) = 1 \land \Big(\forall q \in \mathbb{Q} \ \forall \omega \in A : \lim_{n \to \infty} F_n(q, \omega) = F(q) \Big),$$

which implies

$$\exists A \in \mathfrak{A} : P(A) = 1 \land \left(\forall \omega \in A : \mu_n(\cdot, \omega) \xrightarrow{\mathbf{w}} \mu \right),$$

see Helly's Theorem (ii), p. 61, and Theorem III.3.2.

A refined analysis yields the Glivenko-Cantelli Theorem

$$\exists A \in \mathfrak{A}: \ P(A) = 1 \land \Big(\forall \omega \in A: \ \lim_{n \to \infty} \sup_{x \in \mathbb{R}} |F_n(x, \omega) - F(x)| = 0 \Big),$$

see Einführung in die Stochastik.