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(i) F' is non-decreasing and right-continuous,
(ii)) Yo € Cont(F) : lim;_o F,, () = F(x).

i

Proof: Ad (i): Obviously F' is non-decreasing. For x € R and ¢ > 0 take d5 > 0 such
that
VgeQnlz,z+ 6| G(q) < F(x)+e.

Thus, for z € |x,x + d2,
F(x) < F(z) < F(z) +e.

Ad (ii): If z € Cont(F') and € > 0 take 6; > 0 such that
F(x) —e < F(z — ).
Thus, for g1, g2 € Q with
T—0 <@ <T<q<x+ 0,
we get

F(z)—e < F(x —6) < G(q) < liminf F,,(z) < limsup F,,(x)

1— 00 1—00

< G(g) < F(x) +e.

Claim:
lim F(z)=0 A lim F(z) =1

Proof: For ¢ > 0 take m € Q such that
VneN: P,(]J-m,m]) >1—c¢.
Thus
Gm) = Gl=m) = lim (Fy,(m) = Fy,(=m)) = lim P, (=m,m]) > 1 <.
Since F(m) > G(m) and F(—m — 1) < G(—m), we obtain
Fm)—F(-m—-1)>1—c¢.

It remains to apply Theorems 1.3 and 2. O

4 Uniform Integrability

In the sequel: X,,, X random variables on a common probability space (2,2, P).

Definition 1. (X,,),en uniformly integrable (u.i.) if

lim sup/ | X,| dP = 0.
{1 Xn|=a}

@00 neN
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Remark 1.
(i) (Xo)neny wi. = (Vn eN: X, € £') Asup,cy [|[Xnll1 < co.
(i) IY € £1VneN: [Xo| <V = (Xo)nen i

(ili) dp>1 (Vne N: X, € £°) Asup, ey || Xnllp < 00 = (X )nen wi.

Proof: [y noy [XaldP =1/a?"1- [0 a7 X, dP < 1/art - || X, J5.

Example 1. For the uniform distribution P on [0, 1] and
Xp=mn-1p1/m

we have X,, € £! and || X,,||; = 1, but for any o > 0 and n > «
/ X, dP = n- P([0,1/n]) =
{IXn]>a}

so that (X, )nen is not u.i.

Lemma 1. (X,,),en u.d. iff

sup E(]X;) < oo

neN

and

Ve>030>0VAecdA: PA) <o = Sup/|X|dP<€.

neN

Proof. ‘=": For (1), see Remark 1.(i). Moreover,

/]Xn\dP_/ |Xn|dP+/ IX,.|dP
A AN{|Xn|>a} AN{| Xn|<a}

g/ | Xn|dP + a - P(A).
{IXn|>a}
For € > 0 take o > 0 with

sup/ | X, | dP < /2
{|Xn|>a}

neN

and 6 = ¢/(2a) to obtain (2).
‘<" Put M = sup,,cy E(|X,]). Then

Mz/ 1X,|dP > o P({|X,] > a}).
{1 Xn|>a}
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Hence P({|X,| > a}) < M/a. Let € > 0, take 6 > 0 according to (2) to obtain for

a>M/y

sup/ | X,| dP < e.
neN J{|Xn|>a}
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Theorem 1. Let 1 < p < oo, and assume X,, € £ for every n € N. Then
(X7 )nen converges in £°
iff
(Xn)nen converges in probability A (| X,|P)nen is w.i.
Proof. ‘=": Assume X, ~, X. From Remark 2.1 we get X, £, X. For every

Aed
[1a - Xall, < 114 (Xn = X)[|p + |14 - X,

Take A = Q) to obtain sup,,cy E(|X,[P) < co. Let € > 0, take k& € N such that

sup || X, — X||, <e. (3)

n>k

Put Xy = 0. Note that

k
sup |Xn—X|p§Z|Xn—X|p€£1.

0<n<k s
Hence, by Remark 1.(ii),
(|X1 _X|pa'--7|Xk_X|p7|X|pv |X|p7) u.i.
By Lemma 1
P(A)<d = sup |la- (X —X)|, <e.
0<n<k

for a suitable § > 0. Together with (3) this implies

PA) <6 = supllia-Xall, <2-<
neN

‘=" Let ¢ >0, put A= A4,,, ={|X,, — X,| >¢}. Then

[ Xm — Xallp < 1114 (X — Xo)[lp + [[1ae - (Xin — Xo) [l
< ||1A ’ Xm”p + ||1A ’ Xn”p +e.

By assumption X, — X for some X € 3(02,20). Take § > 0 according to (2) for
(|Xn|?)nen, and note that

Apn C{|Xm — X| > e/2}U{|X, — X| >¢/2}.
Hence, for m, n sufficiently large,
P(A,,,) <9,

which implies
1 X — Xl <27 4¢.

Apply Theorem I1.6.3. [
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Remark 2.

(i) Theorem 1 yields a generalization of Lebesgue’s convergence theorem:

If X, € £! for every n € N and X, 723 X then

(Xp)new wi. = X e £AX, =5 X

(ii) Uniform integrability is a property of the distributions only.

Theorem 2.
X, -5 X = E(X)) < lminfE(X.)).

Proof. From Skorohod’s Theorem 3.4 we get a probability space (ﬁ, évl, ﬁ) with ran-
dom variables X,,, X such that

ﬁ—a.s. =

X, %X A Pg =Py, A Pg=Px.
Thus E(|X|) = E(|X|) and E(|X,,|) = E(|X,.|). Apply Fatou’s Lemma I1.5.2. O
Theorem 3. If
Xp -5 X A (Xo)new ud.
then
Xeg A lim E(X,) =EX).

n—oo

Proof. Notation as previously. Now (|)?n|)neN is u.i., see Remark 2.(ii). Hence, by
Remark 2.(i), X € £! and X, <, X. Thus E(|X]) < oo and

lim E(X,) = lim BE(X,) = E(X) = E(X).

n—oo n—o0

O

Example 2. Example 1 continued. With X = 0 we have X, s x , and therefore
X, -5 X. But E(X,,) = 1 > 0 = E(X).

5 Independence

‘...the concept of independence ... plays a central role in probability theory; it is precisely
this concept that distinguishes probability theory from the general theory of measure spaces’,
see Shiryayev (1984, p. 27).

In the sequel, (2,2, P) denotes a probability space and [ is a non-empty set.
Definition 1. Let A; € 2 for i € I. Then (A;);es is independent if
P(N4) = X Py (1)
ieS €S

for every S € Po(I). Elementary case: |I]| = 2.
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In the sequel, &; C A for i € I.

Definition 2. (&;);cs is independent if (1) holds for every S € By(I) and all A; € &,
forve S.

Remark 1.
(i) (&;);er independent A Vi€ I : ¢ C¢ = (éi)ig independent.
(i) (&;)ier independent < V.S € Po(I) : (&;)ies independent.

Lemma 1.
(€,)ier independent = (6(&;));e; independent.

Proof. Without loss of generality, I = {1,...,n} and n > 2, see Remark 1.(ii). Put
D, ={Aci(€): ({A}, €, ..., ¢,) independent}.
Then ®; is a Dynkin class and &; C ©1, hence §(&;) = ©;. Thus
(0(€y), €&y, ..., ¢,) independent.

Repeat this step for 2,... ., n. m
Theorem 1. If

(&;)ier independent A Vi € [: € closed w.r.t. intersections (2)

then
(0(€;));er independent.
Proof. Use Theorem I1.1.2 and Lemma 1. O
Corollary 1. Assume that I = J,.; I; for pairwise disjoint sets /; # 0. If (2) holds,
then
(U( U in) > independent.
i€l jeJ

Proof. Let

é]:{ﬂAZSE’BO(I])/\AZEGl fOI‘iES}.

€S

Then éj is closed w.r.t. intersections and (éj) is independent. Finally

0(9 ezi) = o(€,)).

O

In the sequel, (€2;,%;) denotes a measurable space for i € I, and X; : Q@ — ; is
2A-2,-measurable for i € 1.
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Definition 3. (X;);cs is independent if (0(X;));er is independent.

Example 1. Actually, the essence of independence. Assume that

(2,9, P) = (>< i, Q)i X B)

el icl el
for probability measures P; on ;. Let
Xi = 7.

Then, for S € Po(l) and A; € A; fori € S

P(ﬂ{Xi € Ai}> - p(x A x X Q) = X P(A) = X P{X: € 4}).

icS €S 1€I\S €S €S
Hence (7;);cs is independent. Furthermore, Px, = P,.
Recall the question that was posed in the introductory Example I.2.
Theorem 2. Given: probability spaces (£2;,2;, P;) for i € I. Then there exist
(i) a probability space (2,2, P) and
(ii) A-A;-measurable mappings X; : Q@ — Q; fori € [

such that
(Xi)ier independent A Viel: Px, =P,

Proof. See Example 1. m
Theorem 3. Let §; C X, fori € I. If
Viel: o(F) =2 A §; closed w.r.t. intersections

then
(X;)ics independent < (X;'(3;))ies independent.

Proof. Recall that o(X;) = X; () = o(X;*(5:). ‘=" See Remark 1.(i). ‘<"

)

Note that X, '(§;) is closed w.r.t. intersections. Use Theorem 1. O

Example 2. Independence of a family of random variables X, i.e., (2;,2;) = (R, B)
for i € I. In this case (X;);es is independent iff

ieS €S
Theorem 4. Let

(i) 1 =U,es1; for pairwise disjoint sets I; # 0,
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(ii) (ﬁj,ﬁj) be measurable spaces for j € J,

(iil) f;: Xier, i — §~2j be (@ielj Qli)—ilj measurable mappings for j € J.

Put

Y; = (Xi)ielj Q- >< Q.

iEIj
Then
(Xi)ier independent = (f; oY}),es independent.
Proof.
00 =¥ @) v (@)
i€l;

= U({Xz NS ]j}) = 0’( U XZ—I(Q(Z)) ‘

Use Corollary 1 and Remark 1.(i). O

Example 3. For an independent sequence (X;);en of random variables
(maX(Xl, X5), 1r, (X3), limsup 1/n Z XZ->
n—oo i—1
are independent.

Remark 2. Consider the mapping
X:Q— X Q:we (Xi(w))ier
iel

2;-measurable. By definition, Py(A) = P({X € A}) for A €
Q(Z', i.e.,

Clearly X is A-Q&),;

&),c; - In particular, for measurable rectangles A € ),

A= X Aix X (3)

i€S i€I\S

with S € Bo(I) and A; € 2;,

Px(A) = P( (X € A,}). (4)

i€s
Definition 4. Py is called the joint distribution of X;, i € I.

Example 4. Let Q = {1,...,6}? and consider the uniform distribution P on 2 =
PB(€2), which is a model for rolling a die twice.

Moreover, let Q; = N and 2; = () such that ®>_, A; = P(N?). Consider the

random variables

Xi(w,wa) = wy, Xo(wr,wa) = wy + wo.
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Then
AN M|

36 7

Px(A) = ACN?

where
M={keN:1<k<6Ak+1<(<k+6}

Claim: (X3, X3) are not independent. Proof:

P{X: =1} n{Xy=3}) = Px({(1,3)}) = P({(1,2)}) = 1/36
but
P({X1 = 1}) - P({X; = 3}) = 1/6- P({(1,2), (2, 1)}) = 1/3-1/36,
We add that

12

6
Px, = 21/6'51@, Px, ZZ(G— [0 —17])/36 - &
k=1

(=2

Theorem 5.
(Xi)ier independent & Px = X Px,.

iel
Proof. For A given by (3)
(X 7)) = X Pl = X PUX; € A
iel icS ies
On the other hand, we have (4). Thus ‘<=’ hold trivially. Use Theorem I1.4.4 to
obtain ‘=". O
In the sequel, we consider random variables X, i.e., (€2;,2;) = (R,B) for i € I.

Theorem 6. Let I = {1,...,n}. If
(X1,...,X,) independent A VieI: X; >0 (X; integrable)

then (X _, X; is integrable and)

E( >n< Xi> = ; E(X)).

i=1

Proof. Use Fubini’s Theorem and Theorem 5 to obtain

E( >< Xz ) = |.Z'1 """ $n|P(X1 ..... Xn)(d(xla"'7$n)>
i=1 R™
_ E7REEEE x| (Px, X x Px, )(d(z1,...,2,))
R’I’L
= X | |z Px,(dz;) = X E(]Xi]).
i=1 JR i=1

Drop | - | if the random variables are integrable. O
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Definition 5. X;, X, € £? are uncorrelated if

Theorem 7 (Bienaymé). Let Xi,..., X, € £% be pairwise uncorrelated. Then

Var ( En; Xi) = En; Var(X;).

Proof. We have

v(ZX) _ E(Zoc - E(X»))Q

=Y B(X; - E(X;)’+ ) E((X; — E(Xy) - (X; — E(X)))).

i=1 ij=1
1#]
Moreover,
E((X; — E(Xy)) - (X; — E(X;))) = E(X; - X;) — BE(X;) - E(X;).
(The latter quantity is called the covariance between X; and Xj.) O
Definition 6. The convolution product of probability measures P,..., P, on B is
defined by
P s xP,=5(P XX P,)

where

(X1, ..y Tp) =21+ 0+ Ty
Theorem 8. Let (Xi,...,X,) be independent and S =>"" | X;. Then
Pg = Px, - % Px,_.
Proof. Put X = (X3,...,X,). Since S =so (Xj,...,X,) we get
Ps = s(Px) = s(Px, x -+ X Py,).
0

Remark 3. The class of probability measure on B forms an abelian semi-group
w.r.t. %, and Px ey = P.

Theorem 9. For all probability measures P;, P, on B and every P, x P,-integrable
function f

/ F (P # Py) = / / f(x + ) Pi(dz) Po(dy).
R RJR
prlzh,l')\l thenPl*szh-)\l with

hz) = / hn(z — y) Pa(dy).

If P, = hsy - A\, additionally, then

h(x) = / ha(e — y) - haly) Ady).
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Proof. Use Fubini’s Theorem and the transformation theorem. See Billingsley (1979,
p. 230). O

Example 5.
(i) Put N(i,0) =¢,. By Theorem 9
N(p,0%) % N(pz,03) = N1 + pa, 07 + 03)
for y; € R and o; > 0.
(ii) Consider n independent Bernoulli trials, i.e., (X1,..., X,,) independent with
Px,=p-e1+(1—p)-eo

for every i € {1,...,n}, where p € [0,1]. Inductively, we get for k € {1,...,n}

k

ZXz ~ B(k,p),

i=1
see also Ubung 7.3. Thus, for any n,m € N,

B(n,p) x B(m,p) = B(n+m,p).



