(i) F is non-decreasing and right-continuous,

(ii)
$$\forall x \in \text{Cont}(F) : \lim_{i \to \infty} F_{n_i}(x) = F(x)$$
.

Proof: Ad (i): Obviously F is non-decreasing. For $x \in \mathbb{R}$ and $\varepsilon > 0$ take $\delta_2 > 0$ such that

$$\forall q \in \mathbb{Q} \cap [x, x + \delta_2[: G(q) < F(x) + \varepsilon].$$

Thus, for $z \in]x, x + \delta_2[$,

$$F(x) \le F(z) \le F(x) + \varepsilon.$$

Ad (ii): If $x \in \text{Cont}(F)$ and $\varepsilon > 0$ take $\delta_1 > 0$ such that

$$F(x) - \varepsilon \le F(x - \delta_1).$$

Thus, for $q_1, q_2 \in \mathbb{Q}$ with

$$x - \delta_1 < q_1 < x < q_2 < x + \delta_2$$

we get

$$F(x) - \varepsilon \le F(x - \delta_1) \le G(q_1) \le \liminf_{i \to \infty} F_{n_i}(x) \le \limsup_{i \to \infty} F_{n_i}(x)$$

$$\le G(q_2) \le F(x) + \varepsilon.$$

Claim:

$$\lim_{x \to -\infty} F(x) = 0 \land \lim_{x \to \infty} F(x) = 1.$$

Proof: For $\varepsilon > 0$ take $m \in \mathbb{Q}$ such that

$$\forall n \in \mathbb{N} : P_n(]-m,m]) \geq 1-\varepsilon.$$

Thus

$$G(m) - G(-m) = \lim_{i \to \infty} \left(F_{n_i}(m) - F_{n_i}(-m) \right) = \lim_{i \to \infty} P_{n_i}(]-m, m] \ge 1 - \varepsilon.$$

Since $F(m) \ge G(m)$ and $F(-m-1) \le G(-m)$, we obtain

$$F(m) - F(-m-1) > 1 - \varepsilon$$
.

It remains to apply Theorems 1.3 and 2.

4 Uniform Integrability

In the sequel: X_n , X random variables on a common probability space $(\Omega, \mathfrak{A}, P)$.

Definition 1. $(X_n)_{n\in\mathbb{N}}$ uniformly integrable (u.i.) if

$$\lim_{\alpha \to \infty} \sup_{n \in \mathbb{N}} \int_{\{|X_n| > \alpha\}} |X_n| \, dP = 0.$$

Remark 1.

- (i) $(X_n)_{n\in\mathbb{N}}$ u.i. \Rightarrow $(\forall n\in\mathbb{N}: X_n\in\mathfrak{L}^1) \wedge \sup_{n\in\mathbb{N}} ||X_n||_1 < \infty$.
- (ii) $\exists Y \in \mathfrak{L}^1 \ \forall n \in \mathbb{N} : |X_n| \leq Y \Rightarrow (X_n)_{n \in \mathbb{N}} \text{ u.i.}$
- (iii) $\exists p > 1 \ (\forall n \in \mathbb{N} : X_n \in \mathfrak{L}^p) \land \sup_{n \in \mathbb{N}} \|X_n\|_p < \infty \Rightarrow (X_n)_{n \in \mathbb{N}} \text{ u.i.}$ Proof: $\int_{\{|X_n| \ge \alpha\}} |X_n| \, dP = 1/\alpha^{p-1} \cdot \int_{\{|X_n| \ge \alpha\}} \alpha^{p-1} |X_n| \, dP \le 1/\alpha^{p-1} \cdot \|X_n\|_p^p$.

Example 1. For the uniform distribution P on [0,1] and

$$X_n = n \cdot 1_{[0,1/n]}$$

we have $X_n \in \mathfrak{L}^1$ and $||X_n||_1 = 1$, but for any $\alpha > 0$ and $n \ge \alpha$

$$\int_{\{|X_n| \ge \alpha\}} |X_n| \, dP = n \cdot P([0, 1/n]) = 1,$$

so that $(X_n)_{n\in\mathbb{N}}$ is not u.i.

Lemma 1. $(X_n)_{n\in\mathbb{N}}$ u.i. iff

$$\sup_{n\in\mathbb{N}} \mathcal{E}(|X_n|) < \infty \tag{1}$$

and

$$\forall \varepsilon > 0 \; \exists \, \delta > 0 \; \forall \, A \in \mathfrak{A} : \quad P(A) < \delta \; \Rightarrow \; \sup_{n \in \mathbb{N}} \int_{A} |X_n| \, dP < \varepsilon.$$
 (2)

Proof. ' \Rightarrow ': For (1), see Remark 1.(i). Moreover,

$$\int_{A} |X_n| dP = \int_{A \cap \{|X_n| \ge \alpha\}} |X_n| dP + \int_{A \cap \{|X_n| < \alpha\}} |X_n| dP$$

$$\leq \int_{\{|X_n| \ge \alpha\}} |X_n| dP + \alpha \cdot P(A).$$

For $\varepsilon > 0$ take $\alpha > 0$ with

$$\sup_{n\in\mathbb{N}} \int_{\{|X_n|>\alpha\}} |X_n| \, dP < \varepsilon/2$$

and $\delta = \varepsilon/(2\alpha)$ to obtain (2).

' \Leftarrow ': Put $M = \sup_{n \in \mathbb{N}} E(|X_n|)$. Then

$$M \ge \int_{\{|X_n| \ge \alpha\}} |X_n| \, dP \ge \alpha \cdot P(\{|X_n| \ge \alpha\}).$$

Hence $P(\{|X_n| \ge \alpha\}) \le M/\alpha$. Let $\varepsilon > 0$, take $\delta > 0$ according to (2) to obtain for $\alpha > M/\delta$

$$\sup_{n\in\mathbb{N}}\int_{\{|X_n|>\alpha\}}|X_n|\,dP<\varepsilon.$$

Theorem 1. Let $1 \leq p < \infty$, and assume $X_n \in \mathcal{L}^p$ for every $n \in \mathbb{N}$. Then

$$(X_n)_{n\in\mathbb{N}}$$
 converges in \mathfrak{L}^p

iff

$$(X_n)_{n\in\mathbb{N}}$$
 converges in probability $\wedge (|X_n|^p)_{n\in\mathbb{N}}$ is u.i.

Proof. ' \Rightarrow ': Assume $X_n \xrightarrow{\mathfrak{L}^p} X$. From Remark 2.1 we get $X_n \xrightarrow{P} X$. For every $A \in \mathfrak{A}$

$$||1_A \cdot X_n||_p \le ||1_A \cdot (X_n - X)||_p + ||1_A \cdot X||_p.$$

Take $A = \Omega$ to obtain $\sup_{n \in \mathbb{N}} \mathbb{E}(|X_n|^p) < \infty$. Let $\varepsilon > 0$, take $k \in \mathbb{N}$ such that

$$\sup_{n>k} \|X_n - X\|_p < \varepsilon. \tag{3}$$

Put $X_0 = 0$. Note that

$$\sup_{0 \le n \le k} |X_n - X|^p \le \sum_{n=0}^k |X_n - X|^p \in \mathfrak{L}^1.$$

Hence, by Remark 1.(ii),

$$(|X_1 - X|^p, \dots, |X_k - X|^p, |X|^p, |X|^p, \dots)$$
 u.i.

By Lemma 1

$$P(A) < \delta \quad \Rightarrow \quad \sup_{0 \le n \le k} \|1_A \cdot (X_n - X)\|_p < \varepsilon.$$

for a suitable $\delta > 0$. Together with (3) this implies

$$P(A) < \delta \quad \Rightarrow \quad \sup_{n \in \mathbb{N}} \|1_A \cdot X_n\|_p < 2 \cdot \varepsilon.$$

'\(\eq'\): Let $\varepsilon > 0$, put $A = A_{m,n} = \{|X_m - X_n| > \varepsilon\}$. Then

$$||X_m - X_n||_p \le ||1_A \cdot (X_m - X_n)||_p + ||1_{A^c} \cdot (X_m - X_n)||_p$$

$$\le ||1_A \cdot X_m||_p + ||1_A \cdot X_n||_p + \varepsilon.$$

By assumption $X_n \xrightarrow{P} X$ for some $X \in \mathfrak{Z}(\Omega, \mathfrak{A})$. Take $\delta > 0$ according to (2) for $(|X_n|^p)_{n \in \mathbb{N}}$, and note that

$$A_{m,n} \subset \{|X_m - X| > \varepsilon/2\} \cup \{|X_n - X| > \varepsilon/2\}.$$

Hence, for m, n sufficiently large,

$$P(A_{m,n}) < \delta,$$

which implies

$$||X_m - X_n||_p \le 2 \cdot \varepsilon^{1/p} + \varepsilon.$$

Apply Theorem II.6.3.

Remark 2.

(i) Theorem 1 yields a generalization of Lebesgue's convergence theorem: If $X_n \in \mathfrak{L}^1$ for every $n \in \mathbb{N}$ and $X_n \stackrel{P\text{-a.s.}}{\longrightarrow} X$, then

$$(X_n)_{n\in\mathbb{N}}$$
 u.i. $\Leftrightarrow X \in \mathfrak{L}^1 \wedge X_n \xrightarrow{\mathfrak{L}^1} X$.

(ii) Uniform integrability is a property of the distributions only.

Theorem 2.

$$X_n \xrightarrow{d} X \implies E(|X|) \le \liminf_{n \to \infty} E(|X_n|).$$

Proof. From Skorohod's Theorem 3.4 we get a probability space $(\widetilde{\Omega}, \widetilde{\mathfrak{A}}, \widetilde{P})$ with random variables \widetilde{X}_n , \widetilde{X} such that

$$\widetilde{X}_n \xrightarrow{\widetilde{P}\text{-a.s.}} \widetilde{X} \quad \wedge \quad \widetilde{P}_{\widetilde{X}_n} = P_{X_n} \quad \wedge \quad \widetilde{P}_{\widetilde{X}} = P_{X}.$$

Thus $E(|X|) = E(|\widetilde{X}|)$ and $E(|X_n|) = E(|\widetilde{X}_n|)$. Apply Fatou's Lemma II.5.2.

Theorem 3. If

$$X_n \stackrel{\mathrm{d}}{\longrightarrow} X \quad \wedge \quad (X_n)_{n \in \mathbb{N}} \text{ u.i.}$$

then

$$X \in \mathfrak{L}^1 \quad \wedge \quad \lim_{n \to \infty} \mathrm{E}(X_n) = \mathrm{E}(X).$$

Proof. Notation as previously. Now $(|\widetilde{X}_n|)_{n\in\mathbb{N}}$ is u.i., see Remark 2.(ii). Hence, by Remark 2.(i), $\widetilde{X} \in \mathfrak{L}^1$ and $\widetilde{X}_n \xrightarrow{\mathfrak{L}^1} \widetilde{X}$. Thus $\mathrm{E}(|X|) < \infty$ and

$$\lim_{n\to\infty} E(X_n) = \lim_{n\to\infty} E(\widetilde{X}_n) = E(\widetilde{X}) = E(X).$$

Example 2. Example 1 continued. With X = 0 we have $X_n \xrightarrow{P\text{-a.s.}} X$, and therefore $X_n \xrightarrow{d} X$. But $E(X_n) = 1 > 0 = E(X)$.

5 Independence

"...the concept of independence ... plays a central role in probability theory; it is precisely this concept that distinguishes probability theory from the general theory of measure spaces', see Shiryayev (1984, p. 27).

In the sequel, $(\Omega, \mathfrak{A}, P)$ denotes a probability space and I is a non-empty set.

Definition 1. Let $A_i \in \mathfrak{A}$ for $i \in I$. Then $(A_i)_{i \in I}$ is independent if

$$P\left(\bigcap_{i \in S} A_i\right) = \underset{i \in S}{\times} P(A_i) \tag{1}$$

for every $S \in \mathfrak{P}_0(I)$. Elementary case: |I| = 2.

П

In the sequel, $\mathfrak{E}_i \subset \mathfrak{A}$ for $i \in I$.

Definition 2. $(\mathfrak{E}_i)_{i\in I}$ is independent if (1) holds for every $S \in \mathfrak{P}_0(I)$ and all $A_i \in \mathfrak{E}_i$ for $i \in S$.

Remark 1.

- (i) $(\mathfrak{E}_i)_{i\in I}$ independent $\wedge \forall i \in I : \widetilde{\mathfrak{E}}_i \subset \mathfrak{E}_i \Rightarrow (\widetilde{\mathfrak{E}}_i)_{i\in I}$ independent.
- (ii) $(\mathfrak{E}_i)_{i\in I}$ independent $\Leftrightarrow \forall S \in \mathfrak{P}_0(I) : (\mathfrak{E}_i)_{i\in S}$ independent.

Lemma 1.

$$(\mathfrak{E}_i)_{i\in I}$$
 independent \Rightarrow $(\delta(\mathfrak{E}_i))_{i\in I}$ independent.

Proof. Without loss of generality, $I = \{1, \ldots, n\}$ and $n \geq 2$, see Remark 1.(ii). Put

$$\mathfrak{D}_1 = \{ A \in \delta(\mathfrak{E}_1) : (\{A\}, \mathfrak{E}_2, \dots, \mathfrak{E}_n) \text{ independent} \}.$$

Then \mathfrak{D}_1 is a Dynkin class and $\mathfrak{E}_1 \subset \mathfrak{D}_1$, hence $\delta(\mathfrak{E}_1) = \mathfrak{D}_1$. Thus

$$(\delta(\mathfrak{E}_1), \mathfrak{E}_2, \dots, \mathfrak{E}_n)$$
 independent.

Repeat this step for $2, \ldots, n$.

Theorem 1. If

$$(\mathfrak{E}_i)_{i\in I}$$
 independent $\wedge \ \forall i\in I: \ \mathfrak{E}_i$ closed w.r.t. intersections (2)

then

$$(\sigma(\mathfrak{E}_i))_{i\in I}$$
 independent.

Proof. Use Theorem II.1.2 and Lemma 1.

Corollary 1. Assume that $I = \bigcup_{j \in J} I_j$ for pairwise disjoint sets $I_j \neq \emptyset$. If (2) holds, then

$$\left(\sigma\left(\bigcup_{i\in I_j}\mathfrak{E}_i\right)\right)_{j\in J}$$
 independent.

Proof. Let

$$\widetilde{\mathfrak{E}}_j = \left\{ \bigcap_{i \in S} A_i : S \in \mathfrak{P}_0(I_j) \land A_i \in \mathfrak{E}_i \text{ for } i \in S \right\}.$$

Then $\widetilde{\mathfrak{E}}_j$ is closed w.r.t. intersections and $(\widetilde{\mathfrak{E}}_j)_{j\in J}$ is independent. Finally

$$\sigma\bigg(\bigcup_{i\in I_i}\mathfrak{E}_i\bigg)=\sigma(\widetilde{\mathfrak{E}}_j).$$

In the sequel, $(\Omega_i, \mathfrak{A}_i)$ denotes a measurable space for $i \in I$, and $X_i : \Omega \to \Omega_i$ is $\mathfrak{A}\text{-}\mathfrak{A}_i$ -measurable for $i \in I$.

5. INDEPENDENCE 67

Definition 3. $(X_i)_{i\in I}$ is independent if $(\sigma(X_i))_{i\in I}$ is independent.

Example 1. Actually, the essence of independence. Assume that

$$(\Omega, \mathfrak{A}, P) = \left(\underset{i \in I}{\times} \Omega_i, \bigotimes_{i \in I} \mathfrak{A}_i, \underset{i \in I}{\times} P_i \right)$$

for probability measures P_i on \mathfrak{A}_i . Let

$$X_i = \pi_i$$
.

Then, for $S \in \mathfrak{P}_0(I)$ and $A_i \in \mathfrak{A}_i$ for $i \in S$

$$P\left(\bigcap_{i \in S} \{X_i \in A_i\}\right) = P\left(\bigotimes_{i \in S} A_i \times \bigotimes_{i \in I \setminus S} \Omega_i\right) = \bigotimes_{i \in S} P_i(A_i) = \bigotimes_{i \in S} P(\{X_i \in A_i\}).$$

Hence $(\pi_i)_{i \in I}$ is independent. Furthermore, $P_{X_i} = P_i$.

Recall the question that was posed in the introductory Example I.2.

Theorem 2. Given: probability spaces $(\Omega_i, \mathfrak{A}_i, P_i)$ for $i \in I$. Then there exist

- (i) a probability space $(\Omega, \mathfrak{A}, P)$ and
- (ii) \mathfrak{A} - \mathfrak{A}_i -measurable mappings $X_i:\Omega\to\Omega_i$ for $i\in I$

such that

$$(X_i)_{i \in I}$$
 independent $\land \forall i \in I : P_{X_i} = P_i$.

Proof. See Example 1.

Theorem 3. Let $\mathfrak{F}_i \subset \mathfrak{A}_i$ for $i \in I$. If

$$\forall i \in I : \ \sigma(\mathfrak{F}_i) = \mathfrak{A}_i \ \land \ \mathfrak{F}_i \ \text{closed w.r.t. intersections}$$

then

$$(X_i)_{i \in I}$$
 independent \Leftrightarrow $(X_i^{-1}(\mathfrak{F}_i))_{i \in I}$ independent.

Proof. Recall that $\sigma(X_i) = X_i^{-1}(\mathfrak{A}_i) = \sigma(X_i^{-1}(\mathfrak{F}_i))$. ' \Rightarrow ': See Remark 1.(i). ' \Leftarrow ': Note that $X_i^{-1}(\mathfrak{F}_i)$ is closed w.r.t. intersections. Use Theorem 1.

Example 2. Independence of a family of random variables X_i , i.e., $(\Omega_i, \mathfrak{A}_i) = (\mathbb{R}, \mathfrak{B})$ for $i \in I$. In this case $(X_i)_{i \in I}$ is independent iff

$$\forall S \in \mathfrak{P}_0(I) \ \forall c_i \in \mathbb{R}, i \in S : P\left(\bigcap_{i \in S} \{X_i \le c_i\}\right) = \underset{i \in S}{\times} P(\{X_i \le c_i\}).$$

Theorem 4. Let

(i) $I = \bigcup_{j \in J} I_j$ for pairwise disjoint sets $I_j \neq \emptyset$,

(ii) $(\widetilde{\Omega}_j, \widetilde{\mathfrak{A}}_j)$ be measurable spaces for $j \in J$,

(iii) $f_j: \times_{i \in I_j} \Omega_i \to \widetilde{\Omega}_j$ be $(\bigotimes_{i \in I_j} \mathfrak{A}_i)$ - $\widetilde{\mathfrak{A}}_j$ measurable mappings for $j \in J$.

Put

$$Y_j = (X_i)_{i \in I_j} : \Omega \to \underset{i \in I_j}{\times} \Omega_i.$$

Then

 $(X_i)_{i \in I}$ independent \Rightarrow $(f_j \circ Y_j)_{j \in J}$ independent.

Proof.

$$\sigma(f_j \circ Y_j) = Y_j^{-1}(f_j^{-1}(\widetilde{\mathfrak{A}}_j)) \subset Y_j^{-1}\left(\bigotimes_{i \in I_j} \mathfrak{A}_i\right)$$
$$= \sigma(\{X_i : i \in I_j\}) = \sigma\left(\bigcup_{i \in I_j} X_i^{-1}(\mathfrak{A}_i)\right).$$

Use Corollary 1 and Remark 1.(i).

Example 3. For an independent sequence $(X_i)_{i\in\mathbb{N}}$ of random variables

$$\left(\max(X_1, X_2), \ 1_{\mathbb{R}_+}(X_3), \ \limsup_{n \to \infty} 1/n \sum_{i=1}^n X_i\right)$$

are independent.

Remark 2. Consider the mapping

$$X: \Omega \to \underset{i \in I}{\times} \Omega_i : \omega \mapsto (X_i(\omega))_{i \in I}.$$

Clearly X is \mathfrak{A} - $\bigotimes_{i\in I}\mathfrak{A}_i$ -measurable. By definition, $P_X(A)=P(\{X\in A\})$ for $A\in\bigotimes_{i\in I}\mathfrak{A}_i$. In particular, for measurable rectangles $A\in\bigotimes_{i\in I}\mathfrak{A}_i$, i.e.,

$$A = \underset{i \in S}{\times} A_i \times \underset{i \in I \setminus S}{\times} \Omega_i \tag{3}$$

with $S \in \mathfrak{P}_0(I)$ and $A_i \in \mathfrak{A}_i$,

$$P_X(A) = P\left(\bigcap_{i \in S} \{X_i \in A_i\}\right). \tag{4}$$

Definition 4. P_X is called the *joint distribution* of X_i , $i \in I$.

Example 4. Let $\Omega = \{1, \dots, 6\}^2$ and consider the uniform distribution P on $\mathfrak{A} = \mathfrak{P}(\Omega)$, which is a model for rolling a die twice.

Moreover, let $\Omega_i = \mathbb{N}$ and $\mathfrak{A}_i = \mathfrak{P}(\Omega_i)$ such that $\bigotimes_{i=1}^2 \mathfrak{A}_i = \mathfrak{P}(\mathbb{N}^2)$. Consider the random variables

$$X_1(\omega_1, \omega_2) = \omega_1, \qquad X_2(\omega_1, \omega_2) = \omega_1 + \omega_2.$$

Then

$$P_X(A) = \frac{|A \cap M|}{36}, \qquad A \subset \mathbb{N}^2,$$

where

$$M = \{ (k, \ell) \in \mathbb{N}^2 : 1 \le k \le 6 \land k + 1 \le \ell \le k + 6 \}$$

Claim: (X_1, X_2) are not independent. Proof:

$$P({X_1 = 1} \cap {X_2 = 3}) = P_X({(1,3)}) = P({(1,2)}) = 1/36$$

but

$$P({X_1 = 1}) \cdot P({X_2 = 3}) = 1/6 \cdot P({(1, 2), (2, 1)}) = 1/3 \cdot 1/36.$$

We add that

$$P_{X_1} = \sum_{k=1}^{6} 1/6 \cdot \varepsilon_k, \qquad P_{X_2} = \sum_{\ell=2}^{12} (6 - |\ell - 7|)/36 \cdot \varepsilon_\ell.$$

Theorem 5.

$$(X_i)_{i \in I}$$
 independent \Leftrightarrow $P_X = \underset{i \in I}{\times} P_{X_i}$.

Proof. For A given by (3)

$$\left(\underset{i \in I}{\times} P_{X_i} \right) (A) = \underset{i \in S}{\times} P_{X_i} (A_i) = \underset{i \in S}{\times} P(\{X_i \in A_i\}).$$

On the other hand, we have (4). Thus ' \Leftarrow ' hold trivially. Use Theorem II.4.4 to obtain ' \Rightarrow '.

In the sequel, we consider random variables X_i , i.e., $(\Omega_i, \mathfrak{A}_i) = (\mathbb{R}, \mathfrak{B})$ for $i \in I$.

Theorem 6. Let $I = \{1, ..., n\}$. If

$$(X_1, \ldots, X_n)$$
 independent $\land \forall i \in I : X_i \geq 0 \ (X_i \text{ integrable})$

then $(\times_{i=1}^n X_i \text{ is integrable and})$

$$E\left(\underset{i=1}{\overset{n}{\times}} X_i \right) = \underset{i=1}{\overset{n}{\times}} E(X_i).$$

Proof. Use Fubini's Theorem and Theorem 5 to obtain

Drop $|\cdot|$ if the random variables are integrable.

Definition 5. $X_1, X_2 \in \mathfrak{L}^2$ are uncorrelated if

$$E(X_1 \cdot X_2) = E(X_1) \cdot E(X_2).$$

Theorem 7 (Bienaymé). Let $X_1, \ldots, X_n \in \mathfrak{L}^2$ be pairwise uncorrelated. Then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i).$$

Proof. We have

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{E}\left(\sum_{i=1}^{n} (X_{i} - \operatorname{E}(X_{i}))\right)^{2}$$

$$= \sum_{i=1}^{n} \operatorname{E}(X_{i} - \operatorname{E}(X_{i}))^{2} + \sum_{\substack{i,j=1\\i\neq j}}^{n} \operatorname{E}((X_{i} - \operatorname{E}(X_{i})) \cdot (X_{j} - \operatorname{E}(X_{j}))).$$

Moreover,

$$E((X_i - E(X_i)) \cdot (X_j - E(X_j))) = E(X_i \cdot X_j) - E(X_i) \cdot E(X_j).$$

(The latter quantity is called the *covariance* between X_i and X_i .)

Definition 6. The *convolution product* of probability measures P_1, \ldots, P_n on \mathfrak{B} is defined by

$$P_1 * \cdots * P_n = s(P_1 \times \cdots \times P_n)$$

where

$$s(x_1,\ldots,x_n)=x_1+\cdots+x_n.$$

Theorem 8. Let (X_1,\ldots,X_n) be independent and $S=\sum_{i=1}^n X_i$. Then

$$P_S = P_{X_1} * \cdots * P_{X_n}.$$

Proof. Put $X = (X_1, \ldots, X_n)$. Since $S = s \circ (X_1, \ldots, X_n)$ we get

$$P_S = s(P_X) = s(P_{X_1} \times \cdots \times P_{X_n}).$$

Remark 3. The class of probability measure on \mathfrak{B} forms an abelian semi-group w.r.t. *, and $P * \varepsilon_0 = P$.

Theorem 9. For all probability measures P_1 , P_2 on \mathfrak{B} and every $P_1 * P_2$ -integrable function f

$$\int_{\mathbb{R}} f \, d(P_1 * P_2) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x+y) \, P_1(dx) \, P_2(dy).$$

If $P_1 = h_1 \cdot \lambda_1$ then $P_1 * P_2 = h \cdot \lambda_1$ with

$$h(x) = \int_{\mathbb{R}} h_1(x - y) P_2(dy).$$

If $P_2 = h_2 \cdot \lambda_1$, additionally, then

$$h(x) = \int_{\mathbb{R}} h_1(x - y) \cdot h_2(y) \, \lambda(dy).$$

5. INDEPENDENCE

Proof. Use Fubini's Theorem and the transformation theorem. See Billingsley (1979, p. 230). \Box

71

Example 5.

(i) Put $N(\mu, 0) = \varepsilon_{\mu}$. By Theorem 9

$$N(\mu_1, \sigma_1^2) * N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

for $\mu_i \in \mathbb{R}$ and $\sigma_i \geq 0$.

(ii) Consider n independent Bernoulli trials, i.e., (X_1,\ldots,X_n) independent with

$$P_{X_i} = p \cdot \varepsilon_1 + (1 - p) \cdot \varepsilon_0$$

for every $i \in \{1, ..., n\}$, where $p \in [0, 1]$. Inductively, we get for $k \in \{1, ..., n\}$

$$\sum_{i=1}^{k} X_i \sim B(k, p),$$

see also Übung 7.3. Thus, for any $n, m \in \mathbb{N}$,

$$B(n,p) * B(m,p) = B(n+m,p).$$