Chapter 111

Basic Concepts of Probability
Theory

Context for probability theoretical concepts: a probability space (2,2, P).
Terminology: A € 2 event, P(A) probability of the event A € 2.

1 Random Variables and Distributions

Given: a probability space (£2,2(, P) and a measurable space ({2, 2().
Definition 1. X : Q — Q' random element if X is A-A’-measurable. Particular cases:
(i) X (real) random variable if (0, A") = (R, *B),
(ii) X numerical random variable if (', 2A") = (R,B),
(iii) X k-dimensional (real) random vector if (0, ') = (R*, B},
(iv) X k-dimensional numerical random vector if (V") = (Rk,gk).
Definition 2.
(i) Distribution (probability law) of a random element X : Q — Q' (with respect to
P)
Notation: X ~ Q if Py = Q.
(ii) Given: probability spaces (21,2, P;), (Q9,%s, P») and random elements
X0 =, X5: 0y — .
X, and Xy are identically distributed if

(P)x, = (P2)y, -

47
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Remark 1.
(i) Px(A") = P{X € A’}) for every A" € .
(ii) For random elements X,Y : Q) —
X =Y P-as. = Px=PF,

but the converse is not true in general. For instance, let P be the uniform
distribution on = {0, 1} and define X (w) =w and Y(w) =1 — w.

(iii) For every probability measure @ on (€',2’) there exists a probability space
(Q,2(, P) and a random element X : Q — €’ such that X ~ Q. Take (Q, %, P) =
(Q, A, Q) and X = idg.

(iv) A major part of probability theory deals with properties of random elements
that can be formulated in terms of their distributions.

Example 1.

(i) Discrete distributions, specified by a countable set ) £ D C €’ and a mapping
p: D — R such that

VreD:p(r)>0 A Zp('r’)zl,
namely,
Py = Zp(r) “Ep.
Thus, if {r} € A for every r € D,
PH{X =r}) =p(r).

If |D| < oo then p(r) = ‘%' yields the uniform distribution on D.
For (0, ") = (R,B)

B(n,p) = Zn: (Z) PP =p)"F ey

k=0

is the binomial distribution with parameters n € N and p € [0, 1]. In particular,
for n = 1 we get the Bernoulli distribution

B(l,p)=(1—p)-eo+p-er.

Further examples include the geometric distribution with parameter p €0, 1],

Gp) =) p-(1-p)* "=,
k=1

and the Poisson distribution with parameter A\ > 0,
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(ii) Distributions on (R* B}) that are absolutely continuous w.r.t. A\, namely, due
to the Radon-Nikodym-Theorem

PX - f . /\ka

where
f €3, (R B, A /fd)\k =1.
Thus
PUX €A} = [ fan
A/

for every A’ € B,,.
We present some examples in the case k = 1. The normal distribution

N(M,O’Q):f-kl,

with parameters u € R and o2, where o > 0, is obtained by

f0)= e () ser

0 ifx <0
fx) = .
A-exp(—Az) ifz>0.

The uniform distribution on D € B with A\;(D) € ]0, 00 is obtained by

(iii) Distributions on product spaces can be constructed by means of the results from
Section IL.8.

Remark 2. Define oo™ = oo for r > 0. For 1 <p < ¢ < oo and X € 3(Q, )

p/q
[ixrar< ( / |X|QdP) ,

due to Holder’s inequality.

Notation:
c= g P) = {X €309 /yxydp <o)

is the class of P-integrable random variables, and analogously
£=2L(0,AP) = {X € 3(0,): /]X|dP < oo}

is the class of P-integrable numerical random variables. We consider Px as a distri-
bution on (R,B) if P({X € R}) = 1 for a numerical random variable X, and we
consider £ as a subspace of £.
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Definition 3. For X € £
E(X) = /XdP

is the ezpectation of X. For X € 3(,A) such that X2 € £
Var(X) = /(X — E(X))2dP

and \/Var(X) are the variance and the standard deviation of X, respectively.

Remark 3. Theorem I1.9.1 implies
/ | X|PdP < o0 & / |z|P Px(dx) < oo
Q R
for X € 3(€,2A), in which case, for p =1

B(X) = /R © Py(da),

and for p =2
Var(X) = /R (z — B(X))? Py (dz).

Thus E(X) and Var(X) depend only on Px.

Example 2.
X ~ B(n,p) E(X)=n-p Var(X)=n-p-(1-p)
X ~ G(p) E(X) = % Var(X) = 1p—2p
X ~ () E(X) =\ Var(X) = A,

see Introduction to Stochastics.

X is Cauchy distributed with parameter a« > 0 if X ~ f - A\; where

«
= — R.
/() m(a? + 22)’ ve
Since f(f Tiizdr = 3log(1 4 t?) neither E(X") < oo nor E(X™) < oo, and therefore
Xee
If X ~ N(u,0?) then

E(X)=u A Var(X) = o2,

see Introduction to Stochastics.

If X is exponentially distributed with parameter A > 0 then

1
A Var(X) = —.

E(X) = =

1
A
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Definition 4. Let X = (Xj,..., X}) be a random vector. Then
Fx : R¥ —[0,1]

s Kot = (o .0)

is called the distribution function of X.
Theorem 1. Given: probability spaces (21,1, P), (22, %z, P») and random vectors
Xt 0, — R X2:Q, — R~

Then
(Pl)Xl = (PZ)X2 54 FXI :Fx2.

Proof. ‘=" holds trivially. ‘<=’: By Remark I1.1.6, B, = o(€) for

k

sz{x |—00, 2] :xl,...,kaR}.

=1

Use Theorem 11.4.4. O

For notational convenience, we consider the case k = 1 in the sequel.
Theorem 2.

(i) Fx is non-decreasing,

(ii) Fx is right-continuous,

(iil) limg— oo Fix(z) =0 and lim, . Fx(z) =1,

(iv) Fx is continuous at x iff P({X = z}) = 0.

Proof. Ubung 3.4.a. O
Theorem 3. For every function F' that satisfies (i)—(iii) from Theorem 2,

%IQ probability measure on B :Vz € R: Q(]—o0,z|) = F(z).

Proof. Analogously to the construction of the Lebesgue measure, see Ubung 3.4.b. [
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2 Convergence in Probability

Motivated by the Examples 11.5.2 and I1.6.1 we introduce a notion of convergence
that is weaker than convergence in mean and convergence almost surely.

In the sequel, X, X,,, etc. random variables on a common probability space (£2, 2, P).

Lemma 1.
X, %X & ve>0: lim P({sup|Xm—X| >5}) = 0.
n—00 m>n
Proof. Put
Crn = (V{1 Xm—X[<1/k},  Bi=|JCm, A=()Bw
m>n neN keN
Hence

A:{lian:X}.

n—oo

Clearly By, | A and C},, T By. Thus, using the o-continuity of P,

X, 2% x

VikeN: P(By) =1
VkeN: lim P(Cy,) =1

n—oo

T3

& VkeN: lim P({sup\Xm—X] > 1/k}) = 0.

n—oo m>n

Definition 1. (X,,), converges to X in probability if

Ve>0: lim P({|X,— X|>c¢e})=0.

Notation: X, NS

Remark 1. By Lemma 1,

X, ™x = x,Zx

Example I1.6.1 shows that ‘<=’ does not hold in general. The Law of Large Numbers
deals with convergence almost surely or convergence in probability, see the introduc-
tory Example [.1 and Sections ?7.77 and 77.77.

Theorem 1 (Chebyshev-Markov Inequality). Let (2,2, 1) be a measure space and
f € 3(92,2). For every ¢ > 0 and every 1 < p < oo

n({lfl >e}) < gip -/If\pdu.
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/ 6”du§/\f|”du.
{If12¢} Q

Proof. We have

[
Corollary 1. If E(X?) < oo, then
1
P({IX - E(X)| 2 €}) < - Var(X).
Theorem 2.
d(X,Y) = /min(l, X = V) dP
defines a semi-metric on 3(£2,2), and
X, X & limd(X, X)=0.
Proof. ‘=" For ¢ > 0
/min(l, X, — X|)dP
:/ min(1, |Xn—X|)dP+/ min(1, | X, — X|) dP
{[Xn—=X|>e} {IXn—X]|<e}
< P{|X,, — X| > ¢}) + min(1, ¢).
‘=" Let 0 < e < 1. Use Theorem 1 to obtain
P({|X, — X|>¢}) = P({min(1,|X, — X|) > ¢})
1 1
<1 /min(l, X~ XD dP = 1 d(X,, X).
[

Remark 2. By Theorem 2,
X, Z5X = X,5X
Example I1.5.2 shows that ‘<=’ does not hold in general.

Corollary 2.

X, L.x = Jsubsequence (X, Jken © X, s x,

Proof. Due to Theorems 11.6.3 and 2 there exists a subsequence (X, Jren such that

min(1, | X,, — X|) =23 0.
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Remark 3. In any semi-metric space (M, d) a sequence (a,)en converges to a iff

V subsequence (ay, )ren 3 subsequence (ankz)geN : Zlirglo d(ankz,a) = 0.

Corollary 3. X, — X iff

P-a.s.

V subsequence (X, )reny 3 subsequence (Xnke)éeN : Xn,% — X.

k

Proof. ‘=" Corollary 2. ‘<=: Remarks 1 and 3 together with Theorem 2. m

Remark 4. We conclude that, in general, there is no semi-metric on 3(€2, ) that
defines a.s.-convergence. However, if ) is countable, then

X, 2 x & x,2Xx
Proof: Ubung 8.2.

Lemma 2. Let — denote convergence almost everywhere or convergence in proba-
bility. If X — X0 for i = 1,...,k and f:RF — R is continuous, then

Fo (XM, XH) — fo(x1,... x®).

Proof. Trivial for convergence almost everywhere, and by Corollary 3 the conclusion
holds for convergence in probability, too. O]

Corollary 4. Let X, 2, X. Then
X, Y & X=Y Pas
Proof. Corollary 3 and Lemma I1.6.1. [

3 Convergence in Distribution

Given: a metric space (M, p). Put
C*(M)={f: M — R : f bounded, continuous},

and consider the Borel-o-algebra B (M) in M. Moreover, let 9t(M) denote the set of
all probability measures on B(M).

Definition 1.
(i) A sequence (Qy)nen in M(M) converges weakly to Q € M(M) if

Vfel(M): Jingo/fdQn_/fdQ.
Notation: @, — Q.

(i) A sequence (X, )nen of random elements with values in M converges in distribu-
tion to a random element X with values in M if Q,, — @ for the distributions
@, of X,, and @ of X, respectively.
Notation: X, 4, X.
Remark 1. For convergence in distribution the random elements need not be defined
on a common probability space.

In the sequel: @, @ € M(M) for n € N.
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Example 1.

(i) For z,, v € M
o, — €, & lim p(z,,7) = 0.

n
n—oo

For the proof of ‘<=’, note that

/fdgxn :f(xn)a /fd&“m:f(l')
For the proof of ‘=’ suppose that limsup,, . p(z,,x) > 0. Take

f(y) = min(p(y, v),1), ye M,

and observe that f € C*(M) and

lim sup/fdsxn = lim sup min(p(x,, z),1) > 0

while [ fde, =0.
(ii) For the euclidean distance p on M = R¥
(M, B(M)) = (R*,By).
Now, in particular, £ = 1 and
Qu = N(pn, 07)

where o, > 0. For f € C*(R)

/fdQn =1/V2r- /Rf(an -1+ i) - exp(—1/2 - 2?) A\ (dx).
Put N(y,0) =¢,. Then
71113)10#“ =u A 71113)100” =0 = Qn— N(u,o%).
Otherwise (@, )nen does not converge weakly. Ubung 8.4.

(iii) For M = C([0,T]) let p(z,y) = supyejor [2(t) — y(t)]. Cf. the introductory
Example 1.3.

Remark 2. Note that Q, — @ does not imply

VAEB(M): lim Qu(A) = Q(A).

n—oo

For instance, assume lim,, .., p(x,,x) = 0 with z,, # = for every n € N. Then

e, ({2}) =0, a({z}) =1
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Theorem 1 (Portmanteau Theorem). The following properties are equivalent:
(i) Qun— Q.
(ii) V f € C*(M) uniformly continuous : lim, . [ fdQ, = [ fdQ,
(i) VA C M closed : limsup,,_,. Qn(A4) < Q(A),
(iv) VA C M open : liminf, ., Q,(A4) > Q(A),
(V) VAeB(M): QA =0 = lim, .. Qn(A) = Q(A).
Proof. See Génssler, Stute (1977, Satz 8.4.9). O

In the sequel, we study the particular case (M, B(M)) = (R,B), i.e., convergence in
distribution for random variables. The Central Limit Theorem deals with this notion
of convergence, see the introductory Example 1.1 and Section 77.77.

Notation: for any @ € 9MM(R)
Fo(z) = Q(]—00, 2]), z €R,
and for any function F': R — R
Cont(F) = {z € R : F continuous at xz}.
Theorem 2.

Q. —Q <« VaxeCont(Fy): lim Fg (z)= Fg(z).

n—oo

Moreover, if @, — @ and Cont(Fg) = R then

lim sup |Fo, () — Fo(x)| = 0.

n—0 zeR

Proof. ‘=" If x € Cont(Fy) and A = |—o0,z| then Q(0A) = Q({z}) = 0, see
Theorem 1.2. Hence Theorem 1 implies

lim Fo,(x) = lim Q,(A) = Q(A) = Fo(x).

n—oo

‘«". Consider a non-empty open set A C R. Take pairwise disjoint open intervals
Ay, A,, ... such that A =J;2, A;. Fatou’s Lemma implies

n—oo n—oo

lim inf @, (A) = liminf Y~ Qn(A;) > > liminf Qu(A;).
i=1 i=1

Note that R \ Cont(Fy) is countable. Fix ¢ > 0, and take

A= Jal,¥] € A

for 7 € N such that

a;, b € Cont(Fp) A Q(A;) < Q(A) +¢e-27"

1) 71
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Then
liminf Q,(A;) > liminf Q,(A}) = Q(4)) > Q(4A;) —e-27".

n—oo

We conclude that
lim inf Q, (4) > Q(A) — e,

n—oo

and therefore @Q,, — @Q by Theorem 1.

Uniform convergence, Ubung 9.1. O

Corollary 1.
Qn —Q N Qn—0Q = Q=Q.

Proof. By Theorem 2 Fo(z) = Fg(x) if # € D = Cont(Fg) N Cont(F). Since D
is dense in R and Fg as well as 5 are right-continuous, we get Fo = [j. Apply
Theorem 1.3. [

Given: random variables X,,, X on (2,2, P) for n € N.

Theorem 3.
X, X = x, %X

and
X, 4, X A X constant a.s. = X, . x.

Proof. Assume X, L X. Fore>0andz €R

PX <z —e}) - P{[X = Xu| > &})

< PUX <o} n{X - X, <<})

< P{Xy < x})

=PH{X, <z}n{X <z+e})+ P{X, <z}n{X >z+¢})
<PH{X <z+e})+P{|X - X,| > ¢}).

Thus
Fx(x —e¢) <liminf Fx, (z) < limsup Fx, () < Fx(z +¢).

For x € Cont(Fx) we get lim,,_., Fx, (z) = Fx(x). Apply Theorem 2.

Now, assume that X, —— X and Py = ¢,. Let e > 0 and take f € CP(R) such that
f>0, f(r) =0, and f(y) =1if |z —y| > e. Then

PUIX = X, >} = PUlo = Xl > ) = [ TnpmearadPy, < [ FaPx,

and
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Example 2. Consider the uniform distribution P on Q = {0,1}. Put
Xp(w) =w, X(w)=1-w.
Then Px, = Px and therefore
X, 5 X,
However, {| X, — X| < 1/2} = () and therefore

X, ", X does not hold.

Theorem 4 (Skorohod). There exists a probability space (€2, 2, P) with the following
property. If

Qn — Q,
then there exist X,,, X € 3(Q2,2() for n € N such that

VneN: Q.=Py, A Q=Px A X, 23X

Proof. Take Q = 10,1], A = B(Q2), and consider the uniform distribution P on (.
Define

Xow) =inf{z e R:w < Fy(2)}, w € 10,17,

for any @ € M(R). Since X is non-decreasing, we have Xg € 3(£2,2). It turns out
that

PXQ = Q7 (1)
see Ubung 9.2. Moreover, if @, — @ then X0, Pas Xg, see Génssler, Stute (1977,
p. 67-68). O]

Remark 3. By (1) we have a general method to transform uniformly distributed
‘random numbers’ from |0, 1] into ‘random numbers’ with distribution Q.

Remark 4.
(i) Put
CO={f:R-R:f,fY ... f7 bounded, uniformly continuous}.
Then
Qn—Q & 3FreNyvVfeCh: JL%/fdQn:/fdQ,
see Génssler, Stute (1977, p. 66).
(ii) The Lévy distance
d(Q,R) =1inf{h €]0,00[ : Vo € R: Fo(x —h) — h < Fg(z) < Fg(x + h) + h}
defines a metric on M(R), and
Qu-Q & lmdQ.Q) =0,

see Chow, Teicher (1978, Thm. 8.1.3).
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(iii) Suppose that (M, p) is a complete separable metric space. Then there exists a
metric d on 9 (M) such that (9M(M),d) is complete and separable as well, and

Qn—Q <« lim d(Q, Q) =0,
see Parthasarathy (1967, Sec. 11.6).

Finally, we present a compactness criterion, which is very useful for construction of
probability measures on B(M).

Lemma 1. Let z,,, € R for n,/ € N with

VeeN: sup e, < oo.
neN

Then there exists an increasing sequence (n;);eny in N such that
Ve eN: (zp,4)ien converges.
Proof. See Billingsley (1979, Thm. 25.13). O

Definition 2.
(i) P C M(M) tight if
Ve>03dK C M compact VP ePB: PK)>1-—e.

(ii) P C M(M) relatively compact if every sequence in B contains a subsequence
that converges weakly.

Theorem 5 (Prohorov). Assume that M is a complete separable metric space and
B C M(M). Then
P relatively compact < P tight.

Proof. See Parthasarathy (1967, Thm. I1.6.7). Here: M = R.

‘=": Suppose that P is not tight. Then, for some ¢ > 0, there exists a sequence
(Pn)nen in B such that
P.([-n,n]) <1—e.

For a suitable subsequence, P,, — P € M(R). Take m > 0 such that
P(l—-m,m[) > 1—e.
Theorem 1 implies

P(]—-m,m[) <liminf P,, (]J—m,m[) < liminf P, ([—ng,ng)) <1 —¢,

k—o00 k—o0

which is a contradiction.
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‘=" Consider any sequence (P,)nen in P and the corresponding sequence (F,)nen
of distribution functions. Use Lemma 1 to obtain a subsequence (F},,);eny and a non-
decreasing function G : Q — [0, 1] with

VqgeQ: lim F,,(q) = G(q).

1— 00

Put
F(z) =inf{G(q) : q € QA z < ¢}, z € R.

Claim (Helly’s Theorem):

(i) F' is non-decreasing and right-continuous,
(ii) Vo € Cont(F) : lim;_o Fyy, () = F(x).

Proof: Ad (i): Obviously F' is non-decreasing. For € R and € > 0 take 2 > 0 such
that
VgeQnNlz,z+df: G(q) < F(x) +e.

Thus, for z € |z, z + ],
F(x) < F(2) < F(x) +e.

Ad (ii): If z € Cont(F') and € > 0 take 6; > 0 such that
F(zx)—e < F(x —4).
Thus, for g1, g2 € Q with
T—0h <@ <T<qp<z+0,
we get

F(z)—e < F(x —6) < G(q) < liminf F,,(z) < limsup F,,(x)

1—00 1—00

< G(g) < F(r)+e.

Claim:
lim F(z) =0 A lim F(x)=1.

Proof: For ¢ > 0 take m € Q such that
VneN: P,(]J-m,m]) >1—c¢.
Thus
Glm) — G(=m) = lim (Fy, (m) — Fy,(=m)) = lim P, (|=m,m]) = 1 - =.
Since F'(m) > G(m) and F(—m — 1) < G(—m), we obtain
Fm)—F(-m—-1)>1—e¢.

It remains to apply Theorems 1.3 and 2. O]



