
Chapter III

Basic Concepts of Probability

Theory

Context for probability theoretical concepts: a probability space (Ω, A, P ).

Terminology: A ∈ A event , P (A) probability of the event A ∈ A.

1 Random Variables and Distributions

Given: a probability space (Ω, A, P ) and a measurable space (Ω′, A′).

Definition 1. X : Ω → Ω′ random element if X is A-A′-measurable. Particular cases:

(i) X (real) random variable if (Ω′, A′) = (R, B),

(ii) X numerical random variable if (Ω′, A′) = (R, B),

(iii) X k-dimensional (real) random vector if (Ω′, A′) = (Rk, Bk),

(iv) X k-dimensional numerical random vector if (Ω′, A′) = (R
k
, Bk).

Definition 2.

(i) Distribution (probability law) of a random element X : Ω → Ω′ (with respect to

P )

PX = X(P ).

Notation: X ∼ Q if PX = Q.

(ii) Given: probability spaces (Ω1, A1, P1), (Ω2, A2, P2) and random elements

X1 : Ω1 → Ω′, X2 : Ω2 → Ω′.

X1 and X2 are identically distributed if

(P1)X1
= (P2)X2

.
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Remark 1.

(i) PX(A′) = P ({X ∈ A′}) for every A′ ∈ A′.

(ii) For random elements X, Y : Ω → Ω′

X = Y P -a.s. ⇒ PX = PY ,

but the converse is not true in general. For instance, let P be the uniform

distribution on Ω = {0, 1} and define X(ω) = ω and Y (ω) = 1 − ω.

(iii) For every probability measure Q on (Ω′, A′) there exists a probability space

(Ω, A, P ) and a random element X : Ω → Ω′ such that X ∼ Q. Take (Ω, A, P ) =

(Ω′, A′, Q) and X = idΩ.

(iv) A major part of probability theory deals with properties of random elements

that can be formulated in terms of their distributions.

Example 1.

(i) Discrete distributions, specified by a countable set ∅ 6= D ⊂ Ω′ and a mapping

p : D → R such that

∀ r ∈ D : p(r) ≥ 0 ∧
∑

r∈D

p(r) = 1,

namely,

PX =
∑

r∈D

p(r) · εr.

Thus, if {r} ∈ A′ for every r ∈ D,

P ({X = r}) = p(r).

If |D| < ∞ then p(r) = 1
|D|

yields the uniform distribution on D.

For (Ω′, A′) = (R, B)

B(n, p) =
n∑

k=0

(
n

k

)
· pk(1 − p)n−k · εk

is the binomial distribution with parameters n ∈ N and p ∈ [0, 1]. In particular,

for n = 1 we get the Bernoulli distribution

B(1, p) = (1 − p) · ε0 + p · ε1.

Further examples include the geometric distribution with parameter p ∈]0, 1],

G(p) =
∞∑

k=1

p · (1 − p)k−1 · εk,

and the Poisson distribution with parameter λ > 0,

π(λ) =
∞∑

k=0

exp(−λ) · λk

k!
· εk.
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(ii) Distributions on (Rk, Bk) that are absolutely continuous w.r.t. λk, namely, due

to the Radon-Nikodym-Theorem

PX = f · λk,

where

f ∈ Z+(Rk, Bk) ∧
∫

f dλk = 1.

Thus

P ({X ∈ A′}) =

∫

A′

f dλk

for every A′ ∈ Bk.

We present some examples in the case k = 1. The normal distribution

N(µ, σ2) = f · λ1 ,

with parameters µ ∈ R and σ2, where σ > 0, is obtained by

f(x) =
1√

2πσ2
· exp

(
−1

2

(x − µ)2

σ2

)
, x ∈ R.

The exponential distribution with parameter λ > 0 is obtained by

f(x) =

{
0 if x < 0

λ · exp(−λ x) if x ≥ 0.

The uniform distribution on D ∈ B with λ1(D) ∈ ]0,∞[ is obtained by

f =
1

λ1(D)
· 1D.

(iii) Distributions on product spaces can be constructed by means of the results from

Section II.8.

Remark 2. Define ∞r = ∞ for r > 0. For 1 ≤ p < q < ∞ and X ∈ Z(Ω, A)

∫
|X|p dP ≤

(∫
|X|q dP

)p/q

,

due to Hölder’s inequality.

Notation:

L = L(Ω, A, P ) =
{

X ∈ Z(Ω, A) :

∫
|X| dP < ∞

}

is the class of P -integrable random variables, and analogously

L = L(Ω, A, P ) =
{

X ∈ Z(Ω, A) :

∫
|X| dP < ∞

}

is the class of P -integrable numerical random variables. We consider PX as a distri-

bution on (R, B) if P ({X ∈ R}) = 1 for a numerical random variable X, and we

consider L as a subspace of L.
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Definition 3. For X ∈ L

E(X) =

∫
X dP

is the expectation of X. For X ∈ Z(Ω, A) such that X2 ∈ L

Var(X) =

∫
(X − E(X))2 dP

and
√

Var(X) are the variance and the standard deviation of X, respectively.

Remark 3. Theorem II.9.1 implies

∫

Ω

|X|p dP < ∞ ⇔
∫

R

|x|p PX(dx) < ∞

for X ∈ Z(Ω, A), in which case, for p = 1

E(X) =

∫

R

x PX(dx),

and for p = 2

Var(X) =

∫

R

(x − E(X))2 PX(dx).

Thus E(X) and Var(X) depend only on PX .

Example 2.

X ∼ B(n, p) E(X) = n · p Var(X) = n · p · (1 − p)

X ∼ G(p) E(X) =
1

p
Var(X) =

1 − p

p2

X ∼ π(λ) E(X) = λ Var(X) = λ,

see Introduction to Stochastics.

X is Cauchy distributed with parameter α > 0 if X ∼ f · λ1 where

f(x) =
α

π(α2 + x2)
, x ∈ R.

Since
∫ t

0
x

1+x2 dx = 1
2
log(1 + t2) neither E(X+) < ∞ nor E(X−) < ∞, and therefore

X 6∈ L.

If X ∼ N(µ, σ2) then

E(X) = µ ∧ Var(X) = σ2,

see Introduction to Stochastics.

If X is exponentially distributed with parameter λ > 0 then

E(X) =
1

λ
∧ Var(X) =

1

λ2
.
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Definition 4. Let X = (X1, . . . , Xk) be a random vector. Then

FX : Rk → [0, 1]

(x1, . . . , xk) 7→ PX

( k×
i=1

]−∞ , xi]

)
= P

( k⋂

i=1

{Xi ≤ xi}
)

is called the distribution function of X.

Theorem 1. Given: probability spaces (Ω1, A1, P1), (Ω2, A2, P2) and random vectors

X1 : Ω1 → Rk, X2 : Ω2 → Rk.

Then

(P1)X1 = (P2)X2 ⇔ FX1 = FX2 .

Proof. ‘⇒’ holds trivially. ‘⇐’: By Remark II.1.6, Bk = σ(E) for

E =
{ k×

i=1

]−∞, xi] : x1, . . . , xk ∈ R

}
.

Use Theorem II.4.4.

For notational convenience, we consider the case k = 1 in the sequel.

Theorem 2.

(i) FX is non-decreasing,

(ii) FX is right-continuous,

(iii) limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1,

(iv) FX is continuous at x iff P ({X = x}) = 0.

Proof. Übung 3.4.a.

Theorem 3. For every function F that satisfies (i)–(iii) from Theorem 2,

∃
1
Q probability measure on B : ∀x ∈ R : Q(]−∞, x]) = F (x).

Proof. Analogously to the construction of the Lebesgue measure, see Übung 3.4.b.
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2 Convergence in Probability

Motivated by the Examples II.5.2 and II.6.1 we introduce a notion of convergence

that is weaker than convergence in mean and convergence almost surely.

In the sequel, X, Xn, etc. random variables on a common probability space (Ω, A, P ).

Lemma 1.

Xn
P -a.s.−→ X ⇔ ∀ ε > 0 : lim

n→∞
P

({
sup
m≥n

|Xm − X| > ε

})
= 0.

Proof. Put

Ck,n =
⋂

m≥n

{|Xm − X| ≤ 1/k}, Bk =
⋃

n∈N

Ck,n, A =
⋂

k∈N

Bk.

Hence

A =
{

lim
n→∞

Xn = X
}
.

Clearly Bk ↓ A and Ck,n ↑ Bk. Thus, using the σ-continuity of P ,

Xn
P -a.s.−→ X

⇔ ∀ k ∈ N : P (Bk) = 1

⇔ ∀ k ∈ N : lim
n→∞

P (Ck,n) = 1

⇔ ∀ k ∈ N : lim
n→∞

P

({
sup
m≥n

|Xm − X| > 1/k

})
= 0.

Definition 1. (Xn)n converges to X in probability if

∀ ε > 0 : lim
n→∞

P ({|Xn − X| > ε}) = 0.

Notation: Xn
P−→ X.

Remark 1. By Lemma 1,

Xn
P -a.s.−→ X ⇒ Xn

P−→ X.

Example II.6.1 shows that ‘⇐’ does not hold in general. The Law of Large Numbers

deals with convergence almost surely or convergence in probability, see the introduc-

tory Example I.1 and Sections ??.?? and ??.??.

Theorem 1 (Chebyshev-Markov Inequality). Let (Ω, A, µ) be a measure space and

f ∈ Z(Ω, A). For every ε > 0 and every 1 ≤ p < ∞

µ({|f | ≥ ε}) ≤ 1

εp
·
∫

|f |p dµ.
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Proof. We have ∫

{|f |≥ε}

εp dµ ≤
∫

Ω

|f |p dµ.

Corollary 1. If E(X2) < ∞, then

P ({|X − E(X)| ≥ ε}) ≤ 1

ε2
· Var(X).

Theorem 2.

d(X, Y ) =

∫
min(1, |X − Y |) dP

defines a semi-metric on Z(Ω, A), and

Xn
P−→ X ⇔ lim

n→∞
d(Xn, X) = 0.

Proof. ‘⇒’ For ε > 0

∫
min(1, |Xn − X|) dP

=

∫

{|Xn−X|>ε}

min(1, |Xn − X|) dP +

∫

{|Xn−X|≤ε}

min(1, |Xn − X|) dP

≤ P ({|Xn − X| > ε}) + min(1, ε).

‘⇐’: Let 0 < ε < 1. Use Theorem 1 to obtain

P ({|Xn − X| > ε}) = P ({min(1, |Xn − X|) > ε})

≤ 1

ε
·
∫

min(1, |Xn − X|) dP =
1

ε
· d(Xn, X).

Remark 2. By Theorem 2,

Xn
Lp

−→ X ⇒ Xn
P−→ X.

Example II.5.2 shows that ‘⇐’ does not hold in general.

Corollary 2.

Xn
P−→ X ⇒ ∃ subsequence (Xnk

)k∈N : Xnk

P -a.s.−→ X.

Proof. Due to Theorems II.6.3 and 2 there exists a subsequence (Xnk
)k∈N such that

min(1, |Xnk
− X|) P -a.s.−→ 0.
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Remark 3. In any semi-metric space (M, d) a sequence (an)n∈N converges to a iff

∀ subsequence (ank
)k∈N ∃ subsequence (ankℓ

)ℓ∈N : lim
ℓ→∞

d(ankℓ
, a) = 0.

Corollary 3. Xn
P−→ X iff

∀ subsequence (Xnk
)k∈N ∃ subsequence (Xnkℓ

)ℓ∈N : Xnkℓ

P -a.s.−→ X.

Proof. ‘⇒’: Corollary 2. ‘⇐’: Remarks 1 and 3 together with Theorem 2.

Remark 4. We conclude that, in general, there is no semi-metric on Z(Ω, A) that

defines a.s.-convergence. However, if Ω is countable, then

Xn
P -a.s.−→ X ⇔ Xn

P−→ X.

Proof: Übung 8.2.

Lemma 2. Let −→ denote convergence almost everywhere or convergence in proba-

bility. If X
(i)
n −→ X(i) for i = 1, . . . , k and f : Rk → R is continuous, then

f ◦ (X(1)
n , . . . , X(k)

n ) −→ f ◦ (X(1), . . . , X(k)).

Proof. Trivial for convergence almost everywhere, and by Corollary 3 the conclusion

holds for convergence in probability, too.

Corollary 4. Let Xn
P−→ X. Then

Xn
P−→ Y ⇔ X = Y P -a.s.

Proof. Corollary 3 and Lemma II.6.1.

3 Convergence in Distribution

Given: a metric space (M, ρ). Put

Cb(M) = {f : M → R : f bounded, continuous},
and consider the Borel-σ-algebra B(M) in M . Moreover, let M(M) denote the set of

all probability measures on B(M).

Definition 1.

(i) A sequence (Qn)n∈N in M(M) converges weakly to Q ∈ M(M) if

∀ f ∈ Cb(M) : lim
n→∞

∫
f dQn =

∫
f dQ.

Notation: Qn
w−→ Q.

(ii) A sequence (Xn)n∈N of random elements with values in M converges in distribu-

tion to a random element X with values in M if Qn
w−→ Q for the distributions

Qn of Xn and Q of X, respectively.

Notation: Xn
d−→ X.

Remark 1. For convergence in distribution the random elements need not be defined

on a common probability space.

In the sequel: Qn, Q ∈ M(M) for n ∈ N.
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Example 1.

(i) For xn, x ∈ M

εxn

w−→ εx ⇔ lim
n→∞

ρ(xn, x) = 0.

For the proof of ‘⇐’, note that

∫
f dεxn

= f(xn),

∫
f dεx = f(x).

For the proof of ‘⇒’, suppose that lim supn→∞ ρ(xn, x) > 0. Take

f(y) = min(ρ(y, x), 1), y ∈ M,

and observe that f ∈ Cb(M) and

lim sup
n→∞

∫
f dεxn

= lim sup
n→∞

min(ρ(xn, x), 1) > 0

while
∫

f dεx = 0.

(ii) For the euclidean distance ρ on M = Rk

(M, B(M)) = (Rk, Bk).

Now, in particular, k = 1 and

Qn = N(µn, σ
2
n)

where σn > 0. For f ∈ Cb(R)

∫
f dQn = 1/

√
2π ·

∫

R

f(σn · x + µn) · exp(−1/2 · x2) λ1(dx).

Put N(µ, 0) = εµ. Then

lim
n→∞

µn = µ ∧ lim
n→∞

σn = σ ⇒ Qn
w−→ N(µ, σ2).

Otherwise (Qn)n∈N does not converge weakly. Übung 8.4.

(iii) For M = C([0, T ]) let ρ(x, y) = supt∈[0,T ] |x(t) − y(t)|. Cf. the introductory

Example I.3.

Remark 2. Note that Qn
w−→ Q does not imply

∀A ∈ B(M) : lim
n→∞

Qn(A) = Q(A).

For instance, assume limn→∞ ρ(xn, x) = 0 with xn 6= x for every n ∈ N. Then

εxn
({x}) = 0, εx({x}) = 1.
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Theorem 1 (Portmanteau Theorem). The following properties are equivalent:

(i) Qn
w−→ Q,

(ii) ∀ f ∈ Cb(M) uniformly continuous : limn→∞

∫
f dQn =

∫
f dQ,

(iii) ∀A ⊂ M closed : lim supn→∞ Qn(A) ≤ Q(A),

(iv) ∀A ⊂ M open : lim infn→∞ Qn(A) ≥ Q(A),

(v) ∀A ∈ B(M) : Q(∂A) = 0 ⇒ limn→∞ Qn(A) = Q(A).

Proof. See Gänssler, Stute (1977, Satz 8.4.9).

In the sequel, we study the particular case (M, B(M)) = (R, B), i.e., convergence in

distribution for random variables. The Central Limit Theorem deals with this notion

of convergence, see the introductory Example I.1 and Section ??.??.

Notation: for any Q ∈ M(R)

FQ(x) = Q(]−∞, x]), x ∈ R,

and for any function F : R → R

Cont(F ) = {x ∈ R : F continuous at x}.

Theorem 2.

Qn
w−→ Q ⇔ ∀x ∈ Cont(FQ) : lim

n→∞
FQn

(x) = FQ(x).

Moreover, if Qn
w−→ Q and Cont(FQ) = R then

lim
n→∞

sup
x∈R

|FQn
(x) − FQ(x)| = 0.

Proof. ‘⇒’: If x ∈ Cont(FQ) and A = ]−∞, x] then Q(∂A) = Q({x}) = 0, see

Theorem 1.2. Hence Theorem 1 implies

lim
n→∞

FQn
(x) = lim

n→∞
Qn(A) = Q(A) = FQ(x).

‘⇐’: Consider a non-empty open set A ⊂ R. Take pairwise disjoint open intervals

A1, A2, . . . such that A =
⋃∞

i=1 Ai. Fatou’s Lemma implies

lim inf
n→∞

Qn(A) = lim inf
n→∞

∞∑

i=1

Qn(Ai) ≥
∞∑

i=1

lim inf
n→∞

Qn(Ai).

Note that R \ Cont(FQ) is countable. Fix ε > 0, and take

A′
i = ]a′

i, b
′
i] ⊂ Ai

for i ∈ N such that

a′
i, b

′
i ∈ Cont(FQ) ∧ Q(Ai) ≤ Q(A′

i) + ε · 2−i.
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Then

lim inf
n→∞

Qn(Ai) ≥ lim inf
n→∞

Qn(A′
i) = Q(A′

i) ≥ Q(Ai) − ε · 2−i.

We conclude that

lim inf
n→∞

Qn(A) ≥ Q(A) − ε,

and therefore Qn
w−→ Q by Theorem 1.

Uniform convergence, Übung 9.1.

Corollary 1.

Qn
w−→ Q ∧ Qn

w−→ Q̃ ⇒ Q = Q̃.

Proof. By Theorem 2 FQ(x) = F eQ(x) if x ∈ D = Cont(FQ) ∩ Cont(F eQ). Since D

is dense in R and FQ as well as F eQ are right-continuous, we get FQ = F eQ. Apply

Theorem 1.3.

Given: random variables Xn, X on (Ω, A, P ) for n ∈ N.

Theorem 3.

Xn
P−→ X ⇒ Xn

d−→ X

and

Xn
d−→ X ∧ X constant a.s. ⇒ Xn

P−→ X.

Proof. Assume Xn
P−→ X. For ε > 0 and x ∈ R

P ({X ≤ x − ε}) − P ({|X − Xn| > ε})
≤ P ({X ≤ x − ε} ∩ {|X − Xn| ≤ ε})
≤ P ({Xn ≤ x})
= P ({Xn ≤ x} ∩ {X ≤ x + ε}) + P ({Xn ≤ x} ∩ {X > x + ε})
≤ P ({X ≤ x + ε}) + P ({|X − Xn| > ε}).

Thus

FX(x − ε) ≤ lim inf
n→∞

FXn
(x) ≤ lim sup

n→∞
FXn

(x) ≤ FX(x + ε).

For x ∈ Cont(FX) we get limn→∞ FXn
(x) = FX(x). Apply Theorem 2.

Now, assume that Xn
d−→ X and PX = εx. Let ε > 0 and take f ∈ Cb(R) such that

f ≥ 0, f(x) = 0, and f(y) = 1 if |x − y| ≥ ε. Then

P ({|X − Xn| > ε}) = P ({|x − Xn| > ε}) =

∫
1R\[x−ε,x+ε] dPXn

≤
∫

f dPXn

and

lim
n→∞

∫
f dPXn

=

∫
f dPX = 0.
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Example 2. Consider the uniform distribution P on Ω = {0, 1}. Put

Xn(ω) = ω, X(ω) = 1 − ω.

Then PXn
= PX and therefore

Xn
d−→ X.

However, {|Xn − X| < 1/2} = ∅ and therefore

Xn
P−→ X does not hold.

Theorem 4 (Skorohod). There exists a probability space (Ω, A, P ) with the following

property. If

Qn
w−→ Q,

then there exist Xn, X ∈ Z(Ω, A) for n ∈ N such that

∀n ∈ N : Qn = PXn
∧ Q = PX ∧ Xn

P -a.s.−→ X.

Proof. Take Ω = ]0, 1[, A = B(Ω), and consider the uniform distribution P on Ω.

Define

XQ(ω) = inf{z ∈ R : ω ≤ FQ(z)}, ω ∈ ]0, 1[ ,

for any Q ∈ M(R). Since XQ is non-decreasing, we have XQ ∈ Z(Ω, A). It turns out

that

PXQ
= Q, (1)

see Übung 9.2. Moreover, if Qn
w−→ Q then XQn

P -a.s.−→ XQ, see Gänssler, Stute (1977,

p. 67–68).

Remark 3. By (1) we have a general method to transform uniformly distributed

‘random numbers’ from ]0, 1[ into ‘random numbers’ with distribution Q.

Remark 4.

(i) Put

C(r) = {f : R → R : f, f (1), . . . , f (r) bounded, uniformly continuous}.

Then

Qn
w−→ Q ⇔ ∃ r ∈ N0 ∀ f ∈ C(r) : lim

n→∞

∫
f dQn =

∫
f dQ,

see Gänssler, Stute (1977, p. 66).

(ii) The Lévy distance

d(Q, R) = inf{h ∈ ]0,∞[ : ∀x ∈ R : FQ(x − h) − h ≤ FR(x) ≤ FQ(x + h) + h}

defines a metric on M(R), and

Qn
w−→ Q ⇔ lim

n→∞
d(Qn, Q) = 0,

see Chow, Teicher (1978, Thm. 8.1.3).
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(iii) Suppose that (M, ρ) is a complete separable metric space. Then there exists a

metric d on M(M) such that (M(M), d) is complete and separable as well, and

Qn
w−→ Q ⇔ lim

n→∞
d(Qn, Q) = 0,

see Parthasarathy (1967, Sec. II.6).

Finally, we present a compactness criterion, which is very useful for construction of

probability measures on B(M).

Lemma 1. Let xn,ℓ ∈ R for n, ℓ ∈ N with

∀ ℓ ∈ N : sup
n∈N

|xn,ℓ| < ∞.

Then there exists an increasing sequence (ni)i∈N in N such that

∀ ℓ ∈ N : (xni,ℓ)i∈N converges.

Proof. See Billingsley (1979, Thm. 25.13).

Definition 2.

(i) P ⊂ M(M) tight if

∀ ε > 0 ∃K ⊂ M compact ∀P ∈ P : P (K) ≥ 1 − ε.

(ii) P ⊂ M(M) relatively compact if every sequence in P contains a subsequence

that converges weakly.

Theorem 5 (Prohorov). Assume that M is a complete separable metric space and

P ⊂ M(M). Then

P relatively compact ⇔ P tight.

Proof. See Parthasarathy (1967, Thm. II.6.7). Here: M = R.

‘⇒’: Suppose that P is not tight. Then, for some ε > 0, there exists a sequence

(Pn)n∈N in P such that

Pn([−n, n]) < 1 − ε.

For a suitable subsequence, Pnk

w−→ P ∈ M(R). Take m > 0 such that

P (]−m,m[) > 1 − ε.

Theorem 1 implies

P (]−m,m[) ≤ lim inf
k→∞

Pnk
(]−m, m[) ≤ lim inf

k→∞
Pnk

([−nk, nk]) < 1 − ε,

which is a contradiction.
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‘⇐’: Consider any sequence (Pn)n∈N in P and the corresponding sequence (Fn)n∈N

of distribution functions. Use Lemma 1 to obtain a subsequence (Fni
)i∈N and a non-

decreasing function G : Q → [0, 1] with

∀ q ∈ Q : lim
i→∞

Fni
(q) = G(q).

Put

F (x) = inf{G(q) : q ∈ Q ∧ x < q}, x ∈ R.

Claim (Helly’s Theorem):

(i) F is non-decreasing and right-continuous,

(ii) ∀x ∈ Cont(F ) : limi→∞ Fni
(x) = F (x).

Proof: Ad (i): Obviously F is non-decreasing. For x ∈ R and ε > 0 take δ2 > 0 such

that

∀ q ∈ Q ∩ ]x, x + δ2[ : G(q) ≤ F (x) + ε.

Thus, for z ∈ ]x, x + δ2[,

F (x) ≤ F (z) ≤ F (x) + ε.

Ad (ii): If x ∈ Cont(F ) and ε > 0 take δ1 > 0 such that

F (x) − ε ≤ F (x − δ1).

Thus, for q1, q2 ∈ Q with

x − δ1 < q1 < x < q2 < x + δ2,

we get

F (x) − ε ≤ F (x − δ1) ≤ G(q1) ≤ lim inf
i→∞

Fni
(x) ≤ lim sup

i→∞
Fni

(x)

≤ G(q2) ≤ F (x) + ε.

Claim:

lim
x→−∞

F (x) = 0 ∧ lim
x→∞

F (x) = 1.

Proof: For ε > 0 take m ∈ Q such that

∀n ∈ N : Pn(]−m, m]) ≥ 1 − ε.

Thus

G(m) − G(−m) = lim
i→∞

(
Fni

(m) − Fni
(−m)

)
= lim

i→∞
Pni

(]−m, m]) ≥ 1 − ε.

Since F (m) ≥ G(m) and F (−m − 1) ≤ G(−m), we obtain

F (m) − F (−m − 1) ≥ 1 − ε.

It remains to apply Theorems 1.3 and 2.


