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7 The Radon-Nikodym-Theorem

Given: a measure space (Ω, A, µ). Put Z+ = Z+(Ω, A).

Definition 1. For f (quasi-)µ-integrable and A ∈ A, the integral of f over A is

∫

A

f dµ =

∫
1A · f dµ.

(Note: |1A · f | ≤ |f |.)

Theorem 1. Let f ∈ Z+ and put

ν(A) =

∫

A

f dµ, A ∈ A.

Then ν is a measure on A.

Proof. Clearly ν(∅) = 0 and ν ≥ 0. For A1, A2, . . . ∈ A pairwise disjoint

ν
( ∞⋃

i=1

Ai

)
=

∫ ∞∑

i=1

1Ai
· f dµ =

∫
lim

n→∞

( n∑

i=1

1Ai
· f

)
dµ

= lim
n→∞

∫ n∑

i=1

1Ai
· f dµ =

∞∑

i=1

∫
1Ai

· f dµ

=
∞∑

i=1

ν(Ai)

follows from Theorem 5.1.

Definition 2. The mapping ν in Theorem 1 is called measure with µ-density f .

Notation: ν = f · µ. If
∫

f dµ = 1 then f is called probability density .

Example 1. The introductory examples of probability spaces were defined by means

of probability densities.

(i) Let (Ω, A, µ) = (Rk, Bk, λk). For

f(x) = (2π)−k/2 · exp
(
−1

2

∑k
i=1 x2

i

)

we get the k-dimensional standard normal distribution ν.

For B ∈ Bk such that 0 < λk(B) < ∞ and

f =
1

λk(B)
· 1B

we get the uniform distribution on B.
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(ii) Suppose that Ω is countable, A = P(Ω), and µ is the counting measure on A.

Take f : Ω → R+ ∪ {∞} and use Theorem 5.1 to obtain

∀A ∈ A : ν(A) =

∫

A

f dµ =
∑

ω∈A

f(ω). (1)

Conversely, for any measure ν on A put f(ω) = ν({ω}). Then we have (1).

Theorem 2. Let ν = f · µ with f ∈ Z+ and g ∈ Z(Ω, A). Then

g (quasi)-ν-integrable ⇔ g · f (quasi)-µ-integrable,

in which case ∫
g dν =

∫
g · f dµ

Proof. First, assume that g = 1A with A ∈ A. Then the statements hold by definition.

For g ∈ S+(Ω, A) we now use linearity of the integral. For g ∈ Z+ we take a sequence

(gn)n∈N in S+(Ω, A) such that gn ↑ g. Then gn · f ∈ Z+ and gn · f ↑ g · f . Hence, by

Theorem 5.1 and the previous part of the proof
∫

g dν = lim
n→∞

∫
gn dν = lim

n→∞

∫
gn · f dµ =

∫
g · f dµ.

Finally, for g ∈ Z(Ω, A) we already know that

∫
g±dν =

∫
g± · f dµ =

∫
(g · f)± dµ.

Use linearity of the integral.

Remark 1.

f, g ∈ Z+ ∧ f = g µ-a.e. ⇒ f · µ = g · µ.

Theorem 3 (Uniqueness of densities). Let f, g ∈ Z+ such that f · µ = g · µ. Then

(i) f µ-integrable ⇒ f = g µ-a.e.,

(ii) µ σ-finite ⇒ f = g µ-a.e.

Proof. Ad (i): It suffices to verify that

f, g µ-integrable ∧
(
∀A ∈ A :

∫

A

f dµ ≤

∫

A

g dµ
)

⇒ f ≤ g µ-a.e.

To this end, take A = {f > g}. By assumption,

−∞ <

∫

A

f dµ ≤

∫

A

g dµ < ∞

and therefore
∫

A
(f − g) dµ ≤ 0. However,

1A · (f − g) ≥ 0,
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hence
∫

A
(f − g) dµ ≥ 0. Thus

∫
1A · (f − g) dµ = 0.

Theorem 5.3 implies 1A · (f − g) = 0 µ-a.e., and by definition of A we get µ(A) = 0.

Ad (ii): see Elstrodt (1996, p. 141).

Remark 2. Let (Ω, A, µ) = (Rk, Bk, λk) and x ∈ R
k. There is no density f ∈ Z+

w.r.t. λk such that εx = f · λk. This follows from εx({x}) = 1 and

(f · λk)({x}) =

∫

{x}

f dλk = 0.

Definition 3. A measure ν on A is absolutely continuous w.r.t. µ if

∀A ∈ A : µ(A) = 0 ⇒ ν(A) = 0.

Notation: ν ≪ µ.

Remark 3.

(i) ν = f · µ ⇒ ν ≪ µ.

(ii) In Remark 2 neither εx ≪ λ1 nor λ1 ≪ εx.

(iii) Let µ denote the counting measure on A. Then ν ≪ µ for every measure ν on A.

(iv) Let µ denote the counting measure on B1. Then there is no density f ∈ Z+ such

that λ1 = f · µ.

Lemma 1. Let fn
Lp

−→ f and A ∈ A. If p = 1 or µ(A) < ∞ then

∫

A

fn dµ →

∫

A

f dµ.

Proof. Übung 6.2. See also Lp and its dual space in Elstrodt (1996, §VII.3), e.g.

Theorem 4 (Radon, Nikodym). For every σ-finite measure µ and every measure ν

on A we have

ν ≪ µ ⇒ ∃ f ∈ Z+ : ν = f · µ.

Proof. See Elstrodt (1996, §VII.2).

Here we consider the particular case

∀A ∈ A : ν(A) ≤ µ(A) ∧ µ(Ω) < ∞.

A class U = {A1, . . . , An} is called a (finite measurable) partition of Ω if A1, . . . , An ∈
A are pairwise disjoint and

⋃n
i=1 Ai = Ω. The set of all partitions is partially ordered

by

U ⊏ V if ∀A ∈ U ∃B ∈ V : A ⊂ B.
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The infimum of two partitions is given by

U ∧ V = {A ∩ B : A ∈ U, B ∈ V} .

For any partition U we define

fU =
∑

A∈U

αA · 1A

with

αA =

{
ν(A)/µ(A) if µ(A) > 0

0 otherwise.

Clearly fU ∈ S+(Ω, σ(U)) ⊂ S+(Ω, A), σ(U) = U+ ∪ {∅}, and

∀A ∈ σ(U) : ν(A) =

∫

A

fU dµ.

(Thus we have ν|σ(U) = fU · µ|σ(U).) Let U ⊏ V and A ∈ V. Then

ν(A) =

∫

A

fV dµ =

∫

A

fU dµ,

since A ∈ σ(U). Hence ∫

A

f 2
V

dµ =

∫

A

fV · fU dµ,

since fV|A is constant, and therefore

0 ≤

∫
(fU − fV)2 dµ =

∫
f 2

U
dµ −

∫
f 2

V
dµ. (2)

Put

β = sup

{∫
f 2

U
dµ : U partition

}
,

and note that 0 ≤ β ≤ µ(Ω) < ∞, since fU ≤ 1. Consider a sequence of functions

fn = fUn
such that

lim
n→∞

∫
f 2

n dµ = β.

Due to (2) we may assume that Un+1 ⊏ Un. Then, by (2), (fn)n∈N is a Cauchy

sequence in L2, so that there exists f ∈ L2 with

lim
n→∞

‖fn − f‖2 = 0 ∧ 0 ≤ f ≤ 1 µ-a.e.,

see Theorem 6.3.

We claim that ν = f · µ. Let A ∈ A. Put

Ũn = Un ∧ {A, Ac}

and

f̃n = feUn
.

Then

ν(A) =

∫

A

f̃n dµ =

∫

A

fn dµ +

∫

A

(f̃n − fn) dµ,

and (2) yields limn→∞ ‖f̃n − fn‖2 = 0. It remains to apply Lemma 1.
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8 Kernels and Product Measures

Given: measurable spaces (Ω1, A1) and (Ω2, A2).

Motivation: two-stage experiment. Output ω1 ∈ Ω1 of the first stage determines

probabilistic model for the second stage.

Example 1. Choose one out of n coins and throw it once. Parameters a1, . . . , an ≥ 0

such that
∑n

i=1 ai = 1 and b1, . . . , bn ∈ [0, 1].

Let

Ω1 = {1, . . . , n}, A1 = P(Ω1)

and define

µ({i}) = ai, i ∈ Ω1,

to be the probability of choosing the i-th coin. Moreover, let

Ω2 = {H, T}, A2 = P(Ω2)

and define

K(i, {H}) = bi

to be the probability for obtaining H when throwing the i-th coin. Thus, for A2 ∈ A2,

K(i, A2) = bi · εH(A2) + (1 − bi) · εT(A2).

Definition 1. K : Ω1 × A2 → R is a kernel (from (Ω1, A1) to (Ω2, A2)), if

(i) K(ω1, ·) is a measure on A2 for every ω1 ∈ Ω1,

(ii) K(·, A2) is A1-B-measurable for every A2 ∈ A2.

K is a Markov (transition) kernel , if, additionally, K(ω1, Ω2) = 1 for every ω1 ∈ Ω1.

K is a σ-finite kernel if, additionally,

∃A2,1, A2,2, . . . ∈ A2 pairwise disjoint :

Ω2 =
∞⋃

i=1

A2,i ∧ ∀ i ∈ N : sup
ω1∈Ω1

K(ω1, A2,i) < ∞.

Example 2. Extremal cases, non-disjoint.

(i) Model for the second stage not influenced by output of the first stage, i.e., for a

(probability) measure ν on A2

∀ω1 ∈ Ω1 : K(ω1, ·) = ν.

In Example 1 this means b1 = · · · = bn.

(ii) Output of the first stage determines the output of the second stage, i.e., for a

A1-A2-measurable mapping f : Ω1 → Ω2

∀ω1 ∈ Ω1 : K(ω1, ·) = εf(ω1).

In Example 1 this means b1, . . . , bn ∈ {0, 1}.
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Notation:
∫

f dµ =
∫

Ω
f(ω) µ(dω).

Given: a (probability) measure µ on A1 and a (Markov) kernel K from (Ω1, A1) to

(Ω2, A2). Question: stochastic model (Ω, A, P ) for a compound experiment? Reason-

able, and assumed in the sequel,

Ω = Ω1 × Ω2, A = A1 ⊗ A2.

Question: How to define P?

Example 3. In Example 1, a reasonable requirement for P is

P ({i} × Ω2) = ai, P ({i} × {H}) = ai · bi

for every i ∈ Ω1. Consequently, for A2 ⊂ Ω2

P ({i} × A2) = K(i, A2) · ai

and for A ⊂ Ω

P (A) =
n∑

i=1

P ({(ω1, ω2) ∈ A : ω1 = i}) =
n∑

i=1

P ({i} × {ω2 ∈ Ω2 : (i, ω2) ∈ A})

=
n∑

i=1

K(i, {ω2 ∈ Ω2 : (i, ω2) ∈ A}) · ai

=

∫

Ω1

K(i, {ω2 ∈ Ω2 : (i, ω2) ∈ A}) µ(di).

May we generally use the right-hand side integral for the definition of P?

Lemma 1. Let f ∈ Z(Ω, A). Then, for ω1 ∈ Ω1, the ω1-section

f(ω1, ·) : Ω2 → R

of f is A2-B-measurable, and for ω2 ∈ Ω2 the ω2-section

f(·, ω2) : Ω1 → R

of f is A1-B-measurable.

Proof. In the case of an ω1-section. Fix ω1 ∈ Ω1. Then Ω2 → Ω1×Ω2 : ω2 7→ (ω1, ω2)

is A2-A-measurable due to Corollary 3.1.(i). Apply Theorem 2.1.

Remark 1. In particular, for A ∈ A and f = 1A

f(ω1, ·) = 1A(ω1, ·) = 1A(ω1)

where1

A(ω1) = {ω2 ∈ Ω2 : (ω1, ω2) ∈ A}

1poor notation



38 CHAPTER II. MEASURE AND INTEGRAL

is the ω1-section of A. By Lemma 1

∀ω1 ∈ Ω1 : A(ω1) ∈ A2.

Analogously for the ω2-section

A(ω2) = {ω1 ∈ Ω1 : (ω1, ω2) ∈ A}

of A.

Given:

• a σ-finite kernel K from (Ω1, A1) to (Ω2, A2),

• a σ-finite measure µ on A1.

Lemma 2. Let f ∈ Z+(Ω, A). Then

g : Ω1 → R+ ∪ {∞}, ω1 7→

∫

Ω2

f(ω1, ω2) K(ω1, dω2)

is A1-B([0,∞])-measurable.

Proof. First we additionally assume

∀ω1 ∈ Ω1 : K(ω1, Ω2) < ∞. (1)

Let F denote the set of all functions f ∈ Z+(Ω, A) with the measurability property as

claimed. We show that

∀A1 ∈ A1, A2 ∈ A2 : 1A1×A2
∈ F. (2)

Indeed, ∫

Ω2

1A1×A2
(ω1, ω2)K(ω1, dω2) = 1A1

(ω1)K(ω1, A2).

Furthermore, we show that

∀A ∈ A : 1A ∈ F. (3)

To this end let

D = {A ∈ A : 1A ∈ F}

and

E = {A1 × A2 : A1 ∈ A1 ∧ A2 ∈ A2}.

Then E ⊂ D by (2), E is closed w.r.t. intersections, and σ(E) = A. From (1) it easily

follows that D is a Dynkin class. Hence Theorem 1.2 yields

A = σ(E) = δ(E) ⊂ D ⊂ A,

which implies (3). From Lemma 5.2 and Theorem 2.6 we get

f1, f2 ∈ F ∧ α ∈ R+ ⇒ αf1 + f2 ∈ F. (4)
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Finally, Theorem 5.1 and Theorem 2.5.(iii) imply that

fn ∈ F ∧ fn ↑ f ⇒ f ∈ F. (5)

Use Theorem 2.7 together with (3)–(5) to conclude that F = Z+.

In the general case we take A2,1, A2,2, . . . ∈ A2 pairwise disjoint such that

∞⋃

i=1

A2,i = Ω2 ∧ ∀ i ∈ N : sup
ω1∈Ω1

K(ω1, A2,i) < ∞,

and we define

Ki(ω1, ·) = K(ω1, · ∩ A2,i) = 1A2,i
· K(ω1, ·).

Then, using Theorems 5.1 and 7.2,

∫

Ω2

f(ω1, ω2) K(ω1, dω2) =
∞∑

i=1

∫

Ω2

1A2,i
(ω2) f(ω1, ω2) K(ω1, dω2)

=
∞∑

i=1

∫

Ω2

f(ω1, ω2) Ki(ω1, dω2).

Since Ki(ω1, Ω2) < ∞ for every ω1 ∈ Ω1, we conclude that
∫

Ω2

f(·, ω2) Ki(·, dω2) is

A1-B([0,∞])-measurable. Apply Theorems 2.5 and 2.6.

Theorem 1.

∃
1

measure µ × K on A ∀A1 ∈ A1 ∀A2 ∈ A2 :

µ × K(A1 × A2) =
∫

A1

K(ω1, A2) µ(dω1). (6)

Moreover, µ × K is σ-finite, and

∀A ∈ A : µ × K(A) =

∫

Ω1

K(ω1, A(ω1)) µ(dω1). (7)

If µ is a probability measure and K is a Markov kernel then µ × K is a probability

measure, too.

Proof. ‘Existence’: For A ∈ A and ω1 ∈ Ω1

K(ω1, A(ω1)) =

∫

Ω2

1A(ω1)(ω2) K(ω1, dω2) =

∫

Ω2

1A(ω1, ω2) K(ω1, dω2).

According to Lemma 8.2 µ ×K is well-defined via (7). Using Theorem 5.1, it is easy

to verify that µ × K is a measure on A.

For A1 ∈ A1 and A2 ∈ A2

K(ω1, (A1 × A2)(ω1)) =

{
K(ω1, A2) if ω1 ∈ A1

0 otherwise.

Hence µ × K satisfies (6).
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By assumption we have A1,1, A1,2, . . . ∈ A1 pairwise disjoint such that

∞⋃

i=1

A1,i = Ω1 ∧ ∀ i ∈ N : µ(A1,i) < ∞

and A2,1, A2,2, . . . ∈ A2 pairwise disjoint such that

∞⋃

j=1

A2,j = Ω2 ∧ ∀ j ∈ N : sup
ω1∈Ω1

K(ω1, A2,j) < ∞.

Consider the sets A1,i × A2,j with i, j ∈ N and note that

(µ × K)(A1,i × A2,j) =

∫

A1,i

K(ω1, A2,j) µ(dω1)

≤ sup
ω1∈Ω1

K(ω1, A2,j) µ(A1,i) < ∞,

to conclude that µ × K ist σ-finite.

‘Uniqueness’: Apply Theorem 4.4 with A0 = {A1 × A2 : Ai ∈ Ai}.

Example 4. In Example 3 we have P = µ × K.

Remark 2. Particular case of Theorem 1 with

µ = µ1, ∀ω1 ∈ Ω1 : K(ω1, ·) = µ2

for σ-finite measures µi on (Ωi, Ai):

∃
1
measure µ1 × µ2 on A ∀A1 ∈ A1 ∀A2 ∈ A2 :

µ1 × µ2(A1 × A2) = µ1(A1) · µ2(A2). (8)

Moreover, µ1 × µ2 is σ-finite and satisfies

∀A ∈ A : µ1 × µ2(A) =

∫

Ω1

µ2(A(ω1)) µ(dω1). (9)

We add that σ-finiteness is used for the definition (9) and the uniqueness in (8). In

general, we only have existence of a measure µ1 × µ2 with (8). See Elstrodt (1996,

§V.1).

Definition 2. µ = µ1 ×µ2 is called the product measure corresponding to µ1 and µ2,

and (Ω, A, µ) is called the product measure space corresponding to (Ω1, A1, µ1) and

(Ω2, A2, µ2).

Example 5.

(i) In Example 3 with b = b1 = · · · = bn and ν = b · εH + (1 − b) · εT we have

P = µ × ν.
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(ii) For countable spaces Ωi and σ-algebras Ai = P(Ωi) we get

µ1 × µ2(A) =
∑

ω1∈Ω1

µ2(A(ω1)) · µ1({ω1}), A ⊂ Ω.

In particular, for uniform distributions µi on finite spaces, µ1×µ2 is the uniform

distribution on Ω. Cf. Example 3.1 in the case n = 2.

(iii) The multi-dimensional Lebesgue measure is a product measure. Namely, for

k, ℓ ∈ N and A1 ∈ Ik, A2 ∈ Iℓ we have

λk+ℓ(A1 × A2) = λk(A1) · λℓ(A2) = λk × λℓ(A1 × A2),

see Example 4.1.(i). Corollary 4.1 yields

λk+ℓ = λk × λℓ.

From (9) we get

λk+ℓ(A) =

∫

Rk

λℓ(A(ω1)) λk(dω1), A ∈ Bk+ℓ,

cf. Cavalieri’s Principle.

Theorem 2 (Fubini’s Theorem).

(i) For f ∈ Z+(Ω, A)
∫

Ω

f d(µ × K) =

∫

Ω1

∫

Ω2

f(ω1, ω2) K(ω1, dω2) µ(dω1).

(ii) For f (µ × K)-integrable and

A1 = {ω1 ∈ Ω1 : f(ω1, ·) K(ω1, ·)-integrable}

we have

(a) A1 ∈ A1 and µ(Ac
1) = 0,

(b) A1 → R : ω1 7→
∫

Ω2

f(ω1, ·) dK(ω1, ·) is integrable w.r.t. µ|A1∩A1
,

(c) ∫

Ω

f d(µ × K) =

∫

A1

∫

Ω2

f(ω1, ω2) K(ω1, dω2) µ|A1∩A1
(dω1).

Proof. Ad (i): algebraic induction. Ad (ii): consider f+ and f− and use (i).

Remark 3. For brevity, we write
∫

Ω1

∫

Ω2

f(ω1, ω2) K(ω1, dω2) µ(dω1) =

∫

A1

∫

Ω2

f(ω1, ω2) K(ω1, dω2) µ|A1∩A1
(dω1),

if f is (µ × K)-integrable. For f ∈ Z(Ω, A)

f is (µ × K)-integrable ⇔

∫

Ω1

∫

Ω2

|f |(ω1, ω2) K(ω1, dω2) µ(dω1) < ∞.
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Corollary 1 (Fubini’s Theorem). For σ-finite measures µi on Ai and a (µ1 × µ2)-

integrable function f
∫

Ω

f d(µ1 × µ2) =

∫

Ω1

∫

Ω2

f(ω1, ω2) µ2(dω2) µ1(dω1)

=

∫

Ω2

∫

Ω1

f(ω1, ω2) µ1(dω1) µ2(dω2).

Proof. Theorem 2 yields the first equality. For the second equality, put f̃(ω2, ω1) =

f(ω1, ω2) and note that
∫

Ω
f d(µ1 × µ2) =

∫
Ω

f̃ d(µ2 × µ1).

Corollary 2. For every measurable space (Ω, A), every σ-finite measure µ on A, and

every f ∈ Z+(Ω, A) ∫

Ω

f dµ =

∫

]0,∞[

µ({f > x}) λ1(dx).

Proof. Übung 7.2.

Now we construct a stochastic model for a series of experiments, where the outputs

of the first i − 1 stages determine the model for the ith stage.

Given: measurable spaces (Ωi, Ai) for i ∈ I, where I = {1, . . . , n} or I = N. Put

(
Ω′

i, A
′
i

)
=

( i

×
j=1

Ωj,

i⊗

j=1

Aj

)
,

and note that

i

×
j=1

Ωj = Ω′
i−1 × Ωi ∧

i⊗

j=1

Aj = A′
i−1 ⊗ Ai

for i ∈ I \ {1}. Furthermore, let

Ω =×
i∈I

Ωi, A =
⊗

i∈I

Ai. (10)

Given:

• σ-finite kernels Ki from
(
Ω′

i−1, A
′
i−1

)
to (Ωi, Ai) for i ∈ I \ {1},

• a σ-finite measure µ on A1.

Theorem 3. For I = {1, . . . , n}

∃
1
measure ν on A ∀A1 ∈ A1 . . . ∀An ∈ An :

ν(A1 × · · · × An)

=

∫

A1

. . .

∫

An−1

Kn((ω1, . . . , ωn−1), An) Kn−1((ω1, . . . , ωn−2), dωn−1) · · ·µ(dω1).

Moreover, ν is σ-finite and for f ν-integrable (the short version)
∫

Ω

f dν =

∫

Ω1

. . .

∫

Ωn

f(ω1, . . . , ωn)Kn((ω1, . . . , ωn−1), dωn) · · ·µ(dω1). (11)

Notation: ν = µ × K2 × · · · × Kn.
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Proof. Induction, using Theorems 1 and 2.

Remark 4. Particular case of Theorem 3 with

µ = µ1, ∀ i ∈ I \ {1} ∀ω′
i−1 ∈ Ω′

i−1 : Ki(ω
′
i−1, ·) = µi (12)

for σ-finite measures µi on Ai:

∃
1
measure µ1 × · · · × µn on A ∀A1 ∈ A1 . . . ∀An ∈ An :

µ1 × · · · × µn(A1 × · · · × An) = µ1(A1) · · · · · µn(An).

Moreover, µ1 × · · · × µn is σ-finite and for every µ1 × · · · × µn-integrable function f
∫

Ω

f d(µ1 × · · · × µn) =

∫

Ω1

. . .

∫

Ωn

f(ω1, . . . , ωn) µn(dωn) · · ·µ1(dω1).

Definition 3. µ = µ1 × · · · × µn is called the product measure corresponding to µi

for i = 1, . . . , n, and (Ω, A, µ) is called the product measure space corresponding to

(Ωi, Ai, µi) for i = 1, . . . , n.

Example 6.

(i) For uniform distributions µi on finite spaces Ωi, µ1 × · · · × µn is the uniform

distribution on Ω. Cf. Example 3.1 in the case n ∈ N.

(ii)

λn = λ1 × · · · × λ1.

Theorem 4 (Ionescu-Tulcea). Assume that µ is a probability measure and that Ki

are Markov kernels for i ∈ N \ {1}. Then, for I = N,

∃
1
probability measure P on A ∀n ∈ N ∀A1 ∈ A1 . . . ∀An ∈ An :

P
(
A1 × · · · × An ×

∞

×
i=n+1

Ωi

)
= (µ × K2 × · · · × Kn)(A1 × · · · × An). (13)

Proof. ‘Existence’: Consider σ-algebras

n⊗

i=1

Ai, Ãn = σ
(
πN

{1,...,n}

)

on ×n
i=1 Ωi and ×∞

i=1 Ωi, respectively. Define a probability measure P̃n on Ãn by

P̃n

(
A ×

∞

×
i=n+1

Ωi

)
= (µ × K2 × · · · × Kn)(A), A ∈

n⊗

i=1

Ai.

Then (11) yields the following consistency property

P̃n+1

(
A × Ωn+1 ×

∞

×
i=n+2

Ωi

)
= P̃n

(
A ×

∞

×
i=n+1

Ωi

)
, A ∈

n⊗

i=1

Ai.
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Thus

P̃ (Ã) = P̃n(Ã), Ã ∈ Ãn,

yields a well-defined mapping on the algebra

Ã =
⋃

n∈N

Ãn

of cylinder sets. Obviously, P̃ is a content and (13) holds for P = P̃ .

Claim: P̃ is σ-continuous at ∅. See Gänssler, Stute (1977, p. 49–50) for the proof.

Then, by Theorem 4.1, P̃ is σ-additive and it remains to apply Theorem 4.3.

‘Uniqueness’: By (13), P is uniquely determined on the class of measurable rectangles.

Apply Theorem 4.4.

Example 7. The queueing model, see Übung 7.3. Here Ki((ω1, . . . , ωi−1), ·) only

depends on ωi−1. Outlook: Markov processes.

Given: a non-empty set I and probability spaces (Ωi, Ai, µi) for i ∈ I. Recall the

definition (10).

Theorem 5.

∃
1
probability measure P on A ∀S ∈ P0(I) ∀Ai ∈ Ai, i ∈ S :

P
(
×
i∈S

Ai ××
i∈I\S

Ωi

)
=

∏

i∈S

µi(Ai). (14)

Notation: P = ×i∈I µi.

Proof. See Remark 4 in the case of a finite set I.

If |I| = |N|, assume I = N without loss of generality. The particular case of Theorem 4

with (12) for probability measures µi on Ai shows

∃
1
probability measure P on A ∀n ∈ N ∀A1 ∈ A1 . . . ∀An ∈ An :

P
(
A1 × · · · × An ×

∞

×
i=n+1

Ωi

)
= µ1(A1) · · · · · µn(An).

If I is uncountable, we use Theorem 3.2. For S ⊂ I non-empty and countable and for

B ∈
⊗

i∈S Ai we put

P
((

πI
S

)−1
B) =×

i∈S

µi(B).

Hereby we get a well-defined mapping P : A → R, which clearly is a probability

measure and satisfies (14). Use Theorem 4.4 to obtain the uniqueness result.

Definition 4. P = ×i∈I µi is called the product measure corresponding to µi for

i ∈ I, and (Ω, A, P ) is called the product measure space corresponding to (Ωi, Ai, µi)

for i ∈ I.

Remark 5. Theorem 5 answers the question that is posed in Example 3.1 in full

generality. Moreover, it is the basis for a positive answer to the question from the

introductory Example I.2, see Theorem ??.??.??.
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9 Image Measures

Given: a measure space (Ω, A, µ), a measurable space (Ω′, A′), and an A-A′-measurable

mapping f : Ω → Ω′.

Lemma 1.

f(µ) : A′ → R+ ∪ {∞}

A′ 7→ µ(f−1(A′)) = µ({f ∈ A′})

defines a measure on A′.

Proof. f(µ) is well-defined, since f−1(A′) ∈ A for any A′ ∈ A′. The respective prop-

erties of f(µ) are easy to verify.

Definition 1. f(µ) is called the image measure of µ under f .

Example 1. Let

(Ω, A, µ) = (Rk, Bk, λk), (Ω′, A′) = (Rk, Bk).

(i) Fix a ∈ R
k. For f(ω) = ω + a we get

f(λk)(A
′) = λk(A

′ − a) = λk(A
′),

see Analysis IV (‘or’ verify this identity for measurable rectangles and apply

Theorem 4.4). Thus

f(λk) = λk.

(ii) Fix r ∈ R \ {0}. For f(ω) = r · ω we get

f(λk)(A
′) = λk(1/r · A

′) =
1

|r|k
· λk(A

′),

see Analysis IV (‘or’ verify this identity for measurable rectangles and apply

Theorem 4.4). Thus

f(λk) =
1

|r|k
· λk.

Theorem 1 (Transformation ‘Theorem’).

(i) for g ∈ Z+(Ω′, A′) ∫

Ω′

g df(µ) =

∫

Ω

g ◦ f dµ (1)

(ii) for g ∈ Z(Ω′, A′)

g is f(µ)-integrable ⇔ g ◦ f is µ-integrable,

in which case (1) holds.
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Proof. Algebraic induction.

Example 2. Consider open sets U, V ⊂ R
k and a C1-diffeomorphism f : U → V . Let

(Ω, A, µ) = (U,U ∩ Bk, λk|U∩Bk
), (Ω′, A′) = (V, V ∩ Bk).

Put

ν = λk|V ∩Bk
.

Then

f(µ)(A′) =

∫

f−1(A′)

dµ =

∫

A′

| det Df−1| dν,

see Analysis IV for the case of an open set A′ ⊂ V . Thus

f(µ) = | det Df−1| · ν,

and therefore ∫

U

g ◦ f dµ =

∫

V

g df(µ) =

∫

V

g · | det Df−1| dν.

Put g = h ◦ f−1 and ϕ = f−1 to obtain

∫

U

h dµ =

∫

V

h ◦ ϕ · | det Dϕ| dν.
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