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7 The Radon-Nikodym-Theorem

Given: a measure space (92,2, i). Put 3, = 3,(Q, ).

Definition 1. For f (quasi-)u-integrable and A € 2, the integral of f over A is

/Afcmz/u-fdu.

Theorem 1. Let f € 3, and put

(Note: [1a- f] < |f])

V(A):/Afdu, Aec

Then v is a measure on .

Proof. Clearly v()) =0 and v > 0. For Ay, Ay, ... € 2 pairwise disjoint
V(UAZ) = /ZlAi -fdu—/ lim <21Ai f) dp
i=1 i=1 i=1
Jirgo/zlAi-fdM=Z/lAi - fdp
i=1 i=1

oo

follows from Theorem 5.1. O

Definition 2. The mapping v in Theorem 1 is called measure with p-density f.
Notation: v = f - p. If [ fdu =1 then f is called probability density.

Example 1. The introductory examples of probability spaces were defined by means
of probability densities.

(1) Let (Q,Q{, /L) = (Rk, %k, )\k) For

f() = @r) 2 exp (-1 L, 22)

we get the k-dimensional standard normal distribution v.

For B € B, such that 0 < A\;(B) < oo and

we get the uniform distribution on B.
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(ii) Suppose that  is countable, 2 = PB(2), and p is the counting measure on 2.
Take f: Q2 — R, U{oo} and use Theorem 5.1 to obtain

VAeﬂ:y(A)—/fdu—Zf(w). (1)
A weA
Conversely, for any measure v on 2 put f(w) = v({w}). Then we have (1).

Theorem 2. Let v = f - p with f € 3, and g € 3(€,2). Then

g (quasi)-v-integrable < ¢ - f (quasi)-p-integrable,

/gdv:/g-fdu

Proof. First, assume that g = 14 with A € 2. Then the statements hold by definition.
For g € &, (Q,2A) we now use linearity of the integral. For g € 3 we take a sequence
(gn)nen in &, (,2) such that g, Tg. Then g, - f €3, and g,,- f T g~ f. Hence, by
Theorem 5.1 and the previous part of the proof

/gduzlim gndyzlim/gn-fd,u:/g-fd,u.

Finally, for g € 3(£,2l) we already know that

/gidvz/gi-fduz/(g-f)idu-

Use linearity of the integral. m

in which case

Remark 1.
f.g€3 . Nf=gpae = f-u=g-pu

Theorem 3 (Uniqueness of densities). Let f, g € 3, such that f-u = g-u. Then
(i) f p-integrable = f = g p-a.e.,
(ii) p o-finite = f = g p-a.e.

Proof. Ad (i): Tt suffices to verify that

f, g p-integrable A (‘V’A eA: / fdu < / gd,u) = [ <g p-ae.
A A

To this end, take A = {f > g}. By assumption,

—oo</fd,u§/gdu<oo
A A

and therefore [,(f —g)dpu < 0. However,

1A'(f_g)207
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hence [, (f —g)dp > 0. Thus

/&Awf—mdu—a
Theorem 5.3 implies 14 - (f — g) = 0 p-a.e., and by definition of A we get u(A) = 0.
Ad (ii): see Elstrodt (1996, p. 141). O
Remark 2. Let (Q,2, u) = (R¥, By, \r) and € R¥. There is no density f € 3.
w.r.t. A\g such that e, = f - Az This follows from e,({z}) =1 and

(f - A)({x}) = { }fd)\k =0.

Definition 3. A measure v on U is absolutely continuous w.r.t. p if
VAeA: u(A) =0=rv(A) =0.
Notation: v < pu.
Remark 3.
) v=f-pn=>rv<u.
(ii) In Remark 2 neither ¢, < A nor \; < ¢,.
(iii) Let p denote the counting measure on 2. Then v < u for every measure v on 2.
)

(iv) Let p denote the counting measure on %8;. Then there is no density f € 3. such
that \y = f - p.

Lemma 1. Let f, =, fand AeA If p=1or u(A) < oo then

LAh@wHAfW-

Proof. Ubung 6.2. See also L? and its dual space in Elstrodt (1996, §VIL.3), e.g. [

Theorem 4 (Radon, Nikodym). For every o-finite measure p and every measure v
on 2 we have
vy = 3Afe3iiv=f-p

Proof. See Elstrodt (1996, §VIIL.2).

Here we consider the particular case
VAeA:v(A) < u(A) A p(Q) < oco.

A class d = {A;y,..., A,} is called a (finite measurable) partition of Qif Ay,... A, €
2 are pairwise disjoint and (J;_; A; = Q. The set of all partitions is partially ordered
by

Uy if YAeUIBeU: ACB.
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The infimum of two partitions is given by
UNTB={ANB:Aeci BeV}.
For any partition 4 we define
Ju= Z ay 1y
Aest

with

0 otherwise.

aA::{uunmwAJ if ju(4) > 0

Clearly fy € 64(Q,0()) C 6,(Q2,2A), o(Lh) = Ut U {0}, and
VAecoll):v(A) = / fudpu.
A

(Thus we have v|yw) = fu- it|o).) Let 4 T U and A € Y. Then

o) = [ fwdn= [ fud

/Af%d/i—/Afm'fud/%

since fyla is constant, and therefore

0< [(a fldu= [ fodn- [ fhan @)

since A € o(4). Hence

Put
[ = sup {/ fj du : U partition} ,

and note that 0 < 8 < u(Q) < oo, since fy < 1. Consider a sequence of functions
fn = fu, such that

lim /fzd,u = 0.

Due to (2) we may assume that ,,1 C ,. Then, by (2), (fu)nen is a Cauchy
sequence in £2, so that there exists f € £2 with

lim ||f, — flla=0 A 0<f <1 p-ae,

see Theorem 6.3.
We claim that v = f - u. Let A € 2. Put
i:/[n =4, A {Av Ac}

and

fo = I, -
Then

o) = [ o= [ fodut [ G g

and (2) yields lim, s || fu — fall2 = 0. It remains to apply Lemma 1. O
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8 Kernels and Product Measures

Given: measurable spaces (€21,2;) and (€, 2s).

Motivation: two-stage experiment. Output w; € €2y of the first stage determines
probabilistic model for the second stage.

Example 1. Choose one out of n coins and throw it once. Parameters aq,...,a, >0
such that Y " a; =1 and by,...,b, € [0,1].
Let

Q ={1,...,n}, 2A; = P()
and define
p({i}) = a;, i€y,
to be the probability of choosing the i-th coin. Moreover, let

Qy = {H, T}, Uy = P(Q22)

and define
K(i,{H}) = b;

to be the probability for obtaining H when throwing the i-th coin. Thus, for Ay € s,
K (i, As) = b; - en(Az) + (1 — b;) - ep(A2).
Definition 1. K : Q; x %, — R is a kernel (from (Q1,21) to (Q,As)), if
(i) K(wy,-) is a measure on 2, for every w; € €,
(i) K(-,Ag) is 2;-B-measurable for every A, € As.

K is a Markov (transition) kernel, if, additionally, K (w1, $2) = 1 for every wy € ;.
K is a o-finite kernel if, additionally,

JAs1, Az, ... € 2y pairwise disjoint :

Qy = UAQJ‘ AN VieN: sup K(wy,Ay;) < oo
i=1

w1€
Example 2. Extremal cases, non-disjoint.

(i) Model for the second stage not influenced by output of the first stage, i.e., for a
(probability) measure v on s

Vw € Q1 K(wy,:) =v.
In Example 1 this means by = --- = b,,.

(ii) Output of the first stage determines the output of the second stage, i.e., for a
2A;-As-measurable mapping f : 2 — 9

le € Ql : K(wl, ) = Ef(w1)-

In Example 1 this means b, ...,b, € {0,1}.
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Notation: [ fdu = [, f(w)p(dw).

Given: a (probability) measure p on 2A; and a (Markov) kernel K from (€21,2(;) to
(Q,20y). Question: stochastic model (2,2, P) for a compound experiment? Reason-
able, and assumed in the sequel,

Q= Q1 x Qo A=2A @As.
Question: How to define P?
Example 3. In Example 1, a reasonable requirement for P is
P({i} x Q) = a;, P({i} x {H}) = a; - b;
for every ¢ € ;. Consequently, for Ay C Q9
P({i} x Ay) = K(i, As) - a;

and for A C Q

P(A) =) P({(w,ws) € Arwy =i}) = ZP({Z} x {wy € Uy« (i,ws) € A})

i=1

:ZK(?;7{W2 GQQ . (i,WQ) GA})'ai

=1

-/ K(i,{ws € Q1 (i,wn) € A}) u(di).

May we generally use the right-hand side integral for the definition of P?

Lemma 1. Let f € 3(Q,2). Then, for w; € Qy, the w;-section
flw,): Q=R

of fis Ay-B-measurable, and for wy € Qy the wy-section
flwo): O —R

of fis Aq-B-measurable.

Proof. In the case of an w;-section. Fix w; € Q. Then Qs — Q1 X Q1 wo — (w1, ws)
is 2Ay-A-measurable due to Corollary 3.1.(i). Apply Theorem 2.1. O

Remark 1. In particular, for A € A and f =14
flwi,+) = 1a(wr, ) = Lagy

where!

Alwy) = {ws € Qg 1 (wy1,ws) € A}

Lpoor notation
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is the wy-section of A. By Lemma 1
Vw € Qy: A(wr) € Ao
Analogously for the ws-section
Alwg) ={w1 € Q1 1 (w1,w) € A}
of A.
Given:

e a o-finite kernel K from (21,20) to (2, 2As),
e a o-finite measure p on 2.

Lemma 2. Let f € 3,(Q,2). Then

g: O =Ry U{0}, wi+— fwr, ws) K (w1, dws)
Qo

is 204-2B([0, 0o])-measurable.
Proof. First we additionally assume
‘v’wl S Ql : K(wl,92> < Q. (1)

Let § denote the set of all functions f € 3, (€, 2) with the measurability property as
claimed. We show that

VAleﬁll,AQEngz 1A1><A2€S' (2)
Indeed,
/ Lty (@1, 00) K (w1, deon) = L (wn) K (n, As).
Q2

Furthermore, we show that

VAed: 1,€753. (3)

To this end let
D={AcA: 14, €F}

and
@Z{A1XA22A1€Ql1/\AQEQ[2}.

Then & C D by (2), € is closed w.r.t. intersections, and o (&) = . From (1) it easily
follows that ® is a Dynkin class. Hence Theorem 1.2 yields

A=0(€)=6(¢) CD C,
which implies (3). From Lemma 5.2 and Theorem 2.6 we get

Jilo€FNa€eER, = afi+fred. (4)
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Finally, Theorem 5.1 and Theorem 2.5.(iii) imply that

mE€SNLTS = [JEST (5)
Use Theorem 2.7 together with (3)—(5) to conclude that § = 3.
In the general case we take Ay 1, Aso, ... € 2y pairwise disjoint such that

UAQz—Q2 VAN VieN: sup K(wl,AQZ) o0,

i=1 w1€N

and we define
Ki(wi, ) = K(wi, N Agy) = 1a,, - K(wi, ).

Then, using Theorems 5.1 and 7.2,

f(wl,wz) (w1, dwy) = Z/ Lay, (w2) f(wr,w2) K(wy, dws)
Qo
= f(wl,wg) Ki(wl,dwg).
Since K;(wy, ) < oo for every wy € €2y, we conclude that fQQ f w2) K+, dws) is

2,-2B([0, 0o])-measurable. Apply Theorems 2.5 and 2.6. O
Theorem 1.
%Imeasure pxXKonA VA €, VA, €Ay
px K(A; x Ay) = fA (w1, Ag) p(dwy). (6)

Moreover, p x K is o-finite, and

VAed: puxK(A) = [ K(w,Awr)) p(dw). (7)

951

If v is a probability measure and K is a Markov kernel then p x K is a probability
measure, too.

Proof. ‘Existence’: For A € 2 and w; € ()
K(wy, A(w)) = / L) (w2) K(wy, dws) = / La(wy,ws) K(wy, dws).
QQ QQ

According to Lemma 8.2 p x K is well-defined via (7). Using Theorem 5.1, it is easy
to verify that u x K is a measure on 2.

For Al < Qll and A2 S Q‘Q

K(wi, (A X As)(w1)) = {K(wl,Az) if w, € A

otherwise.

Hence p x K satisfies (6).
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By assumption we have Ay 1, Aj2,... € 204 pairwise disjoint such that
[o.¢]
UALi = Ql A VieN: ,U/(Al,z) < 0
i=1

and A1, Asyg, ... € AUy pairwise disjoint such that

UAQ,]- =0y A VjeN: sup K(w,Ay;) < 0.
j=1

w1EMN

Consider the sets A;; x Ay ; with 7, j € N and note that

(e x K)(A1; X Agj) = K (w1, A j) pu(dwn)
A
< sup K(wy, Asj) pu(Ay;) < oo,

w1 €0

to conclude that p x K ist o-finite.
‘Uniqueness’: Apply Theorem 4.4 with 20y = {A; x Ay : A; € A} O

Example 4. In Example 3 we have P = u x K.
Remark 2. Particular case of Theorem 1 with
W= 1, Vw, € Q1 K(wi,-) = o
for o-finite measures u; on (£2;,2;):
%Imeasure X pponA VA €Uy VA, € Ay
1 X po(Ar X Ag) = pi1 (A1) - po(As). (8)

Moreover, p; X po is o-finite and satisfies

VAER: () = [ pma(AGwn)n(dey) )
Q1
We add that o-finiteness is used for the definition (9) and the uniqueness in (8). In

general, we only have existence of a measure p; X g with (8). See Elstrodt (1996,
§V.1).

Definition 2. j = py X ps is called the product measure corresponding to pq and ps,
and (Q,2(, u) is called the product measure space corresponding to (21,2, p1) and

(92, s, Mz)'

Example 5.

(i) In Example 3 with b = b = --- = b, and v = b-epg + (1 — b) - ex we have
P=puxv.
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(ii) For countable spaces €; and o-algebras 2; = PB(€;) we get

p1 X pa(A) = Y pa(Alwn)) - m({wn}), Acq

w1 €M

In particular, for uniform distributions p; on finite spaces, p; X o is the uniform
distribution on €2. Cf. Example 3.1 in the case n = 2.

(iii) The multi-dimensional Lebesgue measure is a product measure. Namely, for
k,0 € Nand A; € J;, Ay € J, we have

)\k+g(A1 X Ag) = )\k(Al) . )\g(Az) = )\k’ X )\g(Al X Az),
see Example 4.1.(i). Corollary 4.1 yields
)\kJrg = )\k X )\g.

From (9) we get

>\k+Z(A) = /k )\g(A(u)l)) /\k(dwl), Ae€ %/H_g,
R
cf. Cavalieri’s Principle.
Theorem 2 (Fubini’s Theorem).

(i) For f € 3,(,2)
/Q Fd(px K) = / [ Fenn) K, don) (o)

(ii) For f (u x K)-integrable and
Ay ={w; € Y f(wi,) K(wy,-)-integrable}
we have

(a) A; €y and p(AS) =0,
(b) Ay = R:wy = [, f(wi, ) dK(wr,-) is integrable w.r.t. pufa,na,,
(c)

/ f(ux K) = / F (w1, w2) K (w1, dws) il sy ().
Q A1J Qo

Proof. Ad (i): algebraic induction. Ad (ii): consider f™ and f~ and use (i). O

Remark 3. For brevity, we write
| [ ) Ko dunhntdon = [ [ lon) K(ordon) e, (don),
Ql QQ Al Q2
if fis (u x K)-integrable. For f € 3(,2)

fis (u x K)-integrable & / | f(w1,w2) K (w1, dws) p(dw) < 00.
01/
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Corollary 1 (Fubini’s Theorem). For o-finite measures p; on ; and a (u; X f9)-
integrable function f

/Qfd(/u X i) = /91 . fwi, w2) pa(dws) pur (dwn)

:/Q ) f(wr, wa) iy (dwy) pa(dws).

Proof. Theorem 2 yields the first equality. For the second equality, put f(wg,wl) =
f(w1,w2) and note that fg fd(p x p2) = fg fd(pz X p). u

Corollary 2. For every measurable space (€2,2), every o-finite measure p on 2, and

every f € 3, (€, %)
[ rdu= [ s> o)) naa).
Q 10,00]
Proof. Ubung 7.2. O

Now we construct a stochastic model for a series of experiments, where the outputs
of the first ¢ — 1 stages determine the model for the ith stage.

Given: measurable spaces (€;,2;) for i € I, where I = {1,...,n} or I =N. Put

@.20) = (X 2.Q%).
J=1 j=1
and note that
X Q=0 xQ A ®Q[j =AY

for i € I'\ {1}. Furthermore, let

Q=X  A=QU (10)

el iel
Given:
e o-finite kernels K; from (€_,,2; ;) to (€;,2;) for i € I\ {1},
e a o-finite measure p on 2.
Theorem 3. For I = {1,...,n}
Elmeasure vonA VA, €, .. VA, e, :
- X Ap)

/ / Kn((wiy .o ywna1), Ap) Ko ((wry - oy wp—g), dwp—1) - -+ p(dwy).
Ax An—1
Moreover, v is o-finite and for f v-integrable (the short version)
/fdy—/ / flwr, o wn) Kn((wr, . ooy wpo1), dwy) -+ p(dwy). (11)
951

Notation: v = pu x Ky X -
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Proof. Induction, using Theorems 1 and 2. O]
Remark 4. Particular case of Theorem 3 with
M= p, Vie IN{1} Vwi_; € ;¢ Ki(wiy,") = (12)
for o-finite measures p; on 2A;:
%Imeasure pg X oo X pponA VA €Ay VA, €,
pa X X (A X X Ap) = (Ar) - pn(An).

Moreover, p; X -+ X i, is o-finite and for every p; x --- X u,-integrable function f

/fd(mx---x,un):/ L Fwn s wn) i (dwn) i (dw).
Q (951 Qn

Definition 3. y = puy X -+ X u, is called the product measure corresponding to u;
fori =1,...,n, and (2,2, ) is called the product measure space corresponding to
(Q“QLMMJ for ¢ = ]_, e, .

Example 6.

(i) For uniform distributions p; on finite spaces €);, 3 X -+ X p, is the uniform
distribution on 2. Cf. Example 3.1 in the case n € N.

(i)
)\n:)\1><"'><>\1.

Theorem 4 (Ionescu-Tulcea). Assume that p is a probability measure and that K
are Markov kernels for ¢ € N\ {1}. Then, for I =N,

%Iprobability measure Pon2A VneN VA, €,... VA, e, :

[e.9]

P<A1><---><An>< X Qi>:(/LXKQX---XKn)(AlX---XAn). (13)

1=n+1

Proof. ‘Existence’: Consider o-algebras
®9’li7 éin =0 (ﬂ%{\]l ..... n})
i=1

on X!, Q; and X2, Q;, respectively. Define a probability measure P, on 2, by

]5n<A>< ;z Qi):(uxKgx---xKn)(A), Aeé%.
i=n+1 1=1

Then (11) yields the following consistency property

o0 o

ﬁnH(AxQon X Qi):ﬁn(Ax X Q) Aeémi.
=1
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Thus o o
P(A) = P,(A), Aed,,

yields a well-defined mapping on the algebra

a- |4,

neN

of cylinder sets. Obviously, P is a content and (13) holds for P = P.
Claim: P is o-continuous at §). See Génssler, Stute (1977, p. 49-50) for the proof.
Then, by Theorem 4.1, P is o-additive and it remains to apply Theorem 4.3.
‘Uniqueness’: By (13), P is uniquely determined on the class of measurable rectangles.

Apply Theorem 4.4. n

Example 7. The queueing model, see Ubung 7.3. Here K;((wi,...,w;_1),-) only
depends on w;_1. Outlook: Markov processes.

Given: a non-empty set I and probability spaces (€;,2;, ;) for i € I. Recall the
definition (10).

Theorem 5.

%Iprobability measure P on A VS € Po(I) VA, €, i €8S
P(X Ay x X Qz) = HMz(Az) (14)

i€s i€I\S icS

Notation: P = X7 ;.

Proof. See Remark 4 in the case of a finite set I.

If |I| = |N|, assume I = N without loss of generality. The particular case of Theorem 4
with (12) for probability measures p; on 2; shows

%Iprobability measure Pon 2 VneN VA € ...VA, €, :

o0

P(Arxx Ay X Q) = (Ar) - (A,

i=n+1

If I is uncountable, we use Theorem 3.2. For S C I non-empty and countable and for
B € Q¢ we put
P((m)'B) = X mi(B).
=
Hereby we get a well-defined mapping P : 2 — R, which clearly is a probability
measure and satisfies (14). Use Theorem 4.4 to obtain the uniqueness result. O

Definition 4. P = X, u; is called the product measure corresponding to p; for
i €I, and (2,2, P) is called the product measure space corresponding to (£2;, 2, 11;)
fori € I.

Remark 5. Theorem 5 answers the question that is posed in Example 3.1 in full
generality. Moreover, it is the basis for a positive answer to the question from the
introductory Example 1.2, see Theorem 77.77.77.
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9 Image Measures

Given: a measure space (€2, 2, 1), a measurable space (', '), and an 2-2('-measurable
mapping f: Q — .

Lemma 1.

flp): A — Ry U {oo}
Al p(fHAN) = p({f € A'})

defines a measure on 2.

Proof. f(u) is well-defined, since f~!(A’) € A for any A’ € 2. The respective prop-
erties of f(u) are easy to verify. O

Definition 1. f(u) is called the image measure of p under f.

Example 1. Let

(nglv /L) = (Rk:?%k?)‘k)? (Q/7Q’[/) = (Rk7%k>

(i) Fix a € R*. For f(w) = w + a we get
FOR)(A) = Ae(A" = a) = A(A),

see Analysis IV (‘or’ verify this identity for measurable rectangles and apply
Theorem 4.4). Thus

J(A) = Ak

(ii) Fix r € R\ {0}. For f(w) =1 w we get

FOWNA) = M(Lfr - AY) = A (),

Irf*

see Analysis IV (‘or’ verify this identity for measurable rectangles and apply
Theorem 4.4). Thus

1
) = F Ak
Theorem 1 (Transformation ‘Theorem’).
(1) for g € 34—(9,7 22[,)
//gdf(u)Z/QgOfdu (1)

(ii) for g € 3(CV,2)
g is f(p)-integrable & go f is p-integrable,

in which case (1) holds.
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Proof. Algebraic induction. O

Example 2. Consider open sets U,V C R* and a €!-diffeomorphism f : U — V. Let
(Q,Ql“LL) = (U,Uﬂ%k,Ak’Un%k>, (QCQ{’) - (‘/;vm%k)

Put
v = Aelvnm,-

Then
f) = |

fHAn)
see Analysis IV for the case of an open set A" C V. Thus

dp= [ |det Df!|dv,
A/

flp) =|det Df |- v,

and therefore

/UgofdM:/vgdf(M)Z/Vg-|deth_1|dy.

Put g =ho f~! and ¢ = f~! to obtain

/hdu:/hog0~]detho|d1/.
U v
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