Example 5. Let $I = \mathbb{R}_+$, $\Omega_i = \mathbb{R}$, and $\mathfrak{A}_i = \mathfrak{B}$. For the corresponding product space (Ω, \mathfrak{A}) we have $\Omega = \mathbb{R}^{\mathbb{R}_+}$ and

$$|\mathfrak{A}| = |\mathbb{R}| < |\Omega|.$$

Proof: Clearly $|\mathbb{R}| \leq |\mathfrak{A}|$ and $|\mathbb{R}| < |\Omega|$. On the other hand, Theorem 2 shows that $\mathfrak{A} = \sigma(\mathfrak{E})$ for some set \mathfrak{E} with $|\mathfrak{E}| = |\mathbb{R}|$. Hence $|\mathfrak{A}| \leq |\mathbb{R}|$ by Theorem 4.

The space $\mathbb{R}^{\mathbb{R}_+}$ already appeared in the introductory Example I.3. The product σ -algebra $\mathfrak{A} = \bigotimes_{i \in \mathbb{R}_+} \mathfrak{B}$ is a proper choice on this space. On the subspace $C(\mathbb{R}_+) \subset \mathbb{R}^{\mathbb{R}_+}$ we can take the trace- σ -algebra. It is important to note, however, that

$$C(\mathbb{R}_+) \notin \mathfrak{A},$$

see Übung 3.2. It turns out that the Borel σ -algebra $\mathfrak{B}(C(\mathbb{R}_+))$ that is generated by the topology of uniform convergence on compact intervals coincides with the trace- σ algebra of \mathfrak{A} in $C(\mathbb{R}_+)$, see Bauer (1996, Theorem 38.6).

4 Construction of (Probability) Measures

Given: $\Omega \neq \emptyset$ and $\emptyset \neq \mathfrak{A} \subset \mathfrak{P}(\Omega)$.

Definition 1. $\mu : \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ is called

(i) additive if:

$$A, B \in \mathfrak{A} \land A \cap B = \emptyset \land A \cup B \in \mathfrak{A} \quad \Rightarrow \quad \mu(A \cup B) = \mu(A) + \mu(B),$$

(ii) σ -additive if

$$A_1, A_2, \ldots \in \mathfrak{A}$$
 pairwise disjoint $\wedge \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A} \implies \mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i),$

(iii) content (on \mathfrak{A}) if

$$\mathfrak{A}$$
 algebra $\wedge \mu$ additive $\wedge \mu(\emptyset) = 0$,

(iv) pre-measure (on \mathfrak{A}) if

$$\mathfrak{A}$$
 semi-algebra $\wedge \quad \mu \sigma$ -additive $\wedge \quad \mu(\emptyset) = 0,$

(v) measure (on \mathfrak{A}) if

 $\mathfrak{A} \sigma$ -algebra $\land \mu$ pre-measure,

(vi) probability measure (on \mathfrak{A}) if

 μ measure $\wedge \quad \mu(\Omega) = 1.$

Definition 2. $(\Omega, \mathfrak{A}, \mu)$ is called a

- (i) measure space, if μ is a measure on the σ -algebra \mathfrak{A} in Ω ,
- (ii) probability space, if μ is a probability measure on the σ -algebra \mathfrak{A} in Ω .

Example 1.

(i) Lebesgue pre-measure λ_1 on the class \mathfrak{I}_1 of intervals from Example 1.1.(i): $\lambda_1(A)$ is the length of $A \in \mathfrak{I}_1$, i.e.,

$$\lambda_1([a,b]) = b - a$$

if $a, b \in \mathbb{R}$ with $a \leq b$ and $\lambda_1(A) = \infty$ if $A \in \mathfrak{I}_1$ is unbounded. See Billingsley (1979, p. 22), Elstrodt (1996, §II.2), or Analysis IV.

Analogously for cartesian products of such intervals. Hereby we get the semialgebra \mathfrak{I}_k of rectangles in \mathbb{R}^k . The *Lebesgue pre-measure* λ_k on \mathfrak{I}_k yields the volume $\lambda_k(A)$ of $A \in \mathfrak{I}_k$, i.e., the product of the side-lengths of A. See Elstrodt (1996, §III.2) or Analysis IV.

(ii) for any semi-algebra \mathfrak{A} in Ω and $\omega \in \Omega$

$$\varepsilon_{\omega}(A) = 1_A(\omega), \qquad A \in \mathfrak{A},$$

defines a pre-measure. If \mathfrak{A} is a σ -algebra, then ε_{ω} is called the *Dirac measure* at the point ω .

More generally: take sequences $(\omega_n)_{n\in\mathbb{N}}$ in Ω and $(\alpha_n)_{n\in\mathbb{N}}$ in \mathbb{R}_+ such that $\sum_{n=1}^{\infty} \alpha_n = 1$. Then

$$\mu(A) = \sum_{n=1}^{\infty} \alpha_n \cdot 1_A(\omega_n), \qquad A \in \mathfrak{A},$$

defines a discrete probability measure on any σ -algebra \mathfrak{A} in Ω . Note that $\mu = \sum_{n=1}^{\infty} \alpha_n \cdot \varepsilon_{\omega_n}$.

(iii) Counting measure on a σ -algebra \mathfrak{A}

$$\mu(A) = |A|, \qquad A \in \mathfrak{A}.$$

Uniform distribution in the case $|\Omega| < \infty$ and $\mathfrak{A} = \mathfrak{P}(\Omega)$

$$\mu(A) = \frac{|A|}{|\Omega|}, \qquad A \subset \Omega.$$

(iv) On the algebra $\mathfrak{A} = \{A \subset \Omega : A \text{ finite or } A^c \text{ finite}\}\$ let

$$\mu(A) = \begin{cases} 0 & \text{if } |A| < \infty \\ \infty & \text{if } |A| = \infty. \end{cases}$$

Then μ is a content but not a pre-measure in general.

(v) For the semi-algebra of measurable rectangles in Example 3.1 and $A_i \subset \{0, 1\}$

$$\mu(A_1 \times \dots \times A_n \times \Omega_{n+1} \times \dots) = \frac{|A_1 \times \dots \times A_n|}{|\{0,1\}^n|}$$

is well defined and yields a pre-measure μ with $\mu(\{0,1\}^{\mathbb{N}}) = 1$.

Remark 1. For every content μ on \mathfrak{A} and $A, B \in \mathfrak{A}$

- (i) $A \subset B \Rightarrow \mu(A) \leq \mu(B)$ (monotonicity),
- (ii) $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B),$
- (iii) $A \subset B \land \mu(A) < \infty \Rightarrow \mu(B \setminus A) = \mu(B) \mu(A),$
- (iv) $\mu(A) < \infty \land \mu(B) < \infty \Rightarrow |\mu(A) \mu(B)| \le \mu(A \bigtriangleup B),$
- (v) $\mu(A \cup B) \le \mu(A) + \mu(B)$ (subadditivity).

To proof these facts use, for instance, $A \cup B = A \cup (B \cap A^c)$.

Theorem 1. Consider the following properties for a content μ on \mathfrak{A} :

- (i) μ pre-measure,
- (ii) $A_1, A_2, \ldots \in \mathfrak{A} \land \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A} \Rightarrow \mu \left(\bigcup_{i=1}^{\infty} A_i \right) \leq \sum_{i=1}^{\infty} \mu(A_i) \ (\sigma\text{-subadditivity}),$
- (iii) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \uparrow A \in \mathfrak{A} \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$ (σ -continuity from below),
- (iv) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \downarrow A \in \mathfrak{A} \land \mu(A_1) < \infty \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$ (*σ*continuity from above),
- (v) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \downarrow \emptyset \land \mu(A_1) < \infty \Rightarrow \lim_{n \to \infty} \mu(A_n) = 0 \ (\sigma \text{-continuity at } \emptyset).$

Then

(i)
$$\Leftrightarrow$$
 (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v).

If $\mu(\Omega) < \infty$, then (iii) \Leftrightarrow (iv).

Proof. '(i) \Rightarrow (ii)': Put $B_m = \bigcup_{i=1}^m A_i$ and $B_0 = \emptyset$. Then

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{m=1}^{\infty} (B_m \setminus B_{m-1})$$

with pairwise disjoint sets $B_m \setminus B_{m-1} \in \mathfrak{A}$. Clearly $B_m \setminus B_{m-1} \subset A_m$. Hence, by Remark 1.(i),

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{m=1}^{\infty} \mu(B_m \setminus B_{m-1}) \le \sum_{m=1}^{\infty} \mu(A_m).$$

'(ii) \Rightarrow (i)': Let $A_1, A_2, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$. Then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \ge \mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i),$$

and therefore

$$\sum_{i=1}^{\infty} \mu(A_i) \le \mu\Big(\bigcup_{i=1}^{\infty} A_i\Big).$$

The reverse estimate holds by assumption.

'(i) \Rightarrow (iii)': Put $A_0 = \emptyset$ and $B_m = A_m \setminus A_{m-1}$. Then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{m=1}^{\infty} \mu(B_m) = \lim_{n \to \infty} \sum_{m=1}^{n} \mu(B_m) = \lim_{n \to \infty} \mu\left(\bigcup_{m=1}^{n} B_m\right) = \lim_{n \to \infty} \mu(A_n).$$

'(iii) \Rightarrow (i)': Let $A_1, A_2, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$, and put $B_m = \bigcup_{i=1}^m A_i$. Then $B_m \uparrow \bigcup_{i=1}^{\infty} A_i$ and

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{m \to \infty} \mu(B_m) = \sum_{i=1}^{\infty} \mu(A_i).$$

'(iv) \Rightarrow (v)' trivially holds. '(v) \Rightarrow (iv)': Use $B_n = A_n \setminus A \downarrow \emptyset$. '(i)' \Rightarrow (v)': Note that $\mu(A_1) = \sum_{i=1}^{\infty} \mu(A_i \setminus A_{i+1})$. Hence

$$0 = \lim_{k \to \infty} \sum_{i=k}^{\infty} \mu(A_i \setminus A_{i+1}) = \lim_{k \to \infty} \mu(A_k).$$

'(iv) $\wedge \mu(\Omega) < \infty \Rightarrow$ (iii)': Clearly $A_n \uparrow A$ implies $A_n^c \downarrow A^c$. Thus

$$\mu(A) = \mu(\Omega) - \mu(A^c) = \lim_{n \to \infty} (\mu(\Omega) - \mu(A_n^c)) = \lim_{n \to \infty} \mu(A_n).$$

Theorem 2 (Extension: semi-algebra \rightsquigarrow algebra). For every semi-algebra \mathfrak{A} and every additive mapping $\mu : \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ with $\mu(\emptyset) = 0$

$$\exists_1 \widehat{\mu} \text{ content on } \alpha(\mathfrak{A}) : \quad \widehat{\mu}|_{\mathfrak{A}} = \mu.$$

Moreover, if μ is σ -additive then $\hat{\mu}$ is σ -additive, too.

Proof. We have $\alpha(\mathfrak{A}) = \mathfrak{A}^+$, see Lemma 1.1. Necessarily

$$\widehat{\mu}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mu(A_{i}) \tag{1}$$

for $A_1, \ldots, A_n \in \mathfrak{A}$ pairwise disjoint. Use (1) to obtain a well-defined extension of μ onto $\alpha(\mathfrak{A})$. It remains to verify that $\hat{\mu}$ is additive or even σ -additive. \Box

Example 2. For the semi-algebra \mathfrak{A} in Example 1.(v) $\alpha(\mathfrak{A})$ is the algebra of cylinder sets, and

$$\widehat{\mu}(A \times \Omega_{n+1} \times \cdots) = \frac{|A|}{|\{0,1\}^n|}, \qquad A \subset \{0,1\}^n.$$

Theorem 3 (Extension: algebra $\rightsquigarrow \sigma$ -algebra, Carathéodory). For every pre-measure μ on an algebra \mathfrak{A}

 $\exists \mu^* \text{ measure on } \sigma(\mathfrak{A}): \quad \mu^*|_{\mathfrak{A}} = \mu.$

Proof. Define $\overline{\mu}: \mathfrak{P}(\Omega) \to \mathbb{R}_+ \cup \{\infty\}$ by

$$\overline{\mu}(A) = \inf\left\{\sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathfrak{A}, \ A \subset \bigcup_{i=1}^{\infty} A_i\right\}$$

Then $\overline{\mu}$ is an *outer measure*, i.e., $\overline{\mu}(\emptyset) = 0$ and $\overline{\mu}$ is monotone and σ -subadditive, see Billingsley (1979, Exmp. 11.1) and compare Analysis IV. Actually it suffices to have $\mu \geq 0$ and $\emptyset \in \mathfrak{A}$ with $\mu(\emptyset) = 0$.

We claim that

(i)
$$\overline{\mu}|_{\mathfrak{A}} = \mu$$
,

(ii)
$$\forall A \in \mathfrak{A} \ \forall B \in \mathfrak{P}(\Omega) : \quad \overline{\mu}(B) = \overline{\mu}(B \cap A) + \overline{\mu}(B \cap A^c).$$

Ad (i): For $A \in \mathfrak{A}$

$$\overline{\mu}(A) \le \mu(A) + \sum_{i=2}^{\infty} \mu(\emptyset) = \mu(A),$$

and for $A_i \in \mathfrak{A}$ with $A \subset \bigcup_{i=1}^{\infty} A_i$

$$\mu(A) = \mu\left(\bigcup_{i=1}^{\infty} (A_i \cap A)\right) \le \sum_{i=1}^{\infty} \mu(A_i \cap A) \le \sum_{i=1}^{\infty} \mu(A_i)$$

follows from Theorem 1.(ii).

Ad (ii): ' \leq ' holds due to sub-additivity of $\overline{\mu}$, and ' \geq ' is easily verified. Consider the class

$$\overline{\mathfrak{A}} = \overline{\mathfrak{A}}_{\overline{\mu}} = \{ A \in \mathfrak{P}(\Omega) : \forall B \in \mathfrak{P}(\Omega) : \overline{\mu}(B) = \overline{\mu}(B \cap A) + \overline{\mu}(B \cap A^c) \}$$

of so-called $\overline{\mu}$ -measurable sets.

We claim that

(iii)
$$\forall A_1, A_2 \in \overline{\mathfrak{A}} \ \forall B \in \mathfrak{P}(\Omega) : \quad \overline{\mu}(B) = \overline{\mu}(B \cap (A_1 \cap A_2)) + \overline{\mu}(B \cap (A_1 \cap A_2)^c)$$

(iv) $\overline{\mathfrak{A}}$ algebra,

Ad (iii): We have

$$\overline{\mu}(B) = \overline{\mu}(B \cap A_1) + \overline{\mu}(B \cap A_1^c)$$
$$= \overline{\mu}(B \cap A_1 \cap A_2) + \overline{\mu}(B \cap A_1 \cap A_2^c) + \overline{\mu}(B \cap A_1^c)$$

and

$$\overline{\mu}(B \cap (A_1 \cap A_2)^c) = \overline{\mu}(B \cap A_1^c \cup B \cap A_2^c) = \overline{\mu}(B \cap A_2^c \cap A_1) + \overline{\mu}(B \cap A_1^c).$$

Ad (iv): Cleary $\Omega \in \overline{\mathfrak{A}}$, $A \in \overline{\mathfrak{A}} \Rightarrow A^c \in \overline{\mathfrak{A}}$, and $\overline{\mathfrak{A}}$ is closed w.r.t. intersections by (iii). We claim that

(v)
$$\forall A_1, A_2 \in \overline{\mathfrak{A}}$$
 disjoint $\forall B \in \mathfrak{P}(\Omega)$: $\overline{\mu}(B \cap (A_1 \cup A_2)) = \overline{\mu}(B \cap A_1) + \overline{\mu}(B \cap A_2)$

In fact, since $A_1 \cap A_2 = \emptyset$,

$$\overline{\mu}(B \cap (A_1 \cup A_2)) = \overline{\mu}(B \cap A_1) + \overline{\mu}(B \cap A_2 \cap A_1^c) = \overline{\mu}(B \cap A_1) + \overline{\mu}(B \cap A_2).$$

We claim that

(vi) $\forall A_1, A_2, \ldots \in \overline{\mathfrak{A}}$ pairwise disjoint

$$\bigcup_{i=1}^{\infty} A_i \in \overline{\mathfrak{A}} \quad \wedge \quad \overline{\mu} \Bigl(\bigcup_{i=1}^{\infty} A_i \Bigr) = \sum_{i=1}^{\infty} \overline{\mu}(A_i).$$

Let $B \in \mathfrak{P}(\Omega)$. By (iv), (v), and monotonicity of $\overline{\mu}$

$$\overline{\mu}(B) = \overline{\mu} \Big(B \cap \bigcup_{i=1}^{n} A_i \Big) + \overline{\mu} \Big(B \cap \left(\bigcup_{i=1}^{n} A_i \right)^c \Big)$$
$$\geq \sum_{i=1}^{n} \overline{\mu}(B \cap A_i) + \overline{\mu} \Big(B \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \Big).$$

Use σ -subadditivity of $\overline{\mu}$ to get

$$\overline{\mu}(B) \ge \sum_{i=1}^{\infty} \overline{\mu}(B \cap A_i) + \overline{\mu} \left(B \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right)$$
$$\ge \overline{\mu} \left(B \cap \bigcup_{i=1}^{\infty} A_i \right) + \overline{\mu} \left(B \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right)$$
$$\ge \overline{\mu}(B).$$

Hence $\bigcup_{i=1}^{\infty} A_i \in \overline{\mathfrak{A}}$. Take $B = \bigcup_{i=1}^{\infty} A_i$ to obtain σ -additivity of $\overline{\mu}|_{\overline{\mathfrak{A}}}$.

Conclusions:

- $\overline{\mathfrak{A}}$ is a σ -algebra, see (iv), (vi) and Theorem 1.1.(ii),
- $\mathfrak{A} \subset \overline{\mathfrak{A}}$ by (ii), hence $\sigma(\mathfrak{A}) \subset \overline{\mathfrak{A}}$.
- $\overline{\mu}|_{\overline{\mathfrak{A}}}$ is a measure with $\overline{\mu}|_{\mathfrak{A}} = \mu$, see (vi) and (i).

Put
$$\mu^* = \overline{\mu}|_{\sigma(\mathfrak{A})}$$
.

Remark 2. The extension from Theorem 3 is non-unique, in general. For instance, put $\Omega = \mathbb{R}$ and

$$f(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ \infty & \text{otherwise} \end{cases}, \qquad A \subset \mathbb{R}.$$

Then $\mu = f|_{\mathfrak{A}}$ defines a pre-measure on the semi-algebra $\mathfrak{A} = \mathfrak{I}_1$ of intervals. Now we have

- (i) a unique extension of μ to a pre-measure $\hat{\mu}$ on \mathfrak{A}^+ , namely $\hat{\mu} = f|_{\mathfrak{A}^+}$,
- (ii) the outer measure $\overline{\mu} = f$,
- (iii) $\sigma(\mathfrak{A}) = \sigma(\mathfrak{A}^+) = \mathfrak{B}.$

For the counting measure μ_1 on \mathfrak{B} and for the measure $\mu_2 = f|_{\mathfrak{B}}$ according to the proof of Theorem 3 we have

$$\mu_1 \neq \mu_2 \land \mu_1|_{\mathfrak{A}^+} = \mu_2|_{\mathfrak{A}^+}.$$

Definition 3. $\mu : \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ is called

(i) σ -finite, if

$$\exists B_1, B_2, \ldots \in \mathfrak{A}$$
 pairwise disjoint : $\Omega = \bigcup_{i=1}^{\infty} B_i \wedge \forall i \in \mathbb{N} : \mu(B_i) < \infty$,

(ii) finite, if $\Omega \in \mathfrak{A}$ and $\mu(\Omega) < \infty$.

Theorem 4 (Uniqueness). For measures μ_1 , μ_2 on \mathfrak{A} and $\mathfrak{A}_0 \subset \mathfrak{A}$ with

- (i) $\sigma(\mathfrak{A}_0) = \mathfrak{A}$ and \mathfrak{A}_0 is closed w.r.t. intersections,
- (ii) $\mu_1|_{\mathfrak{A}_0}$ is σ -finite,
- (iii) $\mu_1|_{\mathfrak{A}_0} = \mu_2|_{\mathfrak{A}_0}$

we have

$$\mu_1 = \mu_2.$$

Proof. Take B_i according to Definition 3, with \mathfrak{A}_0 instead of \mathfrak{A} , and put

$$\mathfrak{D}_i = \{ A \in \mathfrak{A} : \mu_1(A \cap B_i) = \mu_2(A \cap B_i) \}.$$

Obviously, \mathfrak{D}_i is a Dynkin class and $\mathfrak{A}_0 \subset \mathfrak{D}_i$. Theorem 1.2.(i) yields

$$\mathfrak{D}_i \subset \mathfrak{A} = \sigma(\mathfrak{A}_0) = \delta(\mathfrak{A}_0) \subset \mathfrak{D}_i$$

Thus $\mathfrak{A} = \mathfrak{D}_i$ and for $A \in \mathfrak{A}$,

$$\mu_1(A) = \sum_{i=1}^{\infty} \mu_1(A \cap B_i) = \sum_{i=1}^{\infty} \mu_2(A \cap B_i) = \mu_2(A).$$

Corollary 1. For every semi-algebra \mathfrak{A} and every pre-measure μ on \mathfrak{A} that is σ -finite

$$\exists \mu^* \text{ measure on } \sigma(\mathfrak{A}) : \quad \mu^*|_{\mathfrak{A}} = \mu.$$

Proof. Use Theorems 2, 3, and 4.

Remark 3. Applications of Corollary 1:

- (i) For $\Omega = \mathbb{R}^k$ and the Lebesgue pre-measure λ_k on \mathfrak{I}_k we get the Lebesgue measure on \mathfrak{B}_k . Notation for the latter: λ_k .
- (ii) In Example 1.(v) there exists a uniquely determined probability measure P on $\bigotimes_{i=1}^{\infty} \mathfrak{P}(\{0,1\})$ such that

$$P(A_1 \times \dots \times A_n \times \{0, 1\} \times \dots) = \frac{|A_1 \times \dots \times A_n|}{|\{0, 1\}^n|}$$

for $A_1, \ldots, A_n \subset \{0, 1\}$. We will study the general construction of product measures in Section 8.

For a pre-measure μ on an algebra ${\mathfrak A}$ the Carathéodory construction yields the extensions

$$(\Omega, \sigma(\mathfrak{A}), \overline{\mu}|_{\sigma(\mathfrak{A})}), \qquad (\Omega, \overline{\mathfrak{A}}_{\overline{\mu}}, \overline{\mu}|_{\overline{\mathfrak{A}}_{\overline{\mu}}}).$$
 (2)

To what extend is $\overline{\mathfrak{A}}_{\overline{\mu}}$ larger than $\sigma(\mathfrak{A})$?

Definition 4. A measure space $(\Omega, \mathfrak{A}, \mu)$ is *complete* if

$$\mathfrak{N}_{\mu}\subset\mathfrak{A}$$

for

$$\mathfrak{N}_{\mu} = \{ B \in \mathfrak{P}(\Omega) : \exists A \in \mathfrak{A} : B \subset A \land \mu(A) = 0 \}.$$

Theorem 5. For a measure space $(\Omega, \mathfrak{A}, \mu)$ define

$$\mathfrak{A}^{\mu} = \{ A \cup N : A \in \mathfrak{A} , N \in \mathfrak{N}_{\mu} \}$$

and

$$\widetilde{\mu}(A \cup N) = \mu(A), \qquad A \in \mathfrak{A}, \ N \in \mathfrak{N}_{\mu}.$$

Then

- (i) $\widetilde{\mu}$ is well defined and $(\Omega, \mathfrak{A}^{\mu}, \widetilde{\mu})$ is a complete measure space with $\widetilde{\mu}|_{\mathfrak{A}} = \mu$, called the *completion of* $(\Omega, \mathfrak{A}, \mu)$,
- (ii) for every complete measure space $(\Omega, \mathfrak{A}, \check{\mu})$ with $\mathfrak{A} \supset \mathfrak{A}$ and $\check{\mu}|_{\mathfrak{A}} = \mu$ we have $\mathfrak{A} \supset \mathfrak{A}^{\mu}$ and $\check{\mu}|_{\mathfrak{A}^{\mu}} = \widetilde{\mu}$.

Proof. See Gänssler, Stute (1977, p. 34) or Elstrodt (1996, p. 64). \Box

Remark 4. It is easy to verify that $(\Omega, \overline{\mathfrak{A}}_{\overline{\mu}}, \overline{\mu}|_{\overline{\mathfrak{A}}_{\overline{\mu}}})$ in (2) is complete. However, $(\Omega, \sigma(\mathfrak{A}), \overline{\mu}|_{\sigma(\mathfrak{A})})$ is not complete in general, see Example 3 below.

Theorem 6. If μ is a σ -finite pre-measure on an algebra \mathfrak{A} , then $(\Omega, \overline{\mathfrak{A}}_{\overline{\mu}}, \overline{\mu}|_{\overline{\mathfrak{A}}_{\overline{\mu}}})$ is the completion of $(\Omega, \sigma(\mathfrak{A}), \overline{\mu}|_{\sigma(\mathfrak{A})})$.

Proof. See Elstrodt (1996, p. 64).

Example 3. Consider the completion $(\mathbb{R}^k, \mathfrak{L}_k, \widetilde{\lambda}_k)$ of $(\mathbb{R}^k, \mathfrak{B}_k, \lambda_k)$. Here \mathfrak{L}_k is called the σ -algebra of *Lebesgue measurable sets* and $\widetilde{\lambda}_k$ is called the Lebesgue measure on \mathfrak{L}_k . Notation: $\lambda_k = \widetilde{\lambda}_k$. We have

$$\mathfrak{B}_k \subsetneq \mathfrak{L}_k,$$

hence $(\mathbb{R}^k, \mathfrak{B}_k, \lambda_k)$ is not complete.

Proof: Assume k = 1 for simplicity. For the Cantor set $C \subset \mathbb{R}$

$$C \in \mathfrak{B}_1 \land \lambda_1(C) = 0 \land |C| = |\mathbb{R}|$$

By Theorem 3.4, $|\mathfrak{B}_1| = |\mathbb{R}|$, but

$$|\{0,1\}^{\mathbb{R}}| = |\mathfrak{P}(C)| \le |\mathfrak{L}_k| \le |\{0,1\}^{\mathbb{R}}|.$$

We add that $\mathfrak{L}_k \subsetneq \mathfrak{P}(\mathbb{R}^k)$, see Elstrodt (1996, §III.3).

5 Integration

For the proofs, see Analysis IV or Elstrodt (1996, Kap. VI).

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$. Notation: $\mathfrak{S}_+ = \mathfrak{S}_+(\Omega, \mathfrak{A})$ is the class of non-negative simple functions.

Definition 1. Integral of $f \in \mathfrak{S}_+$ w.r.t. μ

$$\int f \, d\mu = \sum_{i=1}^{n} \alpha_i \cdot \mu(A_i)$$

if

$$f = \sum_{i=1}^{n} \alpha_i \cdot \mathbf{1}_{A_i}$$

with $\alpha_i \geq 0$ and $A_i \in \mathfrak{A}$. (Note that the integral is well defined.)

Lemma 1. For $f, g \in \mathfrak{S}_+$ and $c \in \mathbb{R}_+$

- (i) $\int (f+g) d\mu = \int f d\mu + \int g d\mu$,
- (ii) $\int (cf) d\mu = c \cdot \int f d\mu$,
- (iii) $f \leq g \Rightarrow \int f d\mu \leq \int g d\mu$ (monotonicity).

Notation: $\overline{\mathfrak{Z}}_+ = \overline{\mathfrak{Z}}_+(\Omega, \mathfrak{A})$ is the class of nonnegative \mathfrak{A} - $\overline{\mathfrak{B}}$ -measurable functions.

Definition 2. Integral of $f \in \overline{\mathfrak{Z}}_+$ w.r.t. μ

$$\int f \, d\mu = \sup \left\{ \int g \, d\mu : g \in \mathfrak{S}_+ \land g \le f \right\}.$$

Theorem 1 (Monotone convergence, Beppo Levi). Let $f_n \in \overline{\mathfrak{Z}}_+$ such that

$$\forall n \in \mathbb{N} : f_n \le f_{n+1}$$

Then

$$\int \sup_{n} f_n \, d\mu = \sup_{n} \int f_n \, d\mu.$$

Remark 1. For every $f \in \overline{\mathfrak{Z}}_+$ there exists a sequence of functions $f_n \in \mathfrak{S}_+$ such that $f_n \uparrow f$, see Theorem 2.7.

Example 1. Consider

$$f_n = \frac{1}{n} \cdot \mathbf{1}_{[0,n]}$$

on $(\mathbb{R}, \mathfrak{B}, \lambda_1)$. Then

$$\int f_n \, d\lambda_1 = 1, \qquad \lim_{n \to \infty} f_n = 0.$$

Lemma 2. The conclusions from Lemma 1 remain valid on $\overline{\mathfrak{Z}}_+$.

Theorem 2 (Fatou's Lemma). For every sequence $(f_n)_n$ in $\overline{\mathfrak{Z}}_+$

$$\int \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

Proof. For $g_n = \inf_{k \ge n} f_k$ we have $g_n \in \overline{\mathfrak{Z}}_+$ and $g_n \uparrow \liminf_n f_n$. By Theorem 1 and Lemma 1.(iii)

$$\int \liminf_{n} f_n \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

Theorem 3. Let $f \in \overline{\mathfrak{Z}}_+$. Then

$$\int f \, d\mu = 0 \Leftrightarrow \mu(\{f > 0\}) = 0$$

Definition 3. A property Π holds μ -almost everywhere (μ -a.e., a.e.), if

$$\exists A \in \mathfrak{A} : \{ \omega \in \Omega : \Pi \text{ does not hold for } \omega \} \subset A \land \mu(A) = 0.$$

In case of a probability measure we say: μ -almost surely, μ -a.s., with probability one.

Notation: $\overline{\mathfrak{Z}} = \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ is the class of \mathfrak{A} -measurable functions.

Definition 4. $f \in \overline{\mathfrak{Z}}$ quasi- μ -integrable if

$$\int f_+ \, d\mu < \infty \quad \lor \quad \int f_- \, d\mu < \infty.$$

In this case: *integral* of f (w.r.t. μ)

$$\int f \, d\mu = \int f_+ \, d\mu - \int f_- \, d\mu.$$

 $f \in \overline{\mathfrak{Z}} \ \mu$ -integrable if

$$\int f_+ \, d\mu < \infty \quad \land \quad \int f_- \, d\mu < \infty.$$

Theorem 4.

- (i) $f \ \mu$ -integrable $\Rightarrow \mu(\{|f| = \infty\}) = 0,$
- (ii) $f \ \mu$ -integrable $\land g \in \overline{\mathfrak{Z}} \land f = g \ \mu$ -a.e. $\Rightarrow g \ \mu$ -integrable $\land \int f \ d\mu = \int g \ d\mu$.
- (iii) equivalent properties for $f \in \overline{\mathfrak{Z}}$:
 - (a) $f \mu$ -integrable,
 - (b) $|f| \mu$ -integrable,
 - (c) $\exists g : g \ \mu$ -integrable $\land |f| \le g \ \mu$ -a.e.,
- (iv) for f and g μ -integrable and $c \in \mathbb{R}$
 - (a) f+g well-defined μ -a.e. and μ -integrable with $\int (f+g) d\mu = \int f d\mu + \int g d\mu$,
 - (b) $c \cdot f \mu$ -integrable with $\int (cf) d\mu = c \cdot \int f d\mu$,
 - (c) $f \leq g \ \mu$ -a.e. $\Rightarrow \int f \ d\mu \leq \int g \ d\mu$.

Remark 2. An outlook. Consider an arbitrary set $\Omega \neq \emptyset$ and a vector space $\mathfrak{F} \subset \mathbb{R}^{\Omega}$ such that

 $f \in \mathfrak{F} \Rightarrow (|f| \in \mathfrak{F} \land \inf \{f, 1\} \in \mathfrak{F}).$

A monotone linear mapping $I: \mathfrak{F} \to \mathbb{R}$ such that

$$f, f_1, f_2, \ldots \in \mathfrak{F} \land f_n \uparrow f \Rightarrow I(f) = \lim_{n \to \infty} I(f_n)$$

is called an *abstract integral*. Note that

$$I(f) = \int f \, d\mu$$

defines an abstract integral on

$$\mathfrak{F} = \{ f \in \mathfrak{Z}(\Omega, \mathfrak{A}) : f \ \mu \text{-integrable} \} = \mathfrak{L}^1(\Omega, \mathfrak{A}, \mu).$$

Daniell-Stone-Theorem: for every abstract integral there exists a uniquely determined measure μ on $\mathfrak{A} = \sigma(\mathfrak{F})$ such that

$$\mathfrak{F} \subset \mathfrak{L}^1(\Omega, \mathfrak{A}, \mu) \land \forall f \in \mathfrak{F} : I(f) = \int f \, d\mu.$$

See Bauer (1978, Satz 39.4) or Floret (1981).

Application: Riesz representation theorem. Here $\mathfrak{F} = C([0,1])$ and $I : \mathfrak{F} \to \mathbb{R}$ linear and monotone. Then I is an abstract integral, which follows from Dini's Theorem, see Floret (1981, p. 45). Hence there exists a uniquely determined measure μ on $\sigma(\mathfrak{F}) = \mathfrak{B}([0,1])$ such that

$$\forall f \in \mathfrak{F} : I(f) = \int f \, d\mu.$$

Theorem 5 (Dominated convergence, Lebesgue). Assume that

- (i) $f_n \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$,
- (ii) $\exists g \ \mu$ -integrable $\forall n \in \mathbb{N} : |f_n| \leq g \ \mu$ -a.e.,
- (iii) $f \in \overline{\mathfrak{Z}}$ such that $\lim_{n \to \infty} f_n = f \mu$ -a.e.

Then f is μ -integrable and

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

Example 2. Consider

$$f_n = n \cdot 1_{]0,1/n[}$$

on $(\mathbb{R}, \mathfrak{B}, \lambda_1)$. Then

$$\int f_n \, d\lambda_1 = 1, \qquad \qquad \lim_{n \to \infty} f_n = 0$$

6 \mathfrak{L}^p -Spaces

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$ and $1 \leq p < \infty$. Put $\mathfrak{Z} = \mathfrak{Z}(\Omega, \mathfrak{A})$.

Definition 1.

$$\mathfrak{L}^{p} = \mathfrak{L}^{p}(\Omega, \mathfrak{A}, \mu) = \Big\{ f \in \mathfrak{Z} : \int |f|^{p} \, d\mu < \infty \Big\}.$$

In particular, for p = 1: integrable functions and $\mathfrak{L} = \mathfrak{L}^1$, and for p = 2: squareintegrable functions. Put

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{1/p}, \qquad f \in \mathfrak{L}^p$$

Theorem 1 (Hölder inequality). Let $1 < p, q < \infty$ such that 1/p + 1/q = 1 and let $f \in \mathfrak{L}^p, g \in \mathfrak{L}^q$. Then

$$\int |f \cdot g| \, d\mu \le \|f\|_p \cdot \|g\|_q.$$

In particular, for p = q = 2: Cauchy-Schwarz inequality.

Proof. See Analysis IV or Elstrodt (1996, \S VI.1) as well as Theorem 5.3.

Theorem 2. \mathfrak{L}^p is a vector space and $\|\cdot\|_p$ is a semi-norm on \mathfrak{L}^p . Furthermore,

$$||f||_p = 0 \quad \Leftrightarrow \quad f = 0 \ \mu\text{-a.e.}$$

Proof. See Analysis IV or Elstrodt (1996, §VI.2).

Definition 2. Let $f, f_n \in \mathfrak{L}^p$ for $n \in \mathbb{N}$. $(f_n)_n$ converges to f in \mathfrak{L}^p (in mean of order p) if

$$\lim_{n \to \infty} \|f - f_n\|_p = 0$$

In particular, for p = 1: convergence in mean, and for p = 2: mean-square convergence. Notation:

$$f_n \xrightarrow{\mathfrak{L}^p} f.$$

Remark 1. Let $f, f_n \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$. Recall (define) that $(f_n)_n$ converges to $f \mu$ -a.e. if

$$\mu(A^c) = 0$$

for

$$A = \left\{ \lim_{n \to \infty} f_n = f \right\} = \left\{ \limsup_{n \to \infty} f_n = \liminf_{n \to \infty} f_n \right\} \cap \left\{ \limsup_{n \to \infty} f_n = f \right\} \in \mathfrak{A}.$$

Notation:

$$f_n \xrightarrow{\mu\text{-a.e.}} f_n$$

Lemma 1. Let $f, g, f_n \in \mathfrak{L}^p$ for $n \in \mathbb{N}$ such that $f_n \xrightarrow{\mathfrak{L}^p} f$. Then

$$f_n \xrightarrow{\mathfrak{L}^p} g \quad \Leftrightarrow \quad f = g \ \mu\text{-a.e.}$$

Analogously for convergence almost everywhere.

Proof. For convergence in \mathcal{L}^p : ' \Leftarrow ' follows from Theorem 5.4.(ii). Use

$$||f - g||_p \le ||f - f_n||_p + ||f_n - g||_p$$

to verify ' \Rightarrow '.

For convergence almost everywhere: ' \Leftarrow ' trivially holds. Use

$$\left\{\lim_{n \to \infty} f_n = f\right\} \cap \left\{\lim_{n \to \infty} f_n = g\right\} \subset \{f = g\}$$

to verify ' \Rightarrow '.

Theorem 3 (Fischer-Riesz). Consider a sequence $(f_n)_n$ in \mathfrak{L}^p . Then

- (i) $(f_n)_n$ Cauchy sequence $\Rightarrow \exists f \in \mathfrak{L}^p : f_n \xrightarrow{\mathfrak{L}^p} f$ (completeness),
- (ii) $f_n \xrightarrow{\mathfrak{L}^p} f \Rightarrow \exists$ subsequence $(f_{n_k})_k : f_{n_k} \xrightarrow{\mu\text{-a.e.}} f$.

Proof. Ad (i): Consider a Cauchy sequence $(f_n)_n$ and a subsequence $(f_{n_k})_k$ such that

$$\forall k \in \mathbb{N} \ \forall m \ge n_k : \|f_m - f_{n_k}\|_p \le 2^{-k}.$$

For

$$g_k = f_{n_{k+1}} - f_{n_k} \in \mathfrak{L}^p$$

we have

$$\left|\sum_{\ell=1}^{k} |g_{\ell}|\right\|_{p} \le \sum_{\ell=1}^{k} ||g_{\ell}||_{p} \le \sum_{\ell=1}^{k} 2^{-\ell} \le 1.$$

Put $g = \sum_{\ell=1}^{\infty} |g_{\ell}| \in \overline{\mathfrak{Z}}_+$. By Theorem 5.1

$$\int g^{p} d\mu = \int \sup_{k} \left(\sum_{\ell=1}^{k} |g_{\ell}| \right)^{p} d\mu = \sup_{k} \int \left(\sum_{\ell=1}^{k} |g_{\ell}| \right)^{p} d\mu \le 1.$$
(1)

Thus, in particular, $\sum_{\ell=1}^{\infty} |g_{\ell}|$ and $\sum_{\ell=1}^{\infty} g_{\ell}$ converge μ -a.e., see Theorem 5.4.(i). Since

$$f_{n_{k+1}} = \sum_{\ell=1}^{k} g_{\ell} + f_{n_1},$$

we have

$$f = \lim_{k \to \infty} f_{n_k} \ \mu\text{-a.e.}$$

for some $f \in \mathfrak{Z}$. Furthermore,

$$|f - f_{n_k}| \le \sum_{\ell=k}^{\infty} |g_\ell| \le g \ \mu$$
-a.e.,

so that, by Theorem 5.5 and (1),

$$\lim_{k \to \infty} \int |f - f_{n_k}|^p \, d\mu = 0.$$

It follows that

$$\lim_{n \to \infty} \|f - f_n\|_p = 0,$$

too. Finally, by Theorem 2, $f \in \mathfrak{L}^p$. Ad (ii): Assume that

$$f_n \xrightarrow{\mathfrak{L}^p} f.$$

According to the proof of (i) there exists $\tilde{f} \in \mathfrak{L}^p$ and a subsequence $(f_{n_k})_k$ such that

$$f_{n_k} \xrightarrow{\mu\text{-a.e.}} \widetilde{f} \wedge f_{n_k} \xrightarrow{\mathfrak{L}^p} \widetilde{f}.$$

Use Lemma 1.

Example 1. Let $(\Omega, \mathfrak{A}, \mu) = ([0, 1], \mathfrak{B}([0, 1]), \lambda_1|_{\mathfrak{B}([0, 1])})$. (By Remark 1.7.(ii) we have $\mathfrak{B}([0, 1]) \subset \mathfrak{B}_1$). Define

$$A_{1} = [0, 1]$$

$$A_{2} = [0, 1/2], \quad A_{3} = [1/2, 1]$$

$$A_{4} = [0, 1/3], \quad A_{5} = [1/3, 2/3], \quad A_{6} = [2/3, 1]$$
etc

Put $f_n = 1_{A_n}$. Then

$$\lim_{n \to \infty} \|f_n - 0\|_p = \lim_{n \to \infty} \|f_n\|_p = 0$$
(2)

but

 $\{(f_n)_n \text{ converges}\} = \emptyset.$

Remark 2. Define

$$\mathfrak{L}^{\infty} = \mathfrak{L}^{\infty}(\Omega, \mathfrak{A}, P) = \{ f \in \mathfrak{Z} : \exists c \in \mathbb{R}_{+} : |f| \leq c \ \mu\text{-a.e.} \}$$

and

$$||f||_{\infty} = \inf\{c \in \mathbb{R}_+ : |f| \le c \ \mu\text{-a.e.}\}, \qquad f \in \mathfrak{L}^{\infty}.$$

 $f \in \mathfrak{L}^{\infty}$ is called *essentially bounded* and $||f||_{\infty}$ is called the *essential supremum of* |f|. Use Theorem 4.1.(iii) to verify that

$$|f| \le ||f||_{\infty} \mu$$
-a.e.

The definitions and results of this section, except (2), extend to the case $p = \infty$, where q = 1 in Theorem 1. In Theorem 3.(ii) we even have $f_n \xrightarrow{\mathfrak{L}^{\infty}} f \Rightarrow f_n \xrightarrow{\mu\text{-a.e.}} f$.

Remark 3. Put

$$\mathfrak{N}^p = \{ f \in \mathfrak{L}^p : f = 0 \ \mu\text{-a.e.} \}$$

Then the quotient space $L^p = \mathfrak{L}^p/\mathfrak{N}^p$ is a Banach space. In particular, for p = 2, L^2 is a Hilbert space, with semi-inner product on \mathfrak{L}^2 given by

$$\langle f,g\rangle = \int f \cdot g \, d\mu, \qquad f,g \in \mathfrak{L}^2.$$

Theorem 4. If μ is finite and $1 \le p < q \le \infty$ then

$$\mathfrak{L}^q\subset\mathfrak{L}^p$$

and

$$||f||_p \le \mu(\Omega)^{1/p-1/q} \cdot ||f||_q, \qquad f \in \mathfrak{L}^q$$

Proof. The result trivially holds for $q = \infty$. In the sequel, $q < \infty$. Use $|f|^p \le 1 + |f|^q$ and Theorem 5.4.(iii) to obtain $\mathfrak{L}^q \subset \mathfrak{L}^p$. Put r = q/p and define s by 1/r + 1/s = 1. Theorem 1 yields

$$\int |f|^p d\mu \le \left(\int |f|^{p \cdot r} d\mu\right)^{1/r} \cdot \left(\mu(\Omega)\right)^{1/s}.$$

Example 2. Let $1 \leq p < q \leq \infty$. With respect to the counting measure on $\mathfrak{P}(\mathbb{N})$, $\mathfrak{L}^p \subset \mathfrak{L}^q$. With respect to the Lebesgue measure on \mathfrak{B}_k neither $\mathfrak{L}^q \subset \mathfrak{L}^p$ nor $\mathfrak{L}^p \subset \mathfrak{L}^q$.