Example 5. Let $I=\mathbb{R}_{+}, \Omega_{i}=\mathbb{R}$, and $\mathfrak{A}_{i}=\mathfrak{B}$. For the corresponding product space (Ω, \mathfrak{A}) we have $\Omega=\mathbb{R}^{\mathbb{R}_{+}}$and

$$
|\mathfrak{A}|=|\mathbb{R}|<|\Omega| .
$$

Proof: Clearly $|\mathbb{R}| \leq|\mathfrak{A}|$ and $|\mathbb{R}|<|\Omega|$. On the other hand, Theorem 2 shows that $\mathfrak{A}=\sigma(\mathfrak{E})$ for some set \mathfrak{E} with $|\mathfrak{E}|=|\mathbb{R}|$. Hence $|\mathfrak{A}| \leq|\mathbb{R}|$ by Theorem 4.
The space $\mathbb{R}^{\mathbb{R}_{+}}$already appeared in the introductory Example I.3. The product σ algebra $\mathfrak{A}=\bigotimes_{i \in \mathbb{R}_{+}} \mathfrak{B}$ is a proper choice on this space. On the subspace $C\left(\mathbb{R}_{+}\right) \subset \mathbb{R}^{\mathbb{R}_{+}}$ we can take the trace- σ-algebra. It is important to note, however, that

$$
C\left(\mathbb{R}_{+}\right) \notin \mathfrak{A}
$$

see Übung 3.2. It turns out that the Borel σ-algebra $\mathfrak{B}\left(C\left(\mathbb{R}_{+}\right)\right)$that is generated by the topology of uniform convergence on compact intervals coincides with the trace- σ algebra of \mathfrak{A} in $C\left(\mathbb{R}_{+}\right)$, see Bauer (1996, Theorem 38.6).

4 Construction of (Probability) Measures

Given: $\Omega \neq \emptyset$ and $\emptyset \neq \mathfrak{A} \subset \mathfrak{P}(\Omega)$.
Definition 1. $\mu: \mathfrak{A} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is called
(i) additive if:

$$
A, B \in \mathfrak{A} \wedge A \cap B=\emptyset \wedge A \cup B \in \mathfrak{A} \quad \Rightarrow \quad \mu(A \cup B)=\mu(A)+\mu(B)
$$

(ii) σ-additive if

$$
A_{1}, A_{2}, \ldots \in \mathfrak{A} \text { pairwise disjoint } \wedge \bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A} \Rightarrow \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

(iii) content (on \mathfrak{A}) if
\mathfrak{A} algebra $\wedge \quad \mu$ additive $\wedge \mu(\emptyset)=0$,
(iv) pre-measure (on \mathfrak{A}) if

$$
\mathfrak{A} \text { semi-algebra } \quad \wedge \quad \mu \sigma \text {-additive } \quad \wedge \mu(\emptyset)=0,
$$

(v) measure (on \mathfrak{A}) if

$$
\mathfrak{A} \sigma \text {-algebra } \wedge \quad \mu \text { pre-measure }
$$

(vi) probability measure (on \mathfrak{A}) if

$$
\mu \text { measure } \quad \wedge \quad \mu(\Omega)=1
$$

Definition 2. $(\Omega, \mathfrak{A}, \mu)$ is called a
(i) measure space, if μ is a measure on the σ-algebra \mathfrak{A} in Ω,
(ii) probability space, if μ is a probability measure on the σ-algebra \mathfrak{A} in Ω.

Example 1.

(i) Lebesgue pre-measure λ_{1} on the class \mathfrak{I}_{1} of intervals from Example 1.1.(i): $\lambda_{1}(A)$ is the length of $A \in \mathfrak{I}_{1}$, i.e.,

$$
\left.\left.\lambda_{1}(] a, b\right]\right)=b-a
$$

if $a, b \in \mathbb{R}$ with $a \leq b$ and $\lambda_{1}(A)=\infty$ if $A \in \mathfrak{I}_{1}$ is unbounded. See Billingsley (1979, p. 22), Elstrodt (1996, §II.2), or Analysis IV.
Analogously for cartesian products of such intervals. Hereby we get the semialgebra \mathfrak{I}_{k} of rectangles in \mathbb{R}^{k}. The Lebesgue pre-measure λ_{k} on \mathfrak{I}_{k} yields the volume $\lambda_{k}(A)$ of $A \in \mathfrak{I}_{k}$, i.e., the product of the side-lengths of A. See Elstrodt (1996, §III.2) or Analysis IV.
(ii) for any semi-algebra \mathfrak{A} in Ω and $\omega \in \Omega$

$$
\varepsilon_{\omega}(A)=1_{A}(\omega), \quad A \in \mathfrak{A},
$$

defines a pre-measure. If \mathfrak{A} is a σ-algebra, then ε_{ω} is called the Dirac measure at the point ω.
More generally: take sequences $\left(\omega_{n}\right)_{n \in \mathbb{N}}$ in Ω and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}_{+}such that $\sum_{n=1}^{\infty} \alpha_{n}=1$. Then

$$
\mu(A)=\sum_{n=1}^{\infty} \alpha_{n} \cdot 1_{A}\left(\omega_{n}\right), \quad A \in \mathfrak{A}
$$

defines a discrete probability measure on any σ-algebra \mathfrak{A} in Ω. Note that $\mu=$ $\sum_{n=1}^{\infty} \alpha_{n} \cdot \varepsilon_{\omega_{n}}$.
(iii) Counting measure on a σ-algebra \mathfrak{A}

$$
\mu(A)=|A|, \quad A \in \mathfrak{A}
$$

Uniform distribution in the case $|\Omega|<\infty$ and $\mathfrak{A}=\mathfrak{P}(\Omega)$

$$
\mu(A)=\frac{|A|}{|\Omega|}, \quad A \subset \Omega
$$

(iv) On the algebra $\mathfrak{A}=\left\{A \subset \Omega: A\right.$ finite or A^{c} finite $\}$ let

$$
\mu(A)= \begin{cases}0 & \text { if }|A|<\infty \\ \infty & \text { if }|A|=\infty\end{cases}
$$

Then μ is a content but not a pre-measure in general.
(v) For the semi-algebra of measurable rectangles in Example 3.1 and $A_{i} \subset\{0,1\}$

$$
\mu\left(A_{1} \times \cdots \times A_{n} \times \Omega_{n+1} \times \cdots\right)=\frac{\left|A_{1} \times \ldots \times A_{n}\right|}{\left|\{0,1\}^{n}\right|}
$$

is well defined and yields a pre-measure μ with $\mu\left(\{0,1\}^{\mathbb{N}}\right)=1$.
Remark 1. For every content μ on \mathfrak{A} and $A, B \in \mathfrak{A}$
(i) $A \subset B \Rightarrow \mu(A) \leq \mu(B)$ (monotonicity),
(ii) $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)$,
(iii) $A \subset B \wedge \mu(A)<\infty \Rightarrow \mu(B \backslash A)=\mu(B)-\mu(A)$,
(iv) $\mu(A)<\infty \wedge \mu(B)<\infty \Rightarrow|\mu(A)-\mu(B)| \leq \mu(A \Delta B)$,
(v) $\mu(A \cup B) \leq \mu(A)+\mu(B)($ subadditivity $)$.

To proof these facts use, for instance, $A \cup B=A \cup\left(B \cap A^{c}\right)$.
Theorem 1. Consider the following properties for a content μ on \mathfrak{A} :
(i) μ pre-measure,
(ii) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge \bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A} \Rightarrow \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)$ (σ-subadditivity),
(iii) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge A_{n} \uparrow A \in \mathfrak{A} \Rightarrow \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)$ (σ-continuity from below),
(iv) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge A_{n} \downarrow A \in \mathfrak{A} \wedge \mu\left(A_{1}\right)<\infty \Rightarrow \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)(\sigma-$ continuity from above),
(v) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge A_{n} \downarrow \emptyset \wedge \mu\left(A_{1}\right)<\infty \Rightarrow \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0(\sigma$-continuity at $\emptyset)$.

Then

$$
(\mathrm{i}) \Leftrightarrow(\mathrm{ii}) \Leftrightarrow(\mathrm{iii}) \Rightarrow(\mathrm{iv}) \Leftrightarrow(\mathrm{v}) .
$$

If $\mu(\Omega)<\infty$, then (iii) \Leftrightarrow (iv).
Proof. '(i) $\Rightarrow(\text { ii })^{\prime}$: Put $B_{m}=\bigcup_{i=1}^{m} A_{i}$ and $B_{0}=\emptyset$. Then

$$
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{m=1}^{\infty}\left(B_{m} \backslash B_{m-1}\right)
$$

with pairwise disjoint sets $B_{m} \backslash B_{m-1} \in \mathfrak{A}$. Clearly $B_{m} \backslash B_{m-1} \subset A_{m}$. Hence, by Remark 1.(i),

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{m=1}^{\infty} \mu\left(B_{m} \backslash B_{m-1}\right) \leq \sum_{m=1}^{\infty} \mu\left(A_{m}\right)
$$

'(ii) $\Rightarrow\left(\right.$ i)': Let $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}$. Then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \geq \mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

and therefore

$$
\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \leq \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)
$$

The reverse estimate holds by assumption.
'(i) \Rightarrow (iii)': Put $A_{0}=\emptyset$ and $B_{m}=A_{m} \backslash A_{m-1}$. Then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{m=1}^{\infty} \mu\left(B_{m}\right)=\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \mu\left(B_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{m=1}^{n} B_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

'(iii) \Rightarrow (i)': Let $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}$, and put $B_{m}=\bigcup_{i=1}^{m} A_{i}$. Then $B_{m} \uparrow \bigcup_{i=1}^{\infty} A_{i}$ and

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{m \rightarrow \infty} \mu\left(B_{m}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

'(iv) \Rightarrow (v)' trivially holds.
'(v) \Rightarrow (iv)': Use $B_{n}=A_{n} \backslash A \downarrow \emptyset$.
'(i)' $\Rightarrow(\mathrm{v})$ ': Note that $\mu\left(A_{1}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i} \backslash A_{i+1}\right)$. Hence

$$
0=\lim _{k \rightarrow \infty} \sum_{i=k}^{\infty} \mu\left(A_{i} \backslash A_{i+1}\right)=\lim _{k \rightarrow \infty} \mu\left(A_{k}\right)
$$

'(iv) $\wedge \mu(\Omega)<\infty \Rightarrow(\text { iii })^{\prime}$: Clearly $A_{n} \uparrow A$ implies $A_{n}^{c} \downarrow A^{c}$. Thus

$$
\mu(A)=\mu(\Omega)-\mu\left(A^{c}\right)=\lim _{n \rightarrow \infty}\left(\mu(\Omega)-\mu\left(A_{n}^{c}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

Theorem 2 (Extension: semi-algebra \rightsquigarrow algebra). For every semi-algebra \mathfrak{A} and every additive mapping $\mu: \mathfrak{A} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ with $\mu(\emptyset)=0$

$$
\underset{1}{\exists} \widehat{\mu} \text { content on } \alpha(\mathfrak{A}):\left.\quad \widehat{\mu}\right|_{\mathfrak{A}}=\mu
$$

Moreover, if μ is σ-additive then $\widehat{\mu}$ is σ-additive, too.
Proof. We have $\alpha(\mathfrak{A})=\mathfrak{A}^{+}$, see Lemma 1.1. Necessarily

$$
\begin{equation*}
\widehat{\mu}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right) \tag{1}
\end{equation*}
$$

for $A_{1}, \ldots, A_{n} \in \mathfrak{A}$ pairwise disjoint. Use (1) to obtain a well-defined extension of μ onto $\alpha(\mathfrak{A})$. It remains to verify that $\widehat{\mu}$ is additive or even σ-additive.

Example 2. For the semi-algebra \mathfrak{A} in Example 1.(v) $\alpha(\mathfrak{A})$ is the algebra of cylinder sets, and

$$
\widehat{\mu}\left(A \times \Omega_{n+1} \times \cdots\right)=\frac{|A|}{\left|\{0,1\}^{n}\right|}, \quad A \subset\{0,1\}^{n} .
$$

Theorem 3 (Extension: algebra $\rightsquigarrow \sigma$-algebra, Carathéodory). For every pre-measure μ on an algebra \mathfrak{A}

$$
\exists \mu^{*} \text { measure on } \sigma(\mathfrak{A}):\left.\quad \mu^{*}\right|_{\mathfrak{A}}=\mu .
$$

Proof. Define $\bar{\mu}: \mathfrak{P}(\Omega) \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ by

$$
\bar{\mu}(A)=\inf \left\{\sum_{i=1}^{\infty} \mu\left(A_{i}\right): A_{i} \in \mathfrak{A}, A \subset \bigcup_{i=1}^{\infty} A_{i}\right\} .
$$

Then $\bar{\mu}$ is an outer measure, i.e., $\bar{\mu}(\emptyset)=0$ and $\bar{\mu}$ is monotone and σ-subadditive, see Billingsley (1979, Exmp. 11.1) and compare Analysis IV. Actually it suffices to have $\mu \geq 0$ and $\emptyset \in \mathfrak{A}$ with $\mu(\emptyset)=0$.
We claim that
(i) $\left.\bar{\mu}\right|_{\mathfrak{A}}=\mu$,
(ii) $\forall A \in \mathfrak{A} \forall B \in \mathfrak{P}(\Omega): \quad \bar{\mu}(B)=\bar{\mu}(B \cap A)+\bar{\mu}\left(B \cap A^{c}\right)$.

Ad (i): For $A \in \mathfrak{A}$

$$
\bar{\mu}(A) \leq \mu(A)+\sum_{i=2}^{\infty} \mu(\emptyset)=\mu(A),
$$

and for $A_{i} \in \mathfrak{A}$ with $A \subset \bigcup_{i=1}^{\infty} A_{i}$

$$
\mu(A)=\mu\left(\bigcup_{i=1}^{\infty}\left(A_{i} \cap A\right)\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i} \cap A\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

follows from Theorem 1.(ii).
Ad (ii): ' \leq ' holds due to sub-additivity of $\bar{\mu}$, and ' \geq ' is easily verified.
Consider the class

$$
\overline{\mathfrak{A}}=\overline{\mathfrak{A}}_{\bar{\mu}}=\left\{A \in \mathfrak{P}(\Omega): \forall B \in \mathfrak{P}(\Omega): \bar{\mu}(B)=\bar{\mu}(B \cap A)+\bar{\mu}\left(B \cap A^{c}\right)\right\}
$$

of so-called $\bar{\mu}$-measurable sets.
We claim that
(iii) $\forall A_{1}, A_{2} \in \overline{\mathfrak{A}} \forall B \in \mathfrak{P}(\Omega): \quad \bar{\mu}(B)=\bar{\mu}\left(B \cap\left(A_{1} \cap A_{2}\right)\right)+\bar{\mu}\left(B \cap\left(A_{1} \cap A_{2}\right)^{c}\right)$.
(iv) $\overline{\mathfrak{A}}$ algebra,

Ad (iii): We have

$$
\begin{aligned}
\bar{\mu}(B) & =\bar{\mu}\left(B \cap A_{1}\right)+\bar{\mu}\left(B \cap A_{1}^{c}\right) \\
& =\bar{\mu}\left(B \cap A_{1} \cap A_{2}\right)+\bar{\mu}\left(B \cap A_{1} \cap A_{2}^{c}\right)+\bar{\mu}\left(B \cap A_{1}^{c}\right)
\end{aligned}
$$

and

$$
\bar{\mu}\left(B \cap\left(A_{1} \cap A_{2}\right)^{c}\right)=\bar{\mu}\left(B \cap A_{1}^{c} \cup B \cap A_{2}^{c}\right)=\bar{\mu}\left(B \cap A_{2}^{c} \cap A_{1}\right)+\bar{\mu}\left(B \cap A_{1}^{c}\right) .
$$

Ad (iv): Cleary $\Omega \in \overline{\mathfrak{A}}, A \in \overline{\mathfrak{A}} \Rightarrow A^{c} \in \overline{\mathfrak{A}}$, and $\overline{\mathfrak{A}}$ is closed w.r.t. intersections by (iii). We claim that
(v) $\forall A_{1}, A_{2} \in \overline{\mathfrak{A}}$ disjoint $\forall B \in \mathfrak{P}(\Omega): \quad \bar{\mu}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)=\bar{\mu}\left(B \cap A_{1}\right)+\bar{\mu}\left(B \cap A_{2}\right)$.

In fact, since $A_{1} \cap A_{2}=\emptyset$,

$$
\bar{\mu}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)=\bar{\mu}\left(B \cap A_{1}\right)+\bar{\mu}\left(B \cap A_{2} \cap A_{1}^{c}\right)=\bar{\mu}\left(B \cap A_{1}\right)+\bar{\mu}\left(B \cap A_{2}\right) .
$$

We claim that
(vi) $\forall A_{1}, A_{2}, \ldots \in \overline{\mathfrak{A}}$ pairwise disjoint

$$
\bigcup_{i=1}^{\infty} A_{i} \in \overline{\mathfrak{A}} \wedge \bar{\mu}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \bar{\mu}\left(A_{i}\right) .
$$

Let $B \in \mathfrak{P}(\Omega)$. By (iv), (v), and monotonicity of $\bar{\mu}$

$$
\begin{aligned}
\bar{\mu}(B) & =\bar{\mu}\left(B \cap \bigcup_{i=1}^{n} A_{i}\right)+\bar{\mu}\left(B \cap\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}\right) \\
& \geq \sum_{i=1}^{n} \bar{\mu}\left(B \cap A_{i}\right)+\bar{\mu}\left(B \cap\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}\right) .
\end{aligned}
$$

Use σ-subadditivity of $\bar{\mu}$ to get

$$
\begin{aligned}
\bar{\mu}(B) & \geq \sum_{i=1}^{\infty} \bar{\mu}\left(B \cap A_{i}\right)+\bar{\mu}\left(B \cap\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}\right) \\
& \geq \bar{\mu}\left(B \cap \bigcup_{i=1}^{\infty} A_{i}\right)+\bar{\mu}\left(B \cap\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}\right) \\
& \geq \bar{\mu}(B)
\end{aligned}
$$

Hence $\bigcup_{i=1}^{\infty} A_{i} \in \overline{\mathfrak{A}}$. Take $B=\bigcup_{i=1}^{\infty} A_{i}$ to obtain σ-additivity of $\left.\bar{\mu}\right|_{\overline{\mathfrak{A}}}$.

Conclusions:

- $\overline{\mathfrak{A}}$ is a σ-algebra, see (iv), (vi) and Theorem 1.1.(ii),
- $\mathfrak{A} \subset \overline{\mathfrak{A}}$ by (ii), hence $\sigma(\mathfrak{A}) \subset \overline{\mathfrak{A}}$.
- $\left.\bar{\mu}\right|_{\overline{\mathfrak{A}}}$ is a measure with $\left.\bar{\mu}\right|_{\mathfrak{A}}=\mu$, see (vi) and (i).

Put $\mu^{*}=\left.\bar{\mu}\right|_{\sigma(\mathfrak{l l})}$.
Remark 2. The extension from Theorem 3 is non-unique, in general. For instance, put $\Omega=\mathbb{R}$ and

$$
f(A)=\left\{\begin{array}{ll}
0 & \text { if } A=\emptyset \\
\infty & \text { otherwise }
\end{array}, \quad A \subset \mathbb{R} .\right.
$$

Then $\mu=\left.f\right|_{\mathfrak{A}}$ defines a pre-measure on the semi-algebra $\mathfrak{A}=\mathfrak{I}_{1}$ of intervals. Now we have
(i) a unique extension of μ to a pre-measure $\widehat{\mu}$ on \mathfrak{A}^{+}, namely $\widehat{\mu}=\left.f\right|_{\mathfrak{A}^{+}}$,
(ii) the outer measure $\bar{\mu}=f$,
(iii) $\sigma(\mathfrak{A})=\sigma\left(\mathfrak{A}^{+}\right)=\mathfrak{B}$.

For the counting measure μ_{1} on \mathfrak{B} and for the measure $\mu_{2}=\left.f\right|_{\mathfrak{B}}$ according to the proof of Theorem 3 we have

$$
\mu_{1} \neq\left.\mu_{2} \wedge \mu_{1}\right|_{\mathfrak{A}+}=\left.\mu_{2}\right|_{\mathfrak{A}^{+}} .
$$

Definition 3. $\mu: \mathfrak{A} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is called
(i) σ-finite, if

$$
\exists B_{1}, B_{2}, \ldots \in \mathfrak{A} \text { pairwise disjoint : } \quad \Omega=\bigcup_{i=1}^{\infty} B_{i} \wedge \forall i \in \mathbb{N}: \mu\left(B_{i}\right)<\infty
$$

(ii) finite, if $\Omega \in \mathfrak{A}$ and $\mu(\Omega)<\infty$.

Theorem 4 (Uniqueness). For measures μ_{1}, μ_{2} on \mathfrak{A} and $\mathfrak{A}_{0} \subset \mathfrak{A}$ with
(i) $\sigma\left(\mathfrak{A}_{0}\right)=\mathfrak{A}$ and \mathfrak{A}_{0} is closed w.r.t. intersections,
(ii) $\left.\mu_{1}\right|_{\mathscr{A}_{0}}$ is σ-finite,
(iii) $\left.\mu_{1}\right|_{\mathfrak{A}_{0}}=\left.\mu_{2}\right|_{\mathfrak{A}_{0}}$
we have

$$
\mu_{1}=\mu_{2} .
$$

Proof. Take B_{i} according to Definition 3, with \mathfrak{A}_{0} instead of \mathfrak{A}, and put

$$
\mathfrak{D}_{i}=\left\{A \in \mathfrak{A}: \mu_{1}\left(A \cap B_{i}\right)=\mu_{2}\left(A \cap B_{i}\right)\right\} .
$$

Obviously, \mathfrak{D}_{i} is a Dynkin class and $\mathfrak{A}_{0} \subset \mathfrak{D}_{i}$. Theorem 1.2.(i) yields

$$
\mathfrak{D}_{i} \subset \mathfrak{A}=\sigma\left(\mathfrak{A}_{0}\right)=\delta\left(\mathfrak{A}_{0}\right) \subset \mathfrak{D}_{i} .
$$

Thus $\mathfrak{A}=\mathfrak{D}_{i}$ and for $A \in \mathfrak{A}$,

$$
\mu_{1}(A)=\sum_{i=1}^{\infty} \mu_{1}\left(A \cap B_{i}\right)=\sum_{i=1}^{\infty} \mu_{2}\left(A \cap B_{i}\right)=\mu_{2}(A) .
$$

Corollary 1. For every semi-algebra \mathfrak{A} and every pre-measure μ on \mathfrak{A} that is σ-finite

$$
\underset{1}{\exists} \mu^{*} \text { measure on } \sigma(\mathfrak{A}):\left.\quad \mu^{*}\right|_{\mathfrak{A}}=\mu .
$$

Proof. Use Theorems 2, 3, and 4.
Remark 3. Applications of Corollary 1:
(i) For $\Omega=\mathbb{R}^{k}$ and the Lebesgue pre-measure λ_{k} on \Im_{k} we get the Lebesgue measure on \mathfrak{B}_{k}. Notation for the latter: λ_{k}.
(ii) In Example 1.(v) there exists a uniquely determined probability measure P on $\bigotimes_{i=1}^{\infty} \mathfrak{P}(\{0,1\})$ such that

$$
P\left(A_{1} \times \cdots \times A_{n} \times\{0,1\} \times \ldots\right)=\frac{\left|A_{1} \times \cdots \times A_{n}\right|}{\left|\{0,1\}^{n}\right|}
$$

for $A_{1}, \ldots, A_{n} \subset\{0,1\}$. We will study the general construction of product measures in Section 8.

For a pre-measure μ on an algebra \mathfrak{A} the Carathéodory construction yields the extensions

$$
\begin{equation*}
\left(\Omega, \sigma(\mathfrak{A}),\left.\bar{\mu}\right|_{\sigma(\mathfrak{R l}}\right), \quad\left(\Omega, \overline{\mathfrak{A}}_{\bar{\mu}},\left.\bar{\mu}\right|_{\overline{\mathfrak{A}}_{\bar{\mu}}}\right) \tag{2}
\end{equation*}
$$

To what extend is $\overline{\mathfrak{A}}_{\bar{\mu}}$ larger than $\sigma(\mathfrak{A})$?
Definition 4. A measure space $(\Omega, \mathfrak{A}, \mu)$ is complete if

$$
\mathfrak{N}_{\mu} \subset \mathfrak{A}
$$

for

$$
\mathfrak{N}_{\mu}=\{B \in \mathfrak{P}(\Omega): \exists A \in \mathfrak{A}: B \subset A \wedge \mu(A)=0\} .
$$

Theorem 5. For a measure space $(\Omega, \mathfrak{A}, \mu)$ define

$$
\mathfrak{A}^{\mu}=\left\{A \cup N: A \in \mathfrak{A}, N \in \mathfrak{N}_{\mu}\right\}
$$

and

$$
\widetilde{\mu}(A \cup N)=\mu(A), \quad A \in \mathfrak{A}, N \in \mathfrak{N}_{\mu}
$$

Then
(i) $\widetilde{\mu}$ is well defined and $\left(\Omega, \mathfrak{A}^{\mu}, \widetilde{\mu}\right)$ is a complete measure space with $\left.\widetilde{\mu}\right|_{\mathfrak{A}}=\mu$, called the completion of $(\Omega, \mathfrak{A}, \mu)$,
(ii) for every complete measure space $(\Omega, \mathfrak{A}, \check{\mu})$ with $\mathfrak{A} \supset \mathfrak{A}$ and $\left.\check{\mu}\right|_{\mathfrak{A}}=\mu$ we have $\mathfrak{\mathfrak { A }} \supset \mathfrak{A}^{\mu}$ and $\left.\check{\mu}\right|_{\mathfrak{2} \mu}=\widetilde{\mu}$.

Proof. See Gänssler, Stute (1977, p. 34) or Elstrodt (1996, p. 64).
Remark 4. It is easy to verify that $\left(\Omega, \overline{\mathfrak{A}}_{\bar{\mu}},\left.\bar{\mu}\right|_{\overline{\mathfrak{A}}_{\bar{\mu}}}\right)$ in (2) is complete. However, $\left(\Omega, \sigma(\mathfrak{A}),\left.\bar{\mu}\right|_{\sigma(\mathfrak{R})}\right)$ is not complete in general, see Example 3 below.

Theorem 6. If μ is a σ-finite pre-measure on an algebra \mathfrak{A}, then $\left(\Omega, \overline{\mathfrak{A}}_{\bar{\mu}},\left.\bar{\mu}\right|_{\overline{\mathfrak{M}}_{\bar{\mu}}}\right)$ is the completion of $\left(\Omega, \sigma(\mathfrak{A}),\left.\bar{\mu}\right|_{\sigma(\mathfrak{l})}\right)$.

Proof. See Elstrodt (1996, p. 64).
Example 3. Consider the completion $\left(\mathbb{R}^{k}, \mathfrak{L}_{k}, \widetilde{\lambda}_{k}\right)$ of $\left(\mathbb{R}^{k}, \mathfrak{B}_{k}, \lambda_{k}\right)$. Here \mathfrak{L}_{k} is called the σ-algebra of Lebesgue measurable sets and $\widetilde{\lambda}_{k}$ is called the Lebesgue measure on \mathfrak{L}_{k}. Notation: $\lambda_{k}=\widetilde{\lambda}_{k}$. We have

$$
\mathfrak{B}_{k} \subsetneq \mathfrak{L}_{k}
$$

hence $\left(\mathbb{R}^{k}, \mathfrak{B}_{k}, \lambda_{k}\right)$ is not complete.
Proof: Assume $k=1$ for simplicity. For the Cantor set $C \subset \mathbb{R}$

$$
C \in \mathfrak{B}_{1} \wedge \lambda_{1}(C)=0 \wedge|C|=|\mathbb{R}| .
$$

By Theorem 3.4, $\left|\mathfrak{B}_{1}\right|=|\mathbb{R}|$, but

$$
\left|\{0,1\}^{\mathbb{R}}\right|=|\mathfrak{P}(C)| \leq\left|\mathfrak{L}_{k}\right| \leq\left|\{0,1\}^{\mathbb{R}}\right| .
$$

We add that $\mathfrak{L}_{k} \subsetneq \mathfrak{P}\left(\mathbb{R}^{k}\right)$, see Elstrodt (1996, §III.3).

5 Integration

For the proofs, see Analysis IV or Elstrodt (1996, Kap. VI).
Given: a measure space $(\Omega, \mathfrak{A}, \mu)$. Notation: $\mathfrak{S}_{+}=\mathfrak{S}_{+}(\Omega, \mathfrak{A})$ is the class of nonnegative simple functions.

Definition 1. Integral of $f \in \mathfrak{S}_{+}$w.r.t. μ

$$
\int f d \mu=\sum_{i=1}^{n} \alpha_{i} \cdot \mu\left(A_{i}\right)
$$

if

$$
f=\sum_{i=1}^{n} \alpha_{i} \cdot 1_{A_{i}}
$$

with $\alpha_{i} \geq 0$ and $A_{i} \in \mathfrak{A}$. (Note that the integral is well defined.)

Lemma 1. For $f, g \in \mathfrak{S}_{+}$and $c \in \mathbb{R}_{+}$
(i) $\int(f+g) d \mu=\int f d \mu+\int g d \mu$,
(ii) $\int(c f) d \mu=c \cdot \int f d \mu$,
(iii) $f \leq g \Rightarrow \int f d \mu \leq \int g d \mu$ (monotonicity).

Notation: $\overline{\mathfrak{Z}}_{+}=\overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$ is the class of nonnegative $\mathfrak{A}-\overline{\mathfrak{B}}$-measurable functions.
Definition 2. Integral of $f \in \overline{\mathfrak{J}}_{+}$w.r.t. μ

$$
\int f d \mu=\sup \left\{\int g d \mu: g \in \mathfrak{S}_{+} \wedge g \leq f\right\}
$$

Theorem 1 (Monotone convergence, Beppo Levi). Let $f_{n} \in \overline{\mathfrak{Z}}_{+}$such that

$$
\forall n \in \mathbb{N}: f_{n} \leq f_{n+1}
$$

Then

$$
\int \sup _{n} f_{n} d \mu=\sup _{n} \int f_{n} d \mu .
$$

Remark 1. For every $f \in \overline{\mathfrak{Z}}_{+}$there exists a sequence of functions $f_{n} \in \mathfrak{S}_{+}$such that $f_{n} \uparrow f$, see Theorem 2.7.

Example 1. Consider

$$
f_{n}=\frac{1}{n} \cdot 1_{[0, n]}
$$

on $\left(\mathbb{R}, \mathfrak{B}, \lambda_{1}\right)$. Then

$$
\int f_{n} d \lambda_{1}=1, \quad \lim _{n \rightarrow \infty} f_{n}=0
$$

Lemma 2. The conclusions from Lemma 1 remain valid on $\overline{\mathfrak{Z}}_{+}$.
Theorem 2 (Fatou's Lemma). For every sequence $\left(f_{n}\right)_{n}$ in $\overline{\mathfrak{Z}}_{+}$

$$
\int \liminf _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Proof. For $g_{n}=\inf _{k \geq n} f_{k}$ we have $g_{n} \in \overline{\mathfrak{Z}}_{+}$and $g_{n} \uparrow \liminf _{n} f_{n}$. By Theorem 1 and Lemma 1.(iii)

$$
\int \liminf _{n} f_{n} d \mu=\lim _{n \rightarrow \infty} \int g_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Theorem 3. Let $f \in \overline{\mathfrak{Z}}_{+}$. Then

$$
\int f d \mu=0 \Leftrightarrow \mu(\{f>0\})=0 .
$$

Definition 3. A property Π holds μ-almost everywhere (μ-a.e., a.e.), if $\exists A \in \mathfrak{A}:\{\omega \in \Omega: \Pi$ does not hold for $\omega\} \subset A \wedge \mu(A)=0$.

In case of a probability measure we say: μ-almost surely, μ-a.s., with probability one.
Notation: $\overline{\mathfrak{Z}}=\overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ is the class of $\mathfrak{A}-\overline{\mathfrak{B}}$-measurable functions.
Definition 4. $f \in \overline{\mathfrak{Z}}$ quasi- μ-integrable if

$$
\int f_{+} d \mu<\infty \quad \vee \quad \int f_{-} d \mu<\infty
$$

In this case: integral of f (w.r.t. μ)

$$
\int f d \mu=\int f_{+} d \mu-\int f_{-} d \mu
$$

$f \in \overline{\mathfrak{Z}} \mu$-integrable if

$$
\int f_{+} d \mu<\infty \wedge \int f_{-} d \mu<\infty
$$

Theorem 4.

(i) $f \mu$-integrable $\Rightarrow \mu(\{|f|=\infty\})=0$,
(ii) $f \mu$-integrable $\wedge g \in \overline{\mathfrak{Z}} \wedge f=g \mu$-a.e. $\Rightarrow g \mu$-integrable $\wedge \int f d \mu=\int g d \mu$.
(iii) equivalent properties for $f \in \overline{\mathfrak{Z}}$:
(a) $f \mu$-integrable,
(b) $|f| \mu$-integrable,
(c) $\exists g: g \mu$-integrable $\wedge|f| \leq g \mu$-a.e.,
(iv) for f and $g \mu$-integrable and $c \in \mathbb{R}$
(a) $f+g$ well-defined μ-a.e. and μ-integrable with $\int(f+g) d \mu=\int f d \mu+\int g d \mu$,
(b) $c \cdot f \mu$-integrable with $\int(c f) d \mu=c \cdot \int f d \mu$,
(c) $f \leq g \mu$-a.e. $\Rightarrow \int f d \mu \leq \int g d \mu$.

Remark 2. An outlook. Consider an arbitrary set $\Omega \neq \emptyset$ and a vector space $\mathfrak{F} \subset \mathbb{R}^{\Omega}$ such that

$$
f \in \mathfrak{F} \Rightarrow(|f| \in \mathfrak{F} \wedge \inf \{f, 1\} \in \mathfrak{F})
$$

A monotone linear mapping $I: \mathfrak{F} \rightarrow \mathbb{R}$ such that

$$
f, f_{1}, f_{2}, \ldots \in \mathfrak{F} \wedge f_{n} \uparrow f \Rightarrow I(f)=\lim _{n \rightarrow \infty} I\left(f_{n}\right)
$$

is called an abstract integral. Note that

$$
I(f)=\int f d \mu
$$

defines an abstract integral on

$$
\mathfrak{F}=\{f \in \mathfrak{Z}(\Omega, \mathfrak{A}): f \mu \text {-integrable }\}=\mathfrak{L}^{1}(\Omega, \mathfrak{A}, \mu) .
$$

Daniell-Stone-Theorem: for every abstract integral there exists a uniquely determined measure μ on $\mathfrak{A}=\sigma(\mathfrak{F})$ such that

$$
\mathfrak{F} \subset \mathfrak{L}^{1}(\Omega, \mathfrak{A}, \mu) \wedge \forall f \in \mathfrak{F}: I(f)=\int f d \mu .
$$

See Bauer (1978, Satz 39.4) or Floret (1981).
Application: Riesz representation theorem. Here $\mathfrak{F}=C([0,1])$ and $I: \mathfrak{F} \rightarrow \mathbb{R}$ linear and monotone. Then I is an abstract integral, which follows from Dini's Theorem, see Floret (1981, p. 45). Hence there exists a uniquely determined measure μ on $\sigma(\mathfrak{F})=\mathfrak{B}([0,1])$ such that

$$
\forall f \in \mathfrak{F}: I(f)=\int f d \mu
$$

Theorem 5 (Dominated convergence, Lebesgue). Assume that
(i) $f_{n} \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$,
(ii) $\exists g \mu$-integrable $\forall n \in \mathbb{N}:\left|f_{n}\right| \leq g \mu$-a.e.,
(iii) $f \in \overline{\mathfrak{Z}}$ such that $\lim _{n \rightarrow \infty} f_{n}=f \mu$-a.e.

Then f is μ-integrable and

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Example 2. Consider

$$
f_{n}=n \cdot 1_{[0,1 / n[}
$$

on $\left(\mathbb{R}, \mathfrak{B}, \lambda_{1}\right)$. Then

$$
\int f_{n} d \lambda_{1}=1, \quad \quad \lim _{n \rightarrow \infty} f_{n}=0
$$

$6 \quad \mathfrak{L}^{p}$-Spaces

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$ and $1 \leq p<\infty$. Put $\mathfrak{Z}=\mathfrak{Z}(\Omega, \mathfrak{A})$.

Definition 1.

$$
\mathfrak{L}^{p}=\mathfrak{L}^{p}(\Omega, \mathfrak{A}, \mu)=\left\{f \in \mathfrak{Z}: \int|f|^{p} d \mu<\infty\right\} .
$$

In particular, for $p=1$: integrable functions and $\mathfrak{L}=\mathfrak{L}^{1}$, and for $p=2$: squareintegrable functions. Put

$$
\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}, \quad f \in \mathfrak{L}^{p}
$$

Theorem 1 (Hölder inequality). Let $1<p, q<\infty$ such that $1 / p+1 / q=1$ and let $f \in \mathfrak{L}^{p}, g \in \mathfrak{L}^{q}$. Then

$$
\int|f \cdot g| d \mu \leq\|f\|_{p} \cdot\|g\|_{q} .
$$

In particular, for $p=q=2$: Cauchy-Schwarz inequality.
Proof. See Analysis IV or Elstrodt (1996, §VI.1) as well as Theorem 5.3.
Theorem 2. \mathfrak{L}^{p} is a vector space and $\|\cdot\|_{p}$ is a semi-norm on \mathfrak{L}^{p}. Furthermore,

$$
\|f\|_{p}=0 \quad \Leftrightarrow \quad f=0 \mu \text {-a.e. }
$$

Proof. See Analysis IV or Elstrodt (1996, §VI.2).
Definition 2. Let $f, f_{n} \in \mathfrak{L}^{p}$ for $n \in \mathbb{N}$. $\left(f_{n}\right)_{n}$ converges to f in \mathfrak{L}^{p} (in mean of order p) if

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p}=0
$$

In particular, for $p=1$: convergence in mean, and for $p=2$: mean-square convergence. Notation:

$$
f_{n} \xrightarrow{\mathfrak{L}^{p}} f .
$$

Remark 1. Let $f, f_{n} \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$. Recall (define) that $\left(f_{n}\right)_{n}$ converges to $f \mu$-a.e. if

$$
\mu\left(A^{c}\right)=0
$$

for

$$
A=\left\{\lim _{n \rightarrow \infty} f_{n}=f\right\}=\left\{\limsup _{n \rightarrow \infty} f_{n}=\liminf _{n \rightarrow \infty} f_{n}\right\} \cap\left\{\limsup _{n \rightarrow \infty} f_{n}=f\right\} \in \mathfrak{A}
$$

Notation:

$$
f_{n} \xrightarrow{\mu \text {-a.e. }} f .
$$

Lemma 1. Let $f, g, f_{n} \in \mathfrak{L}^{p}$ for $n \in \mathbb{N}$ such that $f_{n} \xrightarrow{\mathfrak{L}^{p}} f$. Then

$$
f_{n} \xrightarrow{\mathfrak{L}^{p}} g \quad \Leftrightarrow \quad f=g \mu \text {-a.e. }
$$

Analogously for convergence almost everywhere.
Proof. For convergence in \mathfrak{L}^{p} : ' \Leftarrow ' follows from Theorem 5.4.(ii). Use

$$
\|f-g\|_{p} \leq\left\|f-f_{n}\right\|_{p}+\left\|f_{n}-g\right\|_{p}
$$

to verify ' \Rightarrow '.
For convergence almost everywhere: ' \Leftarrow ' trivially holds. Use

$$
\left\{\lim _{n \rightarrow \infty} f_{n}=f\right\} \cap\left\{\lim _{n \rightarrow \infty} f_{n}=g\right\} \subset\{f=g\}
$$

to verify ' \Rightarrow '.

Theorem 3 (Fischer-Riesz). Consider a sequence $\left(f_{n}\right)_{n}$ in \mathfrak{L}^{p}. Then
(i) $\left(f_{n}\right)_{n}$ Cauchy sequence $\Rightarrow \exists f \in \mathfrak{L}^{p}: f_{n} \xrightarrow{\mathfrak{L}^{p}} f$ (completeness),
(ii) $f_{n} \xrightarrow{\mathfrak{L}^{p}} f \Rightarrow \exists$ subsequence $\left(f_{n_{k}}\right)_{k}: f_{n_{k}} \xrightarrow{\mu \text {-a.e. }} f$.

Proof. Ad (i): Consider a Cauchy sequence $\left(f_{n}\right)_{n}$ and a subsequence $\left(f_{n_{k}}\right)_{k}$ such that

$$
\forall k \in \mathbb{N} \forall m \geq n_{k}:\left\|f_{m}-f_{n_{k}}\right\|_{p} \leq 2^{-k}
$$

For

$$
g_{k}=f_{n_{k+1}}-f_{n_{k}} \in \mathfrak{L}^{p}
$$

we have

$$
\left\|\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right\|_{p} \leq \sum_{\ell=1}^{k}\left\|g_{\ell}\right\|_{p} \leq \sum_{\ell=1}^{k} 2^{-\ell} \leq 1 .
$$

Put $g=\sum_{\ell=1}^{\infty}\left|g_{\ell}\right| \in \overline{\mathfrak{Z}}_{+}$. By Theorem 5.1

$$
\begin{equation*}
\int g^{p} d \mu=\int \sup _{k}\left(\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right)^{p} d \mu=\sup _{k} \int\left(\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right)^{p} d \mu \leq 1 . \tag{1}
\end{equation*}
$$

Thus, in particular, $\sum_{\ell=1}^{\infty}\left|g_{\ell}\right|$ and $\sum_{\ell=1}^{\infty} g_{\ell}$ converge μ-a.e., see Theorem 5.4.(i). Since

$$
f_{n_{k+1}}=\sum_{\ell=1}^{k} g_{\ell}+f_{n_{1}}
$$

we have

$$
f=\lim _{k \rightarrow \infty} f_{n_{k}} \mu \text {-a.e. }
$$

for some $f \in \mathfrak{Z}$. Furthermore,

$$
\left|f-f_{n_{k}}\right| \leq \sum_{\ell=k}^{\infty}\left|g_{\ell}\right| \leq g \mu \text {-a.e. }
$$

so that, by Theorem 5.5 and (1),

$$
\lim _{k \rightarrow \infty} \int\left|f-f_{n_{k}}\right|^{p} d \mu=0
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p}=0
$$

too. Finally, by Theorem $2, f \in \mathfrak{L}^{p}$.
Ad (ii): Assume that

$$
f_{n} \xrightarrow{\mathfrak{L}^{p}} f .
$$

According to the proof of (i) there exists $\tilde{f} \in \mathfrak{L}^{p}$ and a subsequence $\left(f_{n_{k}}\right)_{k}$ such that

$$
f_{n_{k}} \xrightarrow{\mu \text {-a.e. }} \tilde{f} \wedge f_{n_{k}} \xrightarrow{\mathfrak{L}^{p}} \tilde{f} .
$$

Use Lemma 1.

Example 1. Let $(\Omega, \mathfrak{A}, \mu)=\left([0,1], \mathfrak{B}([0,1]),\left.\lambda_{1}\right|_{\mathfrak{B}([0,1])}\right)$. (By Remark 1.7.(ii) we have $\left.\mathfrak{B}([0,1]) \subset \mathfrak{B}_{1}\right)$. Define

$$
\begin{gathered}
A_{1}=[0,1] \\
A_{2}=[0,1 / 2], \quad A_{3}=[1 / 2,1] \\
A_{4}=[0,1 / 3], \quad A_{5}=[1 / 3,2 / 3], \quad A_{6}=[2 / 3,1] \\
\text { etc. }
\end{gathered}
$$

Put $f_{n}=1_{A_{n}}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}-0\right\|_{p}=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=0 \tag{2}
\end{equation*}
$$

but

$$
\left\{\left(f_{n}\right)_{n} \text { converges }\right\}=\emptyset
$$

Remark 2. Define

$$
\mathfrak{L}^{\infty}=\mathfrak{L}^{\infty}(\Omega, \mathfrak{A}, P)=\left\{f \in \mathfrak{Z}: \exists c \in \mathbb{R}_{+}:|f| \leq c \mu \text {-a.e. }\right\}
$$

and

$$
\|f\|_{\infty}=\inf \left\{c \in \mathbb{R}_{+}:|f| \leq c \mu \text {-a.e. }\right\}, \quad f \in \mathfrak{L}^{\infty} .
$$

$f \in \mathfrak{L}^{\infty}$ is called essentially bounded and $\|f\|_{\infty}$ is called the essential supremum of $|f|$. Use Theorem 4.1.(iii) to verify that

$$
|f| \leq\|f\|_{\infty} \mu \text {-a.e. }
$$

The definitions and results of this section, except (2), extend to the case $p=\infty$, where $q=1$ in Theorem 1. In Theorem 3.(ii) we even have $f_{n} \xrightarrow{\mathfrak{R}^{\infty}} f \Rightarrow f_{n} \xrightarrow{\mu \text {-a.e. }} f$.

Remark 3. Put

$$
\mathfrak{N}^{p}=\left\{f \in \mathfrak{L}^{p}: f=0 \mu \text {-a.e. }\right\}
$$

Then the quotient space $L^{p}=\mathfrak{L}^{p} / \mathfrak{N}^{p}$ is a Banach space. In particular, for $p=2, L^{2}$ is a Hilbert space, with semi-inner product on \mathfrak{L}^{2} given by

$$
\langle f, g\rangle=\int f \cdot g d \mu, \quad f, g \in \mathfrak{L}^{2}
$$

Theorem 4. If μ is finite and $1 \leq p<q \leq \infty$ then

$$
\mathfrak{L}^{q} \subset \mathfrak{L}^{p}
$$

and

$$
\|f\|_{p} \leq \mu(\Omega)^{1 / p-1 / q} \cdot\|f\|_{q}, \quad f \in \mathfrak{L}^{q} .
$$

Proof. The result trivially holds for $q=\infty$.In the sequel, $q<\infty$. Use $|f|^{p} \leq 1+|f|^{q}$ and Theorem 5.4.(iii) to obtain $\mathfrak{L}^{q} \subset \mathfrak{L}^{p}$. Put $r=q / p$ and define s by $1 / r+1 / s=1$. Theorem 1 yields

$$
\int|f|^{p} d \mu \leq\left(\int|f|^{p \cdot r} d \mu\right)^{1 / r} \cdot(\mu(\Omega))^{1 / s}
$$

Example 2. Let $1 \leq p<q \leq \infty$. With respect to the counting measure on $\mathfrak{P}(\mathbb{N})$, $\mathfrak{L}^{p} \subset \mathfrak{L}^{q}$. With respect to the Lebesgue measure on \mathfrak{B}_{k} neither $\mathfrak{L}^{q} \subset \mathfrak{L}^{p}$ nor $\mathfrak{L}^{p} \subset \mathfrak{L}^{q}$.

