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Example 5. Let I =R, Q; =R, and 2; = B. For the corresponding product space
(©2,2) we have Q = R®+ and
2| = [R] < [€].

Proof: Clearly |R| < || and |R| < [€2|. On the other hand, Theorem 2 shows that
2A = o(€) for some set € with |€| = |R|. Hence || < |R| by Theorem 4.

The space R®+ already appeared in the introductory Example 1.3. The product o-
algebra 2 = ®Z.GR+ B is a proper choice on this space. On the subspace C'(R,) C RF+
we can take the trace-o-algebra. It is important to note, however, that

CRy) &2,

see Ubung 3.2. It turns out that the Borel o-algebra B(C(R,)) that is generated by
the topology of uniform convergence on compact intervals coincides with the trace-o-
algebra of 2 in C'(R, ), see Bauer (1996, Theorem 38.6).

4 Construction of (Probability) Measures
Given: Q # ) and 0 # 2 C B().
Definition 1. p: 2 — R, U {oo} is called
(i) additive if:
ABeANANB=0NAUBed = pu(AUB)=u(A)+ uB),

(i) o-additive if

Aq, Ay, ... €2 pairwise disjoint A G A ed = M(G AZ-> = i,u(Ai),
i=1 i=1 i=1

(iii) content (on ) if

2 algebra A p additive A pu(@) =0,

(iv) pre-measure (on ) if

2 semi-algebra A p o-additive A pu(0) =0,

(v) measure (on L) if
20 o-algebra A pu pre-measure,

(vi) probability measure (on ) if

p measure A p(Q2) = 1.



18

CHAPTER II. MEASURE AND INTEGRAL

Definition 2. (2,2, u) is called a

(i)
(i)

measure space, if p is a measure on the o-algebra 2 in €2,

probability space, if p is a probability measure on the o-algebra 2l in €.

Example 1.

(i)

(i)

(i)

(iv)

Lebesgue pre-measure Ay on the class J; of intervals from Example 1.1.(i): A (A)
is the length of A € 71, i.e.,

Ai(Ja, b)) =b—a

if a,b € R with a < b and A\(A) = oo if A € J; is unbounded. See Billingsley
(1979, p. 22), Elstrodt (1996, §I1.2), or Analysis IV.

Analogously for cartesian products of such intervals. Hereby we get the semi-
algebra J;, of rectangles in R¥. The Lebesque pre-measure X\, on J;, yields the
volume A, (A) of A € Ty, i.e., the product of the side-lengths of A. See Elstrodt
(1996, §I11.2) or Analysis IV.

for any semi-algebra 2 in 2 and w € ()
ew(A) = 1a(w), Aed,

defines a pre-measure. If 2 is a o-algebra, then g, is called the Dirac measure
at the point w.

More generally: take sequences (wp)neny in € and (ay)peny in Ry such that
> o, =1. Then

wu(A) —ian-lA(wn), Aei,
n=1
defines a discrete probability measure on any o-algebra 2 in 2. Note that u =
> oy Euy -
Counting measure on a o-algebra 2
w(A) = |Al, Aeid
Uniform distribution in the case || < oo and 2A = PB(Q)

_ 14

w(A) = a’

AC Q.

On the algebra A = {A C Q : A finite or A° finite} let

0 if |4 < oo
A) =
#A) {oo if |A] = oc.

Then g is a content but not a pre-measure in general.
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(v) For the semi-algebra of measurable rectangles in Example 3.1 and A; C {0, 1}

|A; X ... x Ayl
{0, 11"

is well defined and yields a pre-measure p with £({0, 1}N) =1

(A X oo XAy X Qi X oo0) =

Remark 1. For every content o on 2 and A, B € 2
(i) AC B = u(A) < u(B) (monotonicity),
(ii) p(AUB) + pu(AN B) = u(A) + u(B),

(ili) A C BAp(A) <oo= u(B\A)=puB)—pu(A),

(iv) w(A) <ooAp(B) < oo = |u(A) —u(B)| < p(A & B),
(v) p(AU B) < u(A) + n(B) (subadditivity).

To proof these facts use, for instance, AU B = AU (BN A°).

Theorem 1. Consider the following properties for a content p on :

(i) p pre-measure,

(i) Ay, As, ... € AANUrS A € A= (Ui Ai) <3002, w(4y) (o-subadditivity),

(iii) A;,Ag,... € ANA, T A € A = lim, oo u(An) = p(A) (o-continuity from

below),

(iv) A, As,... € ANA, | A€ AN p(A)) < 00 = limy_oo u(Ay)

continuity from above),

pu(A) (o-

(v) A, Ag,... € ANA, | DA u(Ar) < oo = limy,oo 1(Ay) = 0 (o-continuity at 0).

Then
(i) & (i) < (iil)) = (iv) < (v).
If pu(2) < oo, then (iii) < (iv).

Proof. ‘(i) = (ii): Put B,, = U;~; 4; and By = ). Then

o0 o0

A U By \ By1)

=1 m=1

with pairwise disjoint sets B, \ B,,—1 € 2. Clearly B,, \ B,,-1 C A

Remark 1.(i),
i=1 m=1

m=1

m- Hence, by
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‘(if) = (i)’: Let A;, As, ... € A be pairwise disjoint with (J;~, A; € 2. Then

u(Ua) = u(Ua) =3
and therefore
> <n(0).

The reverse estimate holds by assumption.
‘(i) = (iii)”: Put Ag =0 and B,,, = A, \ Ap_1. Then

Q- Ena- s )
3 m=1 m=1 m=1

iii) = (i): Let A;, Ay,... € 2 be pairwise disjoint with [J;°, A; € 2, and put
A Then B, 1 U, A; and

() = w5 = 3wt

‘(iv) = (v)’ trivially holds.
‘(v) = (iv): Use B, = A, \ A | 0.
‘(i) = (v): Note that pu(A1) = >, u(A; \ Ais1). Hence

0= lim D (A \ Aigr) = lim ji(Ay).

k—o0 4
“(iv) A pu(82) < oo = (iii)’: Clearly A, T A implies A¢ | A°. Thus
p(A) = p(Q) = p(A%) = Tim (u(Q) = p(A7)) = lim p(Ay).

O

Theorem 2 (Extension: semi-algebra ~- algebra). For every semi-algebra 2 and
every additive mapping p : A — R, U {oo} with u(@) =0
%IZZ content on a(A) 1 i = p

Moreover, if y is o-additive then f is o-additive, too.

Proof. We have a(2() = A", see Lemma 1.1. Necessarily

i(UA) = outa) ()

for Ay, ..., A, € AU pairwise disjoint. Use (1) to obtain a well-defined extension of u
onto (). It remains to verify that 11 is additive or even o-additive. O
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Example 2. For the semi-algebra 2( in Example 1.(v) «(2) is the algebra of cylinder
sets, and

N A n
,LL(AXQn+1X"'):W, AC{O,l} .

Theorem 3 (Extension: algebra ~+ og-algebra, Carathéodory). For every pre-measure
i on an algebra 2

Jp* measure on o(A): |y = p.

Proof. Define 1 : B(2) — R, U {0} by
Ti(A) = inf{zu(Ai) A e, AcC UAZ}.
i=1 =1

Then @ is an outer measure, i.e., i()) = 0 and @ is monotone and o-subadditive, see
Billingsley (1979, Exmp. 11.1) and compare Analysis IV. Actually it suffices to have
p>0and 0 € A with u(0) = 0.

We claim that
(i) VAeAVB e P(Q): u(B)=u(BNA)+nu(BnNA°.
Ad (i): For Ae

(A) < pu(A) + Z u(0) = u(A),

and for A; € A with A C 2, 4;
p(4) = n(JAain ) <340 4) <3 p(A)

=1 =1 i=1

follows from Theorem 1.(ii).
Ad (ii): ‘<’ holds due to sub-additivity of @, and ‘>’ is easily verified.

Consider the class
A=A, ={AcP(Q):VBeP(Q) :uw(B)=ua(BnA) +nu(BnA)}

of so-called Ji-measurable sets.
We claim that

(iil) VA, Ay € AVB € P(Q): 7(B) =m(BN (AN A))+ (BN (A N Ay)°).

(iv) A algebra,
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Ad (iii): We have

a(B) =m(BNA;) +u(BnAS)
— (BN AN Ag) + (B O Ay 1 AS) + (B A

and

(BN (AINA))=n(BNATUBNAS) =n(BNASN A +a(BNAS).

Ad (iv): Cleary Q € 2, A € A= A° € A, and 2 is closed w.r.t. intersections by (iii).
We claim that

(v) VA, Ay € A disjoint VB € P(Q) . (BN (A UA)) =T(BNA)+a(BNAy).

In fact, since A1 N Ay =0,

B(BN(ATUA)=m(BNA)+m(BNANA]) =a(BNA)+na(BnNAs).
We claim that

(vi) VY Ay, Ay, ... € 2 pairwise disjoint

Let B € P(Q2). By (iv), (v), and monotonicity of &

5 =a(mnUa) +a(zn
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Hence [ J;°, A; € 2. Take B = J3°, A; to obtain c-additivity of Ji|g.
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Conclusions:
e 2 is a o-algebra, see (iv), (vi) and Theorem 1.1.(ii),
e 2 C 2 by (ii), hence o(A) C A
e 7i|g is a measure with fig = i, see (vi) and (i).
Put 1" = i 5 2. O

Remark 2. The extension from Theorem 3 is non-unique, in general. For instance,
put 2 =R and

f(A):{o if A =0 e

. )
oo otherwise

Then p = f|y defines a pre-measure on the semi-algebra 2 = J; of intervals. Now we
have

(i) a unique extension of u to a pre-measure g on A+, namely 1 = flge,
(ii) the outer measure i = f,
(iii) o(A) = o(AT) = B.

For the counting measure p; on 8 and for the measure s = f|g according to the
proof of Theorem 3 we have

pa F 2 A e = pa o
Definition 3. p: A — R, U {oo} is called

(i) o-finite, if

3By, By, ... € U pairwise disjoint : Q= [j B; AVieN: u(B;) < oo,
i=1
(ii) finite, if Q € A and p(Q2) < oo.
Theorem 4 (Uniqueness). For measures 1, 2 on 2 and 2y C 2 with
(i) o(2y) =2A and A is closed w.r.t. intersections,
(ii) p1|e, is o-finite,
(i) po1lmg = pi2lotg

we have
M1 = H2.
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Proof. Take B; according to Definition 3, with 2, instead of 2, and put
D ={AecA: (AN B) = (AN By)}.
Obviously, ©; is a Dynkin class and 2y C ©;. Theorem 1.2.(i) yields
D, CA=0(Ay) =0(A) CD;.
Thus A =3, and for A € A,

pi(A) = Zﬂl(Am B;) = Z,Uz(Am Bi) = pa(A).

O
Corollary 1. For every semi-algebra 2 and every pre-measure ;1 on 2 that is o-finite
%I,u* measure on o(2A) 1 g = p.
Proof. Use Theorems 2, 3, and 4. O
Remark 3. Applications of Corollary 1:

(i) For Q = R¥ and the Lebesgue pre-measure A, on J; we get the Lebesgue measure
on B;. Notation for the latter: \j.

(ii) In Example 1.(v) there exists a uniquely determined probability measure P on

&=, PB({0,1}) such that
|A; X - X Ay
P(A; x -+ x A, x{0,1} x ...) =
{0, 1}7]
for Ay,..., A, C {0,1}. We will study the general construction of product
measures in Section 8.

For a pre-measure p on an algebra 2 the Carathéodory construction yields the exten-
sions

(€, o), Tlor), (2 Az, 7ily,)- (2)
To what extend is 2 larger than o()?
Definition 4. A measure space (2,2, u) is complete if
N, CcA
for
N, ={BeP(Q):FAcA: BC ANpA) =0}
Theorem 5. For a measure space (2,2, u) define

A ={AUN:AecA, NeN,}

and

W(AUN) = pu(A), AecA, NeMNn,.
Then
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(i) pis well defined and (€2, *, 1) is a complete measure space with fi|g = p, called
the completion of (2,2, 1),

(ii) for every complete measure space (Q,%2l, 1) with 2 D 2 and iy = p we have
A DA and filow = 1.

Proof. See Génssler, Stute (1977, p. 34) or Elstrodt (1996, p. 64). ]

Remark 4. It is easy to verify that (Q, g, ﬁ|§lﬁ) in (2) is complete. However,
(9, o(A), flo) is not complete in general, see Example 3 below.

Theorem 6. If 1 is a o-finite pre-measure on an algebra 2, then (Q, ﬁﬁ, ﬁ|ﬁﬁ) is
the completion of (€2, o(A), Hlxy)-

Proof. See Elstrodt (1996, p. 64). O

Example 3. Consider the completion (Rk,ﬁk,;\k) of (Rk, By, /\k). Here £, is called

the o-algebra of Lebesgue measurable sets and A is called the Lebesgue measure on
L. Notation: A\, = \,. We have
%k g 'Ska

hence (R*, B, \;) is not complete.
Proof: Assume k = 1 for simplicity. For the Cantor set C' C R

By Theorem 3.4, |8;| = |R|, but
{0,115 = 1B(O)] < €] < [{0,1}7].

We add that £, C B(R¥), see Elstrodt (1996, §111.3).

5 Integration

For the proofs, see Analysis IV or Elstrodt (1996, Kap. VI).

Given: a measure space (2,2, p). Notation: &, = &,(Q,2) is the class of non-
negative simple functions.

Definition 1. Integral of f € &, w.rt. p

[ an=3" i uan
=1
if .
f = ZO&Z' . 1Al.
=1

with a; > 0 and A; € ”A. (Note that the integral is well defined.)
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Lemma 1. For f,g € &, and c € R,
) J(f+9)du= [ fdu+ [gdp,
(ii) f(cfldu=c- [ fdp,
(iil) f<g= [ fdu < [ gdup (monotonicity).
Notation: 3, = 3, (9, A) is the class of nonnegative 2-B-measurable functions.

Definition 2. Integral of f € 3, w.r.t. u
/fdy:sup{/gdu:g€6+/\g§f}-

Theorem 1 (Monotone convergence, Beppo Levi). Let f, € 3, such that

Then
/sup Jndp = Sup/fn ds.

Remark 1. For every f € 3, there exists a sequence of functions f, € &, such that
fn T f, see Theorem 2.7.

Example 1. Consider

1
fo=—"1ion
n
on (R,%B, ;). Then
/fn A\ = 1, lim f, = 0.

Lemma 2. The conclusions from Lemma 1 remain valid on 3.

Theorem 2 (Fatou’s Lemma). For every sequence (f,), in 3,

n—oo n—

/lim inf f, du < lim inf/fn dp.

Proof. For g, = infys, fi we have g, € 3, and g, 1 liminf, f,. By Theorem 1 and
Lemma 1.(iii)

/liminf fndp = lim /gn dp < liminf/fn dpu.

Theorem 3. Let f € 3+. Then

[ ran=0eutis = op =0
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Definition 3. A property II holds p-almost everywhere (u-a.e., a.e.), if
JA e A : {we Q:1I does not hold for w} C AA u(A) =0.

In case of a probability measure we say: p-almost surely, p-a.s., with probability one.

Notation: 3 = E(Q, 20) is the class of A-B-measurable functions.

Definition 4. f € 3 quasi-j-integrable if

/f+du<oo \% /f_du<oo.

In this case: integral of f (w.r.t. p)

/fduz/f+du—/fdu~

/f+du<oo A /fdu<oo.

f € 3 p-integrable if

Theorem 4.

(i) f pintegrable = u({| ] = 00}) = 0,
(ii) f p-integrable A g € 3 A f = g p-a.e. = g p-integrable A [ fdu = [ gdpu.
(iii) equivalent properties for f € 3:

(a) f p-integrable,

(b) |f| p-integrable,

(c) g : g p-integrable A | f| < g pra.e.,

(iv) for f and g p-integrable and ¢ € R

(a) f+g well-defined p-a.e. and p-integrable with [(f+g)dp = [ fdu+ [ gdp,
(b) ¢- f p-integrable with [(cf)du=c- [ fdpu,
(c) f<gp-ae = [fdu< [gdp.

Remark 2. An outlook. Consider an arbitrary set Q # () and a vector space § C R%
such that

feg=(fleFAf{f 1} €3).

A monotone linear mapping [ : § — R such that

is called an abstract integral. Note that

105) = [ fan
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defines an abstract integral on
F=1{f€3(Q):f p-integrable} = £1(Q, A, p).

Danzell-Stone-Theorem: for every abstract integral there exists a uniquely determined
measure 4 on A = o(F) such that

e QA AT S €T I(f) Z/fdu~

See Bauer (1978, Satz 39.4) or Floret (1981).

Application: Riesz representation theorem. Here § = C([0,1]) and I : § — R linear
and monotone. Then [ is an abstract integral, which follows from Dini’s Theorem,
see Floret (1981, p. 45). Hence there exists a uniquely determined measure p on
a(F) = B([0, 1]) such that

vies ()= [ fau
Theorem 5 (Dominated convergence, Lebesgue). Assume that

(i) f, € 3 forn €N,
(ii) 3¢ p-integrable Vn € N : |f,| < g p-a.e.,

(iii) f € 3 such that lim, .., f, = f p-a.e.

/fdﬂzglrgo/fndﬂ-

fn =n- 1]O,I/n[

Then f is p-integrable and

Example 2. Consider

on (R,B, \;). Then
/fnd>q:17 lim fn:O.
6 £P-Spaces

Given: a measure space (2,2, u) and 1 < p < co. Put 3 = 3(Q,2).

Definition 1.
o = 0O, ) = {f €3 /|f]pdu< oo}.

In particular, for p = 1: integrable functions and £ = £', and for p = 2: square-

integrable functions. Put
1/p
= f1ran) " rew.



6. £F-SPACES 29

Theorem 1 (Holder inequality). Let 1 < p,q < oo such that 1/p+ 1/q¢ = 1 and let
feLp ge £ Then

/ £ glde < If1l - Nl

In particular, for p = g = 2: Cauchy-Schwarz inequality.
Proof. See Analysis IV or Elstrodt (1996, §VI.1) as well as Theorem 5.3. O

Theorem 2. £° is a vector space and || - ||, is a semi-norm on £°. Furthermore,
Ifl,=0 & f=0pac
Proof. See Analysis IV or Elstrodt (1996, §VI.2). O

Definition 2. Let f, f,, € £° for n € N. (f,,)n converges to f in £° (in mean of order
p) if

T ||~ full, = 0.
In particular, for p = 1: convergence in mean, and for p = 2: mean-square conver-

gence. Notation:
£op

fn—1F

Remark 1. Let f, f, € 3 for n € N. Recall (define) that (f,), converges to f p-a.e.
if
u(A) =0

for

A= {nlggo fo=f}={limsup f, = lim inf fo} 0 {limsup f, = f} €A

n—oo n—oo

Notation:

f 2507
Lemma 1. Let f,g, f, € £° for n € N such that f, =, f. Then
fnig & f =g pae.
Analogously for convergence almost everywhere.
Proof. For convergence in £7: ‘<’ follows from Theorem 5.4.(ii). Use

1f = gllp < [If = fallp + 1fn — gl

to verify ‘=".

For convergence almost everywhere: ‘<=’ trivially holds. Use
{lim f, = f}n{lim f, =g} C{f =g}

to verify ‘=". |
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Theorem 3 (Fischer-Riesz). Consider a sequence (f,), in £°. Then

(i) (fn)n Cauchy sequence = 3 f € £F: f, =, f (completeness),

p-a.e.

(i) fn - f = Jsubsequence (fo, )i : fo, — f.
Proof. Ad (i): Consider a Cauchy sequence (f,), and a subsequence (f,, ), such that
Yk eNYm>ng: | — folly < 27

For
gk = fnk+1 - f’rlk € £°

we have
k k k
IS lael| <D lgel, = >o2 <1
=1 P =1

Put g =%, |g¢| € 3;. By Theorem 5.1

/g” dp = /Sgp(i Ige|>pdu = Sgp/(i \gel)pdu <1 (1)

Thus, in particular, 2 |g,| and Y_,°, g, converge p-a.e., see Theorem 5.4.(i). Since

k
fnk+1 = Zgé + fn17
/=1

we have
f=lim f,, pac.

for some f € 3. Furthermore,

|f = farl < Z l9¢| < g p-ae.,

=k

so that, by Theorem 5.5 and (1),
i [ 17 = ful? du=0.
It follows that
T}erolo Hf - anp =0,

too. Finally, by Theorem 2, f € £P.
Ad (ii): Assume that
Jo 5 f.
According to the proof of (i) there exists ]?E £P and a subsequence (f,, ), such that

p-a.e.

Fuo 2S5 F A fop = F

Use Lemma 1. OJ
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Example 1. Let (Q, 2, 1) = ([0, 1], B([0,1]), \|»(01p). (By Remark 1.7.(ii) we have
B([0,1]) C By). Define
Ay =10,1]
Ay =10,1/2], As3=1[1/2,1]
Ay =10,1/3], As=1[1/3,2/3], As=1[2/3,1]

etc.

Put f, =14,. Then
T (| = O, = Tim £l =0 &
but
{(fn)n converges} = 0.
Remark 2. Define
£ =22QA P)={f€3:FceR, :|f| <cpae}
and
|flloo = inf{c € Ry : |f]| < c p-a.e.}, fektL™.

f € £ is called essentially bounded and || f]|« is called the essential supremum of
|f]. Use Theorem 4.1.(iii) to verify that

I < 1 llo prace.

The definitions and results of this section, except (2), extend to the case p = oo,

where ¢ = 1 in Theorem 1. In Theorem 3.(ii) we even have f, = f= f,=s

Remark 3. Put
N ={fell: f=0pae}

Then the quotient space L? = £°/MP is a Banach space. In particular, for p = 2, L?
is a Hilbert space, with semi-inner product on £2 given by

(ho)= [ f-gdn.  fges
Theorem 4. If p is finite and 1 < p < ¢ < 0o then
gicgr

and
£ 1l < p(0) P79 | £, fecg

Proof. The result trivially holds for ¢ = co.In the sequel, ¢ < co. Use |f[P < 1+ |f]¢
and Theorem 5.4.(iii) to obtain £7 C £°. Put r = ¢/p and define s by 1/r +1/s = 1.

Theorem 1 yields
1/r
. 1/s
Jipaus ([ierran) - uo)”

Example 2. Let 1 < p < ¢ < co. With respect to the counting measure on P(N),
L£P C £9. With respect to the Lebesgue measure on 8, neither £¢ C £F nor £ C £9.

O



