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Example 5. Let I = R+, Ωi = R, and Ai = B. For the corresponding product space

(Ω, A) we have Ω = RR+ and

|A| = |R| < |Ω|.

Proof: Clearly |R| ≤ |A| and |R| < |Ω|. On the other hand, Theorem 2 shows that

A = σ(E) for some set E with |E| = |R|. Hence |A| ≤ |R| by Theorem 4.

The space RR+ already appeared in the introductory Example I.3. The product σ-

algebra A =
⊗

i∈R+
B is a proper choice on this space. On the subspace C(R+) ⊂ RR+

we can take the trace-σ-algebra. It is important to note, however, that

C(R+) /∈ A,

see Übung 3.2. It turns out that the Borel σ-algebra B(C(R+)) that is generated by

the topology of uniform convergence on compact intervals coincides with the trace-σ-

algebra of A in C(R+), see Bauer (1996, Theorem 38.6).

4 Construction of (Probability) Measures

Given: Ω 6= ∅ and ∅ 6= A ⊂ P(Ω).

Definition 1. µ : A → R+ ∪ {∞} is called

(i) additive if:

A, B ∈ A ∧ A ∩ B = ∅ ∧ A ∪ B ∈ A ⇒ µ(A ∪ B) = µ(A) + µ(B),

(ii) σ-additive if

A1, A2, . . . ∈ A pairwise disjoint ∧
∞⋃

i=1

Ai ∈ A ⇒ µ
( ∞⋃

i=1

Ai

)
=

∞∑

i=1

µ(Ai),

(iii) content (on A) if

A algebra ∧ µ additive ∧ µ(∅) = 0,

(iv) pre-measure (on A) if

A semi-algebra ∧ µ σ-additive ∧ µ(∅) = 0,

(v) measure (on A) if

A σ-algebra ∧ µ pre-measure,

(vi) probability measure (on A) if

µ measure ∧ µ(Ω) = 1.
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Definition 2. (Ω, A, µ) is called a

(i) measure space, if µ is a measure on the σ-algebra A in Ω,

(ii) probability space, if µ is a probability measure on the σ-algebra A in Ω.

Example 1.

(i) Lebesgue pre-measure λ1 on the class I1 of intervals from Example 1.1.(i): λ1(A)

is the length of A ∈ I1, i.e.,

λ1(]a, b]) = b − a

if a, b ∈ R with a ≤ b and λ1(A) = ∞ if A ∈ I1 is unbounded. See Billingsley

(1979, p. 22), Elstrodt (1996, §II.2), or Analysis IV.

Analogously for cartesian products of such intervals. Hereby we get the semi-

algebra Ik of rectangles in Rk. The Lebesgue pre-measure λk on Ik yields the

volume λk(A) of A ∈ Ik, i.e., the product of the side-lengths of A. See Elstrodt

(1996, §III.2) or Analysis IV.

(ii) for any semi-algebra A in Ω and ω ∈ Ω

εω(A) = 1A(ω), A ∈ A,

defines a pre-measure. If A is a σ-algebra, then εω is called the Dirac measure

at the point ω.

More generally: take sequences (ωn)n∈N in Ω and (αn)n∈N in R+ such that∑∞

n=1 αn = 1. Then

µ(A) =
∞∑

n=1

αn · 1A(ωn), A ∈ A,

defines a discrete probability measure on any σ-algebra A in Ω. Note that µ =∑∞

n=1 αn · εωn
.

(iii) Counting measure on a σ-algebra A

µ(A) = |A|, A ∈ A.

Uniform distribution in the case |Ω| < ∞ and A = P(Ω)

µ(A) =
|A|

|Ω|
, A ⊂ Ω.

(iv) On the algebra A = {A ⊂ Ω : A finite or Ac finite} let

µ(A) =

{
0 if |A| < ∞

∞ if |A| = ∞.

Then µ is a content but not a pre-measure in general.
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(v) For the semi-algebra of measurable rectangles in Example 3.1 and Ai ⊂ {0, 1}

µ(A1 × · · · × An × Ωn+1 × · · · ) =
|A1 × . . . × An|

| {0, 1}n |

is well defined and yields a pre-measure µ with µ
(
{0, 1}N

)
= 1.

Remark 1. For every content µ on A and A, B ∈ A

(i) A ⊂ B ⇒ µ(A) ≤ µ(B) (monotonicity),

(ii) µ(A ∪ B) + µ(A ∩ B) = µ(A) + µ(B),

(iii) A ⊂ B ∧ µ(A) < ∞ ⇒ µ(B \ A) = µ(B) − µ(A),

(iv) µ(A) < ∞∧ µ(B) < ∞ ⇒ |µ(A) − µ(B)| ≤ µ(A △ B),

(v) µ(A ∪ B) ≤ µ(A) + µ(B) (subadditivity).

To proof these facts use, for instance, A ∪ B = A ∪ (B ∩ Ac).

Theorem 1. Consider the following properties for a content µ on A:

(i) µ pre-measure,

(ii) A1, A2, . . . ∈ A ∧
⋃∞

i=1 Ai ∈ A ⇒ µ
(⋃∞

i=1 Ai

)
≤

∑∞

i=1 µ(Ai) (σ-subadditivity),

(iii) A1, A2, . . . ∈ A ∧ An ↑ A ∈ A ⇒ limn→∞ µ(An) = µ(A) (σ-continuity from

below),

(iv) A1, A2, . . . ∈ A ∧ An ↓ A ∈ A ∧ µ(A1) < ∞ ⇒ limn→∞ µ(An) = µ(A) (σ-

continuity from above),

(v) A1, A2, . . . ∈ A ∧ An ↓ ∅ ∧ µ(A1) < ∞ ⇒ limn→∞ µ(An) = 0 (σ-continuity at ∅).

Then

(i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v).

If µ(Ω) < ∞, then (iii) ⇔ (iv).

Proof. ‘(i) ⇒ (ii)’: Put Bm =
⋃m

i=1 Ai and B0 = ∅. Then

∞⋃

i=1

Ai =
∞⋃

m=1

(Bm \ Bm−1)

with pairwise disjoint sets Bm \ Bm−1 ∈ A. Clearly Bm \ Bm−1 ⊂ Am. Hence, by

Remark 1.(i),

µ
( ∞⋃

i=1

Ai

)
=

∞∑

m=1

µ(Bm \ Bm−1) ≤
∞∑

m=1

µ(Am).
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‘(ii) ⇒ (i)’: Let A1, A2, . . . ∈ A be pairwise disjoint with
⋃∞

i=1 Ai ∈ A. Then

µ
( ∞⋃

i=1

Ai

)
≥ µ

( n⋃

i=1

Ai

)
=

n∑

i=1

µ(Ai),

and therefore
∞∑

i=1

µ(Ai) ≤ µ
( ∞⋃

i=1

Ai

)
.

The reverse estimate holds by assumption.

‘(i) ⇒ (iii)’: Put A0 = ∅ and Bm = Am \ Am−1. Then

µ
( ∞⋃

i=1

Ai

)
=

∞∑

m=1

µ(Bm) = lim
n→∞

n∑

m=1

µ(Bm) = lim
n→∞

µ
( n⋃

m=1

Bm

)
= lim

n→∞
µ(An).

‘(iii) ⇒ (i)’: Let A1, A2, . . . ∈ A be pairwise disjoint with
⋃∞

i=1 Ai ∈ A, and put

Bm =
⋃m

i=1 Ai. Then Bm ↑
⋃∞

i=1 Ai and

µ
( ∞⋃

i=1

Ai

)
= lim

m→∞
µ(Bm) =

∞∑

i=1

µ(Ai).

‘(iv) ⇒ (v)’ trivially holds.

‘(v) ⇒ (iv)’: Use Bn = An \ A ↓ ∅.

‘(i)’ ⇒ (v)’: Note that µ(A1) =
∑∞

i=1 µ(Ai \ Ai+1). Hence

0 = lim
k→∞

∞∑

i=k

µ(Ai \ Ai+1) = lim
k→∞

µ(Ak).

‘(iv) ∧ µ(Ω) < ∞ ⇒ (iii)’: Clearly An ↑ A implies Ac
n ↓ Ac. Thus

µ(A) = µ(Ω) − µ(Ac) = lim
n→∞

(µ(Ω) − µ(Ac
n)) = lim

n→∞
µ(An).

Theorem 2 (Extension: semi-algebra  algebra). For every semi-algebra A and

every additive mapping µ : A → R+ ∪ {∞} with µ(∅) = 0

∃
1
µ̂ content on α(A) : µ̂|A = µ.

Moreover, if µ is σ-additive then µ̂ is σ-additive, too.

Proof. We have α(A) = A+, see Lemma 1.1. Necessarily

µ̂
( n⋃

i=1

Ai

)
=

n∑

i=1

µ(Ai) (1)

for A1, . . . , An ∈ A pairwise disjoint. Use (1) to obtain a well-defined extension of µ

onto α(A). It remains to verify that µ̂ is additive or even σ-additive.



4. CONSTRUCTION OF (PROBABILITY) MEASURES 21

Example 2. For the semi-algebra A in Example 1.(v) α(A) is the algebra of cylinder

sets, and

µ̂(A × Ωn+1 × · · · ) =
|A|

| {0, 1}n |
, A ⊂ {0, 1}n .

Theorem 3 (Extension: algebra σ-algebra, Carathéodory). For every pre-measure

µ on an algebra A

∃µ∗ measure on σ(A): µ∗|A = µ.

Proof. Define µ : P(Ω) → R+ ∪ {∞} by

µ(A) = inf
{ ∞∑

i=1

µ(Ai) : Ai ∈ A, A ⊂
∞⋃

i=1

Ai

}
.

Then µ is an outer measure, i.e., µ(∅) = 0 and µ is monotone and σ-subadditive, see

Billingsley (1979, Exmp. 11.1) and compare Analysis IV. Actually it suffices to have

µ ≥ 0 and ∅ ∈ A with µ(∅) = 0.

We claim that

(i) µ|A = µ,

(ii) ∀A ∈ A ∀B ∈ P(Ω) : µ(B) = µ(B ∩ A) + µ(B ∩ Ac).

Ad (i): For A ∈ A

µ(A) ≤ µ(A) +
∞∑

i=2

µ(∅) = µ(A),

and for Ai ∈ A with A ⊂
⋃∞

i=1 Ai

µ(A) = µ
( ∞⋃

i=1

(Ai ∩ A)
)
≤

∞∑

i=1

µ(Ai ∩ A) ≤
∞∑

i=1

µ(Ai)

follows from Theorem 1.(ii).

Ad (ii): ‘≤’ holds due to sub-additivity of µ, and ‘≥’ is easily verified.

Consider the class

A = Aµ = {A ∈ P(Ω) : ∀B ∈ P(Ω) : µ(B) = µ(B ∩ A) + µ(B ∩ Ac)}

of so-called µ-measurable sets.

We claim that

(iii) ∀A1, A2 ∈ A ∀B ∈ P(Ω) : µ(B) = µ(B ∩ (A1 ∩ A2)) + µ(B ∩ (A1 ∩ A2)
c).

(iv) A algebra,
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Ad (iii): We have

µ(B) = µ(B ∩ A1) + µ(B ∩ Ac
1)

= µ(B ∩ A1 ∩ A2) + µ(B ∩ A1 ∩ Ac
2) + µ(B ∩ Ac

1)

and

µ(B ∩ (A1 ∩ A2)
c) = µ(B ∩ Ac

1 ∪ B ∩ Ac
2) = µ(B ∩ Ac

2 ∩ A1) + µ(B ∩ Ac
1).

Ad (iv): Cleary Ω ∈ A, A ∈ A ⇒ Ac ∈ A, and A is closed w.r.t. intersections by (iii).

We claim that

(v) ∀A1, A2 ∈ A disjoint ∀B ∈ P(Ω) : µ(B∩ (A1∪A2)) = µ(B∩A1)+µ(B∩A2).

In fact, since A1 ∩ A2 = ∅,

µ(B ∩ (A1 ∪ A2)) = µ(B ∩ A1) + µ(B ∩ A2 ∩ Ac
1) = µ(B ∩ A1) + µ(B ∩ A2).

We claim that

(vi) ∀A1, A2, . . . ∈ A pairwise disjoint

∞⋃

i=1

Ai ∈ A ∧ µ
( ∞⋃

i=1

Ai

)
=

∞∑

i=1

µ(Ai).

Let B ∈ P(Ω). By (iv), (v), and monotonicity of µ

µ(B) = µ
(
B ∩

n⋃

i=1

Ai

)
+ µ

(
B ∩

( n⋃

i=1

Ai

)c)

≥
n∑

i=1

µ(B ∩ Ai) + µ
(
B ∩

( ∞⋃

i=1

Ai

)c)
.

Use σ-subadditivity of µ to get

µ(B) ≥
∞∑

i=1

µ(B ∩ Ai) + µ
(
B ∩

( ∞⋃

i=1

Ai

)c)

≥ µ
(
B ∩

∞⋃

i=1

Ai

)
+ µ

(
B ∩

( ∞⋃

i=1

Ai

)c)

≥ µ(B).

Hence
⋃∞

i=1 Ai ∈ A. Take B =
⋃∞

i=1 Ai to obtain σ-additivity of µ|
A
.
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Conclusions:

• A is a σ-algebra, see (iv), (vi) and Theorem 1.1.(ii),

• A ⊂ A by (ii), hence σ(A) ⊂ A.

• µ|
A

is a measure with µ|A = µ, see (vi) and (i).

Put µ∗ = µ|σ(A).

Remark 2. The extension from Theorem 3 is non-unique, in general. For instance,

put Ω = R and

f(A) =

{
0 if A = ∅

∞ otherwise
, A ⊂ R.

Then µ = f |A defines a pre-measure on the semi-algebra A = I1 of intervals. Now we

have

(i) a unique extension of µ to a pre-measure µ̂ on A+, namely µ̂ = f |A+ ,

(ii) the outer measure µ = f ,

(iii) σ(A) = σ(A+) = B.

For the counting measure µ1 on B and for the measure µ2 = f |B according to the

proof of Theorem 3 we have

µ1 6= µ2 ∧ µ1|A+ = µ2|A+ .

Definition 3. µ : A → R+ ∪ {∞} is called

(i) σ-finite, if

∃B1, B2, . . . ∈ A pairwise disjoint : Ω =
∞⋃

i=1

Bi ∧ ∀ i ∈ N : µ(Bi) < ∞,

(ii) finite, if Ω ∈ A and µ(Ω) < ∞.

Theorem 4 (Uniqueness). For measures µ1, µ2 on A and A0 ⊂ A with

(i) σ(A0) = A and A0 is closed w.r.t. intersections,

(ii) µ1|A0
is σ-finite,

(iii) µ1|A0
= µ2|A0

we have

µ1 = µ2.
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Proof. Take Bi according to Definition 3, with A0 instead of A, and put

Di = {A ∈ A : µ1(A ∩ Bi) = µ2(A ∩ Bi)}.

Obviously, Di is a Dynkin class and A0 ⊂ Di. Theorem 1.2.(i) yields

Di ⊂ A = σ(A0) = δ(A0) ⊂ Di.

Thus A = Di and for A ∈ A,

µ1(A) =
∞∑

i=1

µ1(A ∩ Bi) =
∞∑

i=1

µ2(A ∩ Bi) = µ2(A).

Corollary 1. For every semi-algebra A and every pre-measure µ on A that is σ-finite

∃
1
µ∗ measure on σ(A) : µ∗|A = µ.

Proof. Use Theorems 2, 3, and 4.

Remark 3. Applications of Corollary 1:

(i) For Ω = Rk and the Lebesgue pre-measure λk on Ik we get the Lebesgue measure

on Bk. Notation for the latter: λk.

(ii) In Example 1.(v) there exists a uniquely determined probability measure P on⊗∞

i=1 P({0, 1}) such that

P (A1 × · · · × An × {0, 1} × . . .) =
|A1 × · · · × An|

|{0, 1}n|

for A1, . . . , An ⊂ {0, 1}. We will study the general construction of product

measures in Section 8.

For a pre-measure µ on an algebra A the Carathéodory construction yields the exten-

sions (
Ω, σ(A), µ|σ(A)

)
,

(
Ω, Aµ, µ|

Aµ

)
. (2)

To what extend is Aµ larger than σ(A)?

Definition 4. A measure space (Ω, A, µ) is complete if

Nµ ⊂ A

for

Nµ = {B ∈ P(Ω) : ∃A ∈ A : B ⊂ A ∧ µ(A) = 0}.

Theorem 5. For a measure space (Ω, A, µ) define

Aµ = {A ∪ N : A ∈ A , N ∈ Nµ}

and

µ̃(A ∪ N) = µ(A), A ∈ A, N ∈ Nµ.

Then
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(i) µ̃ is well defined and (Ω, Aµ, µ̃) is a complete measure space with µ̃|A = µ, called

the completion of (Ω, A, µ),

(ii) for every complete measure space (Ω, Ǎ, µ̌) with Ǎ ⊃ A and µ̌|A = µ we have

Ǎ ⊃ Aµ and µ̌|Aµ = µ̃.

Proof. See Gänssler, Stute (1977, p. 34) or Elstrodt (1996, p. 64).

Remark 4. It is easy to verify that
(
Ω, Aµ, µ|

Aµ

)
in (2) is complete. However,(

Ω, σ(A), µ|σ(A)

)
is not complete in general, see Example 3 below.

Theorem 6. If µ is a σ-finite pre-measure on an algebra A, then
(
Ω, Aµ, µ|

Aµ

)
is

the completion of
(
Ω, σ(A), µ|σ(A)

)
.

Proof. See Elstrodt (1996, p. 64).

Example 3. Consider the completion
(
Rk, Lk, λ̃k

)
of

(
Rk, Bk, λk

)
. Here Lk is called

the σ-algebra of Lebesgue measurable sets and λ̃k is called the Lebesgue measure on

Lk. Notation: λk = λ̃k. We have

Bk ( Lk,

hence (Rk, Bk, λk) is not complete.

Proof: Assume k = 1 for simplicity. For the Cantor set C ⊂ R

C ∈ B1 ∧ λ1(C) = 0 ∧ |C| = |R|.

By Theorem 3.4, |B1| = |R|, but

|{0, 1}R| = |P(C)| ≤ |Lk| ≤ |{0, 1}R|.

We add that Lk ( P(Rk), see Elstrodt (1996, §III.3).

5 Integration

For the proofs, see Analysis IV or Elstrodt (1996, Kap. VI).

Given: a measure space (Ω, A, µ). Notation: S+ = S+(Ω, A) is the class of non-

negative simple functions.

Definition 1. Integral of f ∈ S+ w.r.t. µ

∫
f dµ =

n∑

i=1

αi · µ(Ai)

if

f =
n∑

i=1

αi · 1Ai

with αi ≥ 0 and Ai ∈ A. (Note that the integral is well defined.)
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Lemma 1. For f, g ∈ S+ and c ∈ R+

(i)
∫

(f + g) dµ =
∫

f dµ +
∫

g dµ,

(ii)
∫

(cf) dµ = c ·
∫

f dµ,

(iii) f ≤ g ⇒
∫

f dµ ≤
∫

g dµ (monotonicity).

Notation: Z+ = Z+(Ω, A) is the class of nonnegative A-B-measurable functions.

Definition 2. Integral of f ∈ Z+ w.r.t. µ

∫
f dµ = sup

{∫
g dµ : g ∈ S+ ∧ g ≤ f

}
.

Theorem 1 (Monotone convergence, Beppo Levi). Let fn ∈ Z+ such that

∀n ∈ N : fn ≤ fn+1.

Then ∫
sup

n
fn dµ = sup

n

∫
fn dµ.

Remark 1. For every f ∈ Z+ there exists a sequence of functions fn ∈ S+ such that

fn ↑ f , see Theorem 2.7.

Example 1. Consider

fn =
1

n
· 1[0,n]

on (R, B, λ1). Then ∫
fn dλ1 = 1, lim

n→∞
fn = 0.

Lemma 2. The conclusions from Lemma 1 remain valid on Z+.

Theorem 2 (Fatou’s Lemma). For every sequence (fn)n in Z+

∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

Proof. For gn = infk≥n fk we have gn ∈ Z+ and gn ↑ lim infn fn. By Theorem 1 and

Lemma 1.(iii)

∫
lim inf

n
fn dµ = lim

n→∞

∫
gn dµ ≤ lim inf

n→∞

∫
fn dµ.

Theorem 3. Let f ∈ Z+. Then

∫
f dµ = 0 ⇔ µ({f > 0}) = 0.
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Definition 3. A property Π holds µ-almost everywhere (µ-a.e., a.e.), if

∃A ∈ A : {ω ∈ Ω : Π does not hold for ω} ⊂ A ∧ µ(A) = 0.

In case of a probability measure we say: µ-almost surely, µ-a.s., with probability one.

Notation: Z = Z(Ω, A) is the class of A-B-measurable functions.

Definition 4. f ∈ Z quasi-µ-integrable if
∫

f+ dµ < ∞ ∨

∫
f− dµ < ∞.

In this case: integral of f (w.r.t. µ)
∫

f dµ =

∫
f+ dµ −

∫
f− dµ.

f ∈ Z µ-integrable if
∫

f+ dµ < ∞ ∧

∫
f− dµ < ∞.

Theorem 4.

(i) f µ-integrable ⇒ µ({|f | = ∞}) = 0,

(ii) f µ-integrable ∧ g ∈ Z ∧ f = g µ-a.e. ⇒ g µ-integrable ∧
∫

f dµ =
∫

g dµ.

(iii) equivalent properties for f ∈ Z:

(a) f µ-integrable,

(b) |f | µ-integrable,

(c) ∃ g : g µ-integrable ∧ |f | ≤ g µ-a.e.,

(iv) for f and g µ-integrable and c ∈ R

(a) f+g well-defined µ-a.e. and µ-integrable with
∫

(f+g) dµ =
∫

f dµ+
∫

g dµ,

(b) c · f µ-integrable with
∫

(cf) dµ = c ·
∫

f dµ,

(c) f ≤ g µ-a.e. ⇒
∫

f dµ ≤
∫

g dµ.

Remark 2. An outlook. Consider an arbitrary set Ω 6= ∅ and a vector space F ⊂ RΩ

such that

f ∈ F ⇒
(
|f | ∈ F ∧ inf {f, 1} ∈ F

)
.

A monotone linear mapping I : F → R such that

f, f1, f2, . . . ∈ F ∧ fn ↑ f ⇒ I(f) = lim
n→∞

I(fn)

is called an abstract integral . Note that

I(f) =

∫
f dµ
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defines an abstract integral on

F = {f ∈ Z(Ω, A) : f µ-integrable} = L1(Ω, A, µ).

Daniell-Stone-Theorem: for every abstract integral there exists a uniquely determined

measure µ on A = σ(F) such that

F ⊂ L1(Ω, A, µ) ∧ ∀ f ∈ F : I(f) =

∫
f dµ.

See Bauer (1978, Satz 39.4) or Floret (1981).

Application: Riesz representation theorem. Here F = C([0, 1]) and I : F → R linear

and monotone. Then I is an abstract integral, which follows from Dini’s Theorem,

see Floret (1981, p. 45). Hence there exists a uniquely determined measure µ on

σ(F) = B([0, 1]) such that

∀ f ∈ F : I(f) =

∫
f dµ.

Theorem 5 (Dominated convergence, Lebesgue). Assume that

(i) fn ∈ Z for n ∈ N,

(ii) ∃ g µ-integrable ∀n ∈ N : |fn| ≤ g µ-a.e.,

(iii) f ∈ Z such that limn→∞ fn = f µ-a.e.

Then f is µ-integrable and
∫

f dµ = lim
n→∞

∫
fn dµ.

Example 2. Consider

fn = n · 1]0,1/n[

on (R, B, λ1). Then ∫
fn dλ1 = 1, lim

n→∞
fn = 0.

6 Lp-Spaces

Given: a measure space (Ω, A, µ) and 1 ≤ p < ∞. Put Z = Z(Ω, A).

Definition 1.

Lp = Lp(Ω, A, µ) =
{

f ∈ Z :

∫
|f |p dµ < ∞

}
.

In particular, for p = 1: integrable functions and L = L1, and for p = 2: square-

integrable functions . Put

‖f‖p =

(∫
|f |p dµ

)1/p

, f ∈ Lp.
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Theorem 1 (Hölder inequality). Let 1 < p, q < ∞ such that 1/p + 1/q = 1 and let

f ∈ Lp, g ∈ Lq. Then ∫
|f · g| dµ ≤ ‖f‖p · ‖g‖q.

In particular, for p = q = 2: Cauchy-Schwarz inequality.

Proof. See Analysis IV or Elstrodt (1996, §VI.1) as well as Theorem 5.3.

Theorem 2. Lp is a vector space and ‖ · ‖p is a semi-norm on Lp. Furthermore,

‖f‖p = 0 ⇔ f = 0 µ-a.e.

Proof. See Analysis IV or Elstrodt (1996, §VI.2).

Definition 2. Let f, fn ∈ Lp for n ∈ N. (fn)n converges to f in Lp (in mean of order

p) if

lim
n→∞

‖f − fn‖p = 0.

In particular, for p = 1: convergence in mean, and for p = 2: mean-square conver-

gence. Notation:

fn
Lp

−→ f.

Remark 1. Let f, fn ∈ Z for n ∈ N. Recall (define) that (fn)n converges to f µ-a.e.

if

µ(Ac) = 0

for

A =
{

lim
n→∞

fn = f
}

=
{
lim sup

n→∞

fn = lim inf
n→∞

fn

}
∩

{
lim sup

n→∞

fn = f
}
∈ A.

Notation:

fn
µ-a.e.
−→ f.

Lemma 1. Let f, g, fn ∈ Lp for n ∈ N such that fn
Lp

−→ f . Then

fn
Lp

−→ g ⇔ f = g µ-a.e.

Analogously for convergence almost everywhere.

Proof. For convergence in Lp: ‘⇐’ follows from Theorem 5.4.(ii). Use

‖f − g‖p ≤ ‖f − fn‖p + ‖fn − g‖p

to verify ‘⇒’.

For convergence almost everywhere: ‘⇐’ trivially holds. Use

{
lim

n→∞
fn = f

}
∩

{
lim

n→∞
fn = g

}
⊂ {f = g}

to verify ‘⇒’.
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Theorem 3 (Fischer-Riesz). Consider a sequence (fn)n in Lp. Then

(i) (fn)n Cauchy sequence ⇒ ∃ f ∈ Lp : fn
Lp

−→ f (completeness),

(ii) fn
Lp

−→ f ⇒ ∃ subsequence (fnk
)k : fnk

µ-a.e.
−→ f .

Proof. Ad (i): Consider a Cauchy sequence (fn)n and a subsequence (fnk
)k such that

∀ k ∈ N ∀m ≥ nk : ‖fm − fnk
‖p ≤ 2−k.

For

gk = fnk+1
− fnk

∈ Lp

we have
∥∥∥

k∑

ℓ=1

|gℓ|
∥∥∥

p
≤

k∑

ℓ=1

‖gℓ‖p ≤
k∑

ℓ=1

2−ℓ ≤ 1.

Put g =
∑∞

ℓ=1 |gℓ| ∈ Z+. By Theorem 5.1

∫
gp dµ =

∫
sup

k

( k∑

ℓ=1

|gℓ|
)p

dµ = sup
k

∫ ( k∑

ℓ=1

|gℓ|
)p

dµ ≤ 1. (1)

Thus, in particular,
∑∞

ℓ=1 |gℓ| and
∑∞

ℓ=1 gℓ converge µ-a.e., see Theorem 5.4.(i). Since

fnk+1
=

k∑

ℓ=1

gℓ + fn1
,

we have

f = lim
k→∞

fnk
µ-a.e.

for some f ∈ Z. Furthermore,

|f − fnk
| ≤

∞∑

ℓ=k

|gℓ| ≤ g µ-a.e.,

so that, by Theorem 5.5 and (1),

lim
k→∞

∫
|f − fnk

|p dµ = 0.

It follows that

lim
n→∞

‖f − fn‖p = 0,

too. Finally, by Theorem 2, f ∈ Lp.

Ad (ii): Assume that

fn
Lp

→ f.

According to the proof of (i) there exists f̃ ∈ Lp and a subsequence (fnk
)k such that

fnk

µ-a.e.
−→ f̃ ∧ fnk

Lp

−→ f̃ .

Use Lemma 1.
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Example 1. Let (Ω, A, µ) =
(
[0, 1], B([0, 1]), λ1|B([0,1])

)
. (By Remark 1.7.(ii) we have

B([0, 1]) ⊂ B1). Define

A1 = [0, 1]

A2 = [0, 1/2], A3 = [1/2, 1]

A4 = [0, 1/3], A5 = [1/3, 2/3], A6 = [2/3, 1]

etc.

Put fn = 1An
. Then

lim
n→∞

‖fn − 0‖p = lim
n→∞

‖fn‖p = 0 (2)

but

{(fn)n converges} = ∅.

Remark 2. Define

L∞ = L∞(Ω, A, P ) = {f ∈ Z : ∃ c ∈ R+ : |f | ≤ c µ-a.e.}

and

‖f‖∞ = inf{c ∈ R+ : |f | ≤ c µ-a.e.}, f ∈ L∞.

f ∈ L∞ is called essentially bounded and ‖f‖∞ is called the essential supremum of

|f |. Use Theorem 4.1.(iii) to verify that

|f | ≤ ‖f‖∞ µ-a.e.

The definitions and results of this section, except (2), extend to the case p = ∞,

where q = 1 in Theorem 1. In Theorem 3.(ii) we even have fn
L∞

−→ f ⇒ fn
µ-a.e.
−→ f .

Remark 3. Put

Np = {f ∈ Lp : f = 0 µ-a.e.}

Then the quotient space Lp = Lp/Np is a Banach space. In particular, for p = 2, L2

is a Hilbert space, with semi-inner product on L2 given by

〈f, g〉 =

∫
f · g dµ, f, g ∈ L2.

Theorem 4. If µ is finite and 1 ≤ p < q ≤ ∞ then

Lq ⊂ Lp

and

‖f‖p ≤ µ(Ω)1/p−1/q · ‖f‖q, f ∈ Lq.

Proof. The result trivially holds for q = ∞.In the sequel, q < ∞. Use |f |p ≤ 1 + |f |q

and Theorem 5.4.(iii) to obtain Lq ⊂ Lp. Put r = q/p and define s by 1/r + 1/s = 1.

Theorem 1 yields ∫
|f |p dµ ≤

(∫
|f |p·r dµ

)1/r

·
(
µ(Ω)

)1/s
.

Example 2. Let 1 ≤ p < q ≤ ∞. With respect to the counting measure on P(N),

Lp ⊂ Lq. With respect to the Lebesgue measure on Bk neither Lq ⊂ Lp nor Lp ⊂ Lq.


