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Chapter I

Introduction

A stochastic model : a probability space (Ω, A, P ) together with a collection of random

variables (measurable mappings) Ω → R, say.

Examples of probability spaces, known from ’Introduction to Stochastics’ or ‘Analy-

sis’:

(i) Given: a countable set Ω and f : Ω → R+ such that
∑

ω∈Ω f(ω) = 1.

Take the power set A = P(Ω) and define

P (A) =
∑
ω∈A

f(ω), A ⊂ Ω.

(ii) Given: f : Rk → R+ such that
∫

Rk f(ω) dω = 1.

Let Ω = Rk, take the σ-algebra A = B(Rk) of Borel sets in Rk and define

P (A) =

∫
A

f(ω) dω, A ∈ B(Rk).

Main topics in this course:

(i) construction of probability spaces, including the theory of measure and integra-

tion,

(ii) limit theorems,

(iii) conditional probabilities and expectations,

(iv) discrete-time martingales.

Example 1. Limit theorems like the law of large numbers or the central limit theorem

deal with sequences X1, X2, . . . of random variables and their partial sums

Sn =
n∑

i=1

Xi

(gambling: cumulative gain after n trials; physics: position of a particle after n

collisions).

Under which conditions and in which sense does Sn/n or Sn/
√

n converge, as n tends

to infinity?
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2 CHAPTER I. INTRODUCTION

Example 2. Limit theorems hold in particular for independent and identically dis-

tributed (i.i.d.) random variables X1, X2, . . . with E(Xi) = 0 and Var(Xi) = 1. Then

Sn/n ‘converges’ to zero and Sn/
√

n ‘converges’ to the standard normal distribution.

In particular, in a simple case of gambling: Xi takes values ±1 with probability 1/2.

Existence of such a model? Existence for every choice of the distribution of Xi?

Example 3. The fluctuation of a stock price defines a function on the time interval

R+ with values in R (for simplicity, we admit negative stock prices at this point).

What is a reasonable σ-algebra on the space Ω of all mappings R+ → R or on the

subspace of all continuous mappings? How can we define (non-discrete) probability

measures on these spaces in order to model the random dynamics of stock prices?

Analogously for random perturbations in physics, biology, etc.

More generally, the same questions arise for mappings I → S with an arbitrary

non-empty set I and S ⊂ Rd (physics: phase transition in ferromagnetic materials,

the orientation of magnetic dipoles on a set I of sites; medicine: spread of diseases,

certain biometric parameters for a set I of individuals; environmental science: the

concentration of certain pollutants in a region I).

Example 4. Consider two random variables X1 and X2. If P ({X2 = v}) > 0 then

the conditional probability of {X1 ∈ A} given {X2 = v} is defined by

P ({X1 ∈ A} | {X2 = v}) =
P ({X1 ∈ A} ∩ {X2 = v})

P ({X2 = v})
.

How can we reasonably extend this definition to the case P ({X2 = v}) = 0, e.g.,

for X2 being normally distributed? How does the observation X2 = v change our

stochastic model? Cf. Example 3.



Chapter II

Measure and Integral

1 Classes of Sets

Given: a non-empty set Ω and a class A ⊂ P(Ω) of subsets. Put

A+ =
{ n⋃

i=1

Ai : n ∈ N ∧ A1, . . . , An ∈ A pairwise disjoint
}

.

Definition 1.

(i) A closed w.r.t. intersections if A, B ∈ A ⇒ A ∩B ∈ A.

(ii) A closed w.r.t. unions if A, B ∈ A ⇒ A ∪B ∈ A.

(iii) A semi-algebra (in Ω) if

(a) Ω ∈ A,

(b) A closed w.r.t. intersections,

(c) A ∈ A ⇒ Ac ∈ A+.

(iv) A algebra (in Ω) if

(a) Ω ∈ A,

(b) A closed w.r.t. intersections,

(c) A ∈ A ⇒ Ac ∈ A.

(v) A σ-algebra (in Ω) if

(a) Ω ∈ A,

(b) A1, A2, . . . ∈ A ⇒
⋃∞

n=1 An ∈ A,

(c) A ∈ A ⇒ Ac ∈ A.

3



4 CHAPTER II. MEASURE AND INTEGRAL

Remark 1. Let A denote a σ-algebra in Ω. Recall that a probability measure P on

(Ω, A) is a mapping

P : A → [0, 1]

such that P (Ω) = 1 and

A1, A2, . . . ∈ A pairwise disjoint ⇒ P
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

P (Ai).

Moreover, (Ω, A, P ) is called a probability space, and P (A) is the probability of the

event A ∈ A.

Remark 2.

(i) A σ-algebra ⇒ A algebra ⇒ A semi-algebra.

(ii) A closed w.r.t. intersections ⇒ A+ closed w.r.t. intersections.

(iii) A algebra and A1, A2 ∈ A ⇒ A1 ∪ A2, A1 \ A2, A1 M A2 ∈ A.

(iv) A σ-algebra and A1, A2, . . . ∈ A ⇒
⋂∞

n=1 An ∈ A.

Example 1.

(i) Let Ω = R and consider the class of intervals

A = {]a, b] : a, b ∈ R ∧ a < b} ∪ {]−∞, b] : b ∈ R} ∪ {]a,∞[ : a ∈ R} ∪ {R, ∅}.

Then A is a semi-algebra, but not an algebra.

(ii) {A ∈ P(Ω) : A finite or Ac finite} is an algebra, but not a σ-algebra in general.

(iii) {A ∈ P(Ω) : A countable or Ac countable} is a σ-algebra.

(iv) P(Ω) is the largest σ-algebra in Ω, {∅, Ω} is the smallest σ-algebra in Ω.

Definition 2. A Dynkin class (in Ω) if

(i) Ω ∈ A,

(ii) A1, A2 ∈ A ∧ A1 ⊂ A2 ⇒ A2 \ A1 ∈ A,

(iii) A1, A2, . . . ∈ A pairwise disjoint ⇒
⋃∞

n=1 An ∈ A.

Remark 3. A σ-algebra ⇒ A Dynkin class.

Theorem 1. For every Dynkin class A

A σ-algebra ⇔ A closed w.r.t. intersections.
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Proof. ‘⇐’: For A ∈ A we have Ac = Ω \ A ∈ A since A is a Dynkin class. For

A, B ∈ A we have

A ∪B = A ∪ (B \ (A ∩B)) ∈ A

since A is also closed w.r.t. intersections. Thus, for A1, A2, . . . ∈ A and Bm =
⋃m

n=1 An

we get Bm ∈ A and
∞⋃

n=1

An =
∞⋃

m=1

(Bm \Bm−1) ∈ A,

where B0 = ∅.

Remark 4. Consider σ-algebras (algebras, Dynkin classes) Ai for i ∈ I 6= ∅. Then⋂
i∈I Ai is a σ-algebra (algebra, Dynkin class), too. See also Übung 1.2.

Given: a class E ⊂ P(Ω).

Definition 3. The σ-algebra generated by E

σ(E) =
⋂
{A : A σ-algebra in Ω ∧ E ⊂ A}.

Analogously, α(E), δ(E) the algebra, Dynkin class, respectively, generated by E.

Remark 5. For γ ∈ {σ, α, δ} and E, E1, E2 ⊂ P(Ω)

(i) γ(E) is the smallest ‘γ-class’ that contains E,

(ii) E1 ⊂ E2 ⇒ γ(E1) ⊂ γ(E2),

(iii) γ(γ(E)) = γ(E).

Example 2. Let Ω = N and E = {{n} : n ∈ N}. Then

α(E) = {A ∈ P(Ω) : A finite or Ac finite} =: A.

Proof: A is an algebra, see Example 1, and E ⊂ A. Thus α(E) ⊂ A. On the other

hand, for every finite set A ⊂ Ω we have A =
⋃

n∈A{n} ∈ α(E), and for every set

A ⊂ Ω with finite complement we have A = (Ac)c ∈ α(E). Thus A ⊂ α(E).

Moreover,

σ(E) = P(N), δ(E) = P(N).

Theorem 2. E closed w.r.t. intersections ⇒ σ(E) = δ(E).

Proof. Remark 3 implies

δ(E) ⊂ σ(E).

We claim that

δ(E) is closed w.r.t. intersections. (1)

Then, by Theorem 1.(ii),

σ(E) ⊂ δ(E).
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Put

CB = {C ⊂ Ω : C ∩B ∈ δ(E)}, B ∈ δ(E),

so that (1) is equivalent to

∀B ∈ δ(E) : δ(E) ⊂ CB. (2)

It is straightforward to verify that

∀B ∈ δ(E) : CB Dynkin class. (3)

Moreover, since E is closed w.r.t. intersections,

∀E ∈ E : E ⊂ CE.

Therefore

∀E ∈ E : δ(E) ⊂ CE,

which is equivalent to

∀B ∈ δ(E) : E ⊂ CB.

Use (3) to obtain (2).

An algebra α(E) can be described explicitly, see Gänssler, Stute (1977, p. 14). The

corresponding problem for σ-algebras is addressed in Billingsley (1979, p. 24). Here

we only state the following fact.

Lemma 1. E semi-algebra ⇒ α(E) = E+.

Proof. Clearly E ⊂ E+ ⊂ α(E). It remains to show that E+ is an algebra. See

Gänssler, Stute (1977, p. 14) for details.

Sometimes it will be convenient to extend the reals as follows. Put

R = R ∪ {−∞,∞},

and define for every a ∈ R

(±∞) + (±∞) = a + (±∞) = (±∞) + a = ±∞, a/±∞ = 0,

a · (±∞) = (±∞) · a =


±∞ if a > 0

0 if a = 0

∓∞ if a < 0

as well as −∞ < a < ∞. For instance, the class A from Example 1.(i) consists of the

sets

{x ∈ R : a < x ≤ b}, a, b ∈ R.

Furthermore, limn→∞ xn = ±∞ for a sequence (xn)n∈N in R if for all M ∈ ]0,∞[ there

is an integer n0 such that xn ≷ ±M for all n ≥ n0.

Recall that (Ω, G) is a topological space if G ⊂ P(Ω) satisfies
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(i) ∅, Ω ∈ G,

(ii) G is closed w.r.t. to intersections,

(iii) for every family (Gi)i∈I with Gi ∈ G we have
⋃

i∈I Gi ∈ G.

The elements G ∈ G are called the open subsets of Ω, and their complements are

called the closed subsets of Ω. A set K ⊂ Ω is called compact if for every family

(Gi)i∈I with Gi ∈ G and

K ⊂
⋃
i∈I

Gi

there is a finite set I0 ⊂ I such that

K ⊂
⋃
i∈I0

Gi.

On Ω = Rk and Ω = Rk
we consider the natural topologies, and we use Gk to denote

the corresponding class of open sets in Rk. In particular, O ⊂ R is an open set iff

O ∩ R ∈ Gk and ]a,∞] ⊂ O for some a < ∞ if ∞ ∈ O and [−∞, a[ ⊂ O for some

a > −∞ if −∞ ∈ O.

Definition 4. For every topological space (Ω, G)

B(Ω) = σ(G)

is the Borel-σ-algebra (in Ω w.r.t. G). In particular,

Bk = B(Rk), B = B1, Bk = B(Rk
), B = B1.

Remark 6. We have

Bk = σ({F ⊂ Rk : F closed}) = σ({K ⊂ Rk : K compact})
= σ({]−∞, a] : a ∈ Rk}) = σ({]−∞, a] : a ∈ Qk})

and

B = {B ⊂ R : B ∩ R ∈ B}. (4)

Moreover,

Bk  P(Rk)

since the cardinalities of Bk and Rk coincide, see Billingsley (1979, Exercise 2.21).

Definition 5. For any σ-algebra A in Ω and Ω̃ ⊂ Ω

Ã = {Ω̃ ∩ A : A ∈ A}

is the trace-σ-algebra of A in Ω̃, sometimes denoted by Ω̃ ∩ A.

Remark 7.

(i) Ã is a σ-algebra.

(ii) Ã 6⊂ A in general, but Ω̃ ∈ A ⇒ Ã = {A ∈ A : A ⊂ Ω̃}.

(iii) A = σ(E) ⇒ Ã = σ({Ω̃ ∩ E : E ∈ E}).

(iv) Bk = Rk ∩Bk, see (4) for k = 1.

(v) [a, b[ ∩Bk = σ({[a, c[ : a ≤ c ≤ b}), see (iii).
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2 Measurable Mappings

Definition 1. (Ω, A) is called measurable space if Ω is a non-empty set and A is a

σ-algebra in Ω. Elements A ∈ A are called measurable sets .

Remark 1. Let f : Ω1 → Ω2.

(i) f−1(A2) = {f−1(A) : A ∈ A2} is a σ-algebra in Ω1 for every σ-algebra A2 in Ω2.

(ii) {A ⊂ Ω2 : f−1(A) ∈ A1} is a σ-algebra in Ω2 for every σ-algebra A1 in Ω1.

In the sequel, (Ωi, Ai) are measurable spaces for i = 1, 2, 3.

Definition 2. f : Ω1 → Ω2 is A1-A2-measurable if f−1(A2) ⊂ A1.

Example 1. Let f : Ω1 → Ω2.

(i) Every constant mapping f is A1-A2-measurable.

(ii) Let Ω2 = {0, 1} and A2 = P(Ω2). Then f is A1-A2-measurable iff f = 1A with

A ∈ A1.

How can we prove measurability of a given mapping?

Theorem 1. If f : Ω1 → Ω2 is A1-A2-measurable and g : Ω2 → Ω3 is A2-A3-

measurable, then g ◦ f : Ω1 → Ω3 is A1-A3-measurable.

Proof. We have (g ◦ f)−1(A3) = f−1(g−1(A3)) ⊂ f−1(A2) ⊂ A1.

Lemma 1. For f : Ω1 → Ω2 and E ⊂ P(Ω2)

f−1(σ(E)) = σ(f−1(E)).

Proof. By f−1(E) ⊂ f−1(σ(E)) and Remark 1.(i) we get σ(f−1(E)) ⊂ f−1(σ(E)).

Let F = {A ⊂ Ω2 : f−1(A) ∈ σ(f−1(E))}. Then E ⊂ F and F is a σ-algebra, see

Remark 1.(ii). Thus we get σ(E) ⊂ F, i.e., f−1(σ(E)) ⊂ σ(f−1(E)).

Theorem 2. If A2 = σ(E) with E ⊂ P(Ω2), then

f−1(E) ⊂ A1 ⇔ f is A1-A2-measurable.

Proof. ‘⇒’: Assume that f−1(E) ⊂ A1. By Lemma 1,

f−1(A2) = f−1(σ(E)) = σ(f−1(E)) ⊂ σ(A1) = A1.

Obviously, ‘⇐’ holds, too.

Corollary 1. For every pair of topological spaces (Ω1, G1) and (Ω2, G2) and every

mapping f : Ω1 → Ω2,

f continuous ⇒ f is B(Ω1)-B(Ω2)-measurable.
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Proof. By assumption,

f−1(G2) ⊂ G1 ⊂ σ(G1) = B(Ω1).

Use Theorem 2.

Given: measurable spaces (Ωi, Ai) for i ∈ I 6= ∅ and mappings fi : Ω → Ωi for i ∈ I

and some non-empty set Ω.

Definition 3. The σ-algebra generated by (fi)i∈I (and (Ai)i∈I)

σ({fi : i ∈ I}) = σ
(⋃

i∈I

f−1
i (Ai)

)
.

Put σ(f) = σ({f}) in the case |I| = 1 and f = f1.

Remark 2. σ({fi : i ∈ I}) is the smallest σ-algebra A in Ω such that all mappings

fi are A-Ai-measurable.

Theorem 3. For every measurable space (Ω̃, Ã) and every mapping g : Ω̃ → Ω,

g is Ã-σ({fi : i ∈ I})-measurable ⇔ ∀ i ∈ I : fi ◦ g is Ã-Ai-measurable.

Proof. Use Lemma 1 to obtain

g−1(σ({fi : i ∈ I})) = σ
(
g−1

(⋃
i∈I

f−1
i (Ai)

))
= σ

(⋃
i∈I

(fi ◦ g)−1(Ai)
)
.

Therefore

g−1 (σ({fi : i ∈ I})) ⊂ Ã ⇔ ∀ i ∈ I : fi ◦ g is Ã-Ai-measurable.

Now we turn to the particular case of functions with values in R or R, and we consider

the Borel σ-algebra in R or R, respectively. For any measurable space (Ω, A) we use

the following notation

Z(Ω, A) = {f : Ω → R : f is A-B-measurable} ,

Z+(Ω, A) = {f ∈ Z(Ω, A) : f ≥ 0} ,

Z(Ω, A) =
{
f : Ω → R : f is A-B-measurable

}
,

Z+(Ω, A) =
{
f ∈ Z(Ω, A) : f ≥ 0

}
.

Every function f : Ω → R may also be considered as a function with values in R, and

in this case f ∈ Z(Ω, A) iff f ∈ Z(Ω, A).

Corollary 2. For ≺∈ {≤, <,≥, >} and f : Ω → R,

f ∈ Z(Ω, A) ⇔ ∀ a ∈ R : {ω ∈ Ω : f(ω) ≺ a} ∈ A.



10 CHAPTER II. MEASURE AND INTEGRAL

Proof. For instance,

{ω ∈ Ω : f(ω) ≤ a} = f−1([−∞, a])

and B = σ({[−∞, a] : a ∈ R}), see Remark 1.6. It remains to apply Theorem 2.

Theorem 4. For f, g ∈ Z(Ω, A) and ≺∈ {≤, <,≥, >, =, 6=},

{ω ∈ Ω : f(ω) ≺ g(ω)} ∈ A.

Proof. For instance, Corollary 2 yields

{ω ∈ Ω : f(ω) < g(ω)} =
⋃
q∈Q

{ω ∈ Ω : f(ω) < q < g(ω)}

=
⋃
q∈Q

({ω ∈ Ω : f(ω) < q} ∩ {ω ∈ Ω : g(ω) > q}) ∈ A.

As is customary, we use the abbreviation

{f ∈ A} = {ω ∈ Ω : f(ω) ∈ A}

for any f : Ω → Ω̃ and A ⊂ Ω̃.

Theorem 5. For every sequence f1, f2, . . . ∈ Z(Ω, A),

(i) infn∈N fn, supn∈N fn ∈ Z(Ω, A),

(ii) lim infn→∞ fn, lim supn→∞ fn ∈ Z(Ω, A),

(iii) if (fn)n∈N converges at every point ω ∈ Ω, then limn→∞ fn ∈ Z(Ω, A).

Proof. For a ∈ R{
inf
n∈N

fn < a

}
=

⋃
n∈N

{fn < a} ,

{
sup
n∈N

fn ≤ a

}
=

⋂
n∈N

{fn ≤ a} .

Hence, Corollary 2 yields (i). Since

lim sup
n→∞

fn = inf
m∈N

sup
n≥m

fn, lim inf
n→∞

fn = sup
m∈N

inf
n≥m

fn,

we obtain (ii) from (i). Finally, (iii) follows from (ii).

By

f+ = max(0, f), f− = max(0,−f)

we denote the positive part and the negative part, respectively, of f : Ω → R.

Remark 3. For f ∈ Z(Ω, A) we have f+, f−, |f | ∈ Z+(Ω, A).
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Theorem 6. For f, g ∈ Z(Ω, A),

f ± g, f · g, f/g ∈ Z(Ω, A),

provided that these functions are well defined.

Proof. The proof is again based on Corollary 2. For simplicity we only consider the

case that f and g are real-valued. Clearly g ∈ Z(Ω, A) implies −g ∈ Z(Ω, A), too.

Furthermore, for every a ∈ R,

{f + g < a} =
⋃
q∈Q

{f < q} ∩ {g < a− q},

and therefore f ± g ∈ Z(Ω, A). Clearly f · g ∈ Z(Ω, A) if f is constant. Moreover,

x 7→ x2 defines a B-B-measurable function, see Corollary 1, and

f · g = 1/4 ·
(
(f + g)2 − (f − g)2

)
We apply Theorem 1 to obtain f · g ∈ Z(Ω, A) in general. Finally, it is easy to show

that g ∈ Z(Ω, A) implies 1/g ∈ Z(Ω, A).

Definition 4. f ∈ Z(Ω, A) is called simple function if |f(Ω)| < ∞. Put

S(Ω, A) = {f ∈ Z(Ω, A) : f simple} ,

S+(Ω, A) = {f ∈ S(Ω, A) : f ≥ 0} .

Remark 4. f ∈ S(Ω, A) iff

f =
n∑

i=1

αi · 1Ai

with α1, . . . αn ∈ R pairwise different and A1, . . . , An ∈ A pairwise disjoint such that⋃n
i=1 Ai = Ω.

Theorem 7. For every (bounded) function f ∈ Z+(Ω, A) there exists a sequence

f1, f2, · · · ∈ S+(Ω, A) such that fn ↑ f (with uniform convergence).

Proof. Let n ∈ N and put

fn =
n·2n∑
k=1

k − 1

2n
· 1An,k

+ n · 1Bn

where

An,k = {(k − 1)/(2n) ≤ f < k/(2n)} , Bn = {f ≥ n} .

Now we consider a mapping T : Ω1 → Ω2 and a σ-algebra A2 in Ω2. We characterize

measurability of functions with respect to σ(T ) = T−1(A2).

Theorem 8 (Factorization Lemma). For every function f : Ω1 → R

f ∈ Z(Ω1, σ(T )) ⇔ ∃ g ∈ Z(Ω2, A2) : f = g ◦ T.
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Proof. ‘⇐’ is trivially satisfied. ‘⇒’: First, assume that f ∈ S+(Ω1, σ(T )), i.e.,

f =
n∑

i=1

αi · 1Ai

with pairwise disjoint sets A1, . . . , An ∈ σ(T ). Take pairwise disjoint sets B1, . . . , Bn ∈
A2 such that Ai = T−1(Bi) and put

g =
n∑

i=1

αi · 1Bi
.

Clearly f = g ◦ T and g ∈ Z(Ω2, A2).

Now, assume that f ∈ Z+(Ω1, σ(T )). Take a sequence (fn)n∈N in S+(Ω1, σ(T )) ac-

cording to Theorem 7. We already know that fn = gn ◦ T for suitable gn ∈ Z(Ω2, A2).

Hence

f = sup
n

fn = sup
n

(gn ◦ T ) = (sup
n

gn) ◦ T = g ◦ T

where g = supn gn ∈ Z(Ω2, A2).

In the general case, we already know that

f+ = g1 ◦ T, f− = g2 ◦ T

for suitable g1, g2 ∈ Z(Ω2, A2). Put

C = {g1 = g2 = ∞} ∈ A2,

and observe that T (Ω1) ∩ C = ∅ since f = f+ − f−. We conclude that f = g ◦ T

where

g = g1 · 1D − g2 · 1D ∈ Z(Ω2, A2)

with D = Cc.

Our method of proof for Theorem 8 is sometimes called algebraic induction.

3 Product Spaces

Example 1. A stochastic model for coin tossing. For a single trial,

Ω = {0, 1}, A = P(Ω), ∀ω ∈ Ω : P ({ω}) = 1/2. (1)

For n ‘independent’ trials, (1) serves as a building-block,

Ωi = {0, 1}, Ai = P(Ωi), ∀ωi ∈ Ωi : Pi({ωi}) = 1/2,

and we define

Ω =
n×

i=1

Ωi, A = P(Ω), ∀A ∈ A : P (A) =
|A|
|Ω|

.
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Then

P (A1 × · · · × An) = P1(A1) · · · · · Pn(An)

for all Ai ∈ Ai.

Question: How to model an infinite sequence of trials? To this end,

Ω =
∞×
i=1

Ωi.

How to choose a σ-algebra A in Ω and a probability measure P on (Ω, A)? A reason-

able requirement is

∀n ∈ N ∀Ai ∈ Ai :

P (A1 × · · · × An × Ωn+1 × Ωn+2 . . . ) = P1(A1) · · · · · Pn(An). (2)

Unfortunately,

A = P(Ω)

is too large, since there exists no probability measure on (Ω, P(Ω)) such that (2) holds.

The latter fact follows from a theorem by Banach and Kuratowski, which relies on

the continuum hypothesis, see Dudley (2002, p. 526). On the other hand,

A = {A1 × · · · × An × Ωn+1 × Ωn+2 · · · : n ∈ N, Ai ∈ Ai for i = 1, . . . , n} (3)

is not a σ-algebra.

Given: a non-empty set I and measurable spaces (Ωi, Ai) for i ∈ I. Put

Y =
⋃
i∈I

Ωi

and define

×
i∈I

Ωi = {ω ∈ Y I : ω(i) ∈ Ωi for i ∈ I}.

Notation: ω = (ωi)i∈I for ω ∈×i∈I Ωi. Moreover, let

P0(I) = {J ⊂ I : J non-empty, finite}.

The following definition is motivated by (3).

Definition 1.

(i) Measurable rectangle

A =×
j∈J

Aj ××
i∈I\J

Ωi

with J ∈ P0(I) and Aj ∈ Aj for j ∈ J . Notation: R class of measurable

rectangles.
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(ii) Product (measurable) space (Ω, A) with components (Ωi, Ai), i ∈ I,

Ω =×
i∈I

Ωi, A = σ(R).

Notation: A =
⊗

i∈I Ai, product σ-algebra.

Remark 1. The class R is a semi-algebra, but not an algebra in general. See Übung

3.1.

Example 2. Obviously, (2) only makes sense if A contains the product σ-algebra⊗n
i=1 Ai. We will show that there exists a uniquely determined probability measure

P on the product space
(×∞

i=1{0, 1},
⊗∞

i=1 P({0, 1})
)

that satisfies (2), see Remark

??.??.(ii). The corresponding probability space yields a stochastic model for the

simple case of gambling, which was mentioned in the introductory Example I.2.

We study several classes of mappings or subsets that generate the product σ-algebra.

Moreover, we characterize measurability of mappings that take values in a product

space.

Put Ω =×i∈I Ωi. For any ∅ 6= S ⊂ I let

πI
S : Ω →×

i∈S

Ωi, (ωi)i∈I 7→ (ωi)i∈S

denote the projection of Ω onto ×i∈S Ωi (restriction of mappings ω). In particular,

for i ∈ I the i-th projection is given by πI
{i}. Sometimes we simply write πS instead

of πI
S and πi instead of π{i}.

Theorem 1.

(i)
⊗

i∈I Ai = σ({πi : i ∈ I}).

(ii) ∀ i ∈ I : Ai = σ(Ei) ⇒
⊗

i∈I Ai = σ
(⋃

i∈I π−1
i (Ei)

)
.

Proof. Ad (i), ‘⊃’: We show that every projection πi : Ω → Ωi is
(⊗

i∈I Ai

)
-Ai-

measurable. For Ai ∈ Ai

π−1
i (Ai) = Ai × ×

k∈I\{i}
Ωk ∈ R.

Ad (i), ‘⊂’: We show that R ⊂ σ({πi : i ∈ I}). For J ∈ P0(I) and Aj ∈ Aj with

j ∈ J

×
j∈J

Aj ××
i∈I\J

Ωi =
⋂
j∈J

π−1
j (Aj).

Ad (ii): By Lemma 2.1 and (i)⊗
i∈I

Ai = σ
(⋃

i∈I

π−1
i (Ai)

)
= σ

(⋃
i∈I

σ(π−1
i (Ei))

)
= σ

(⋃
i∈I

π−1
i (Ei)

)
.
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Corollary 1.

(i) For every measurable space (Ω̃, Ã) and every mapping g : Ω̃ → Ω

g is Ã-
⊗
i∈I

Ai-measurable ⇔ ∀ i ∈ I : πi ◦ g is Ã-Ai-measurable.

(ii) For every ∅ 6= S ⊂ I the projection πI
S is

⊗
i∈I Ai-

⊗
i∈S Ai-measurable.

Proof. Ad (i): Follows immediately from Theorem 2.3 and Theorem 1.(i).

Ad (ii): Note that πS
{i} ◦ πI

S = πI
i and use (i).

Remark 2. From Theorem 1.(i) and Corollary 1 we get⊗
i∈I

Ai = σ({πI
S : S ∈ P0(I)}).

The sets (
πI

S

)−1
(B) = B ×

(×
i∈I\S

Ωi

)
with S ∈ P0(I) and B ∈

⊗
i∈S Ai are called cylinder sets . Notation: C class of cylinder

sets. The class C is an algebra in Ω, but not a σ-algebra in general. Moreover,

R ⊂ α(R) ⊂ C ⊂ σ(R),

where equality does not hold in general.

Every product measurable set is countably determined in the following sense.

Theorem 2. For every A ∈
⊗

i∈I Ai there exists a non-empty countable set S ⊂ I

and a set B ∈
⊗

i∈S Ai such that

A =
(
πI

S

)−1
(B).

Proof. Put

Ã =
{

A ∈
⊗
i∈I

Ai : ∃S ⊂ I non-empty, countable ∃B ∈
⊗
i∈S

Ai : A =
(
πI

S

)−1
(B)

}
.

By definition, Ã contains every cylinder set and Ã ⊂
⊗

i∈I Ai. It remains to show

that Ã is a σ-algebra. See Gänssler, Stute (1977, p. 24) for details.

Now we study products of Borel-σ-algebras.

Theorem 3.

Bk =
k⊗

i=1

B, Bk =
k⊗

i=1

B.
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Proof. By Remark 1.6,

Bk = σ
({ k×

i=1

]−∞, ai] : ai ∈ R for i = 1, . . . , k
})

⊂
k⊗

i=1

B.

On the other hand, πi : Rk → R is continuous, hence it remains to apply Corollary

2.1 and Theorem 1.(i). Analogously, Bk =
⊗k

i=1 B follows.

Remark 3. More generally, consider a non-empty countable set I and a family of

topological spaces (Ωi, Gi) where i ∈ I. Assume that every space (Ωi, Gi) has a

countable basis and consider the product topology G on Ω =×i∈I Ωi. Then

B(Ω) =
⊗
i∈I

B(Ωi),

see Gänssler, Stute (1977, Satz 1.3.12).

Remark 4. Consider a measurable space (Ω̃, Ã) and a mapping

f = (f1, . . . , fk) : Ω̃ → Rk
.

Then, according to Theorem 3, f is Ã-Bk-measurable iff all functions fi are Ã-B-

measurable.

We briefly discuss the cardinality of σ-algebras. It is known that

2 ≤ |V | ≤ |R| ⇒
∣∣V N∣∣ = |R| ∧

∣∣V R∣∣ =
∣∣{0, 1}R∣∣

for every set V , see Hewitt, Stromberg (1965, Exercise 4.34).

Theorem 4. Assume that ∅ ∈ E ⊂ P(Ω) and |E| ≥ 2. Then

|σ(E)| ≤
∣∣EN∣∣ .

Proof. See Hewitt, Stromberg (1965, Theorem 10.13).

Example 3. Let I = N, Ωi = {0, 1}, and Ai = P(Ωi), as in Example 1. For the

corresponding product space (Ω, A) we have Ω = {0, 1}N and

|A| = |Ω| = |R|.

Proof: Note that {ω} ∈ A for every ω ∈ Ω. Hence |A| ≥ |Ω|. Conversely, use Theorem

1.(ii) with Ei = {{1}} and Theorem 4 to conclude that |A| ≤ |NN| = |R|.
We add that |P(Ω)| = |{0, 1}R| > |Ω|.

Example 4. Let I = N, Ωi = R, and Ai = B. For the corresponding product space

(Ω, A) we have Ω = RN and

|A| = |Ω| = |R|.
Proof: As in the previous example, with Ei = {]−∞, a] : a ∈ Q}.
Again we have |P(Ω)| = |{0, 1}R| > |Ω|.
The sets {(xn)n∈N : (xn)n∈N converges} and {(xn)n∈N : (xn)n∈N is bounded} are ele-

ments of A, but they are not cylinder sets.
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Example 5. Let I = R+, Ωi = R, and Ai = B. For the corresponding product space

(Ω, A) we have Ω = RR+ and

|A| = |R| < |Ω|.

Proof: Clearly |R| ≤ |A| and |R| < |Ω|. On the other hand, Theorem 2 shows that

A = σ(E) for some set E with |E| = |R|. Hence |A| ≤ |R| by Theorem 4.

The space RR+ already appeared in the introductory Example I.3. The product σ-

algebra A =
⊗

i∈R+
B is a proper choice on this space. On the subspace C(R+) ⊂ RR+

we can take the trace-σ-algebra. It is important to note, however, that

C(R+) /∈ A,

see Übung 3.2. It turns out that the Borel σ-algebra B(C(R+)) that is generated by

the topology of uniform convergence on compact intervals coincides with the trace-σ-

algebra of A in C(R+), see Bauer (1996, Theorem 38.6).
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A. N. Širjaev, Wahrscheinlichkeit, Deutscher Verlag der Wissenschaften, Berlin, 1988.

A. N. Shiryayev, Probability, Springer, New York, 1984.

J. Yeh, Martingales and Stochastic Analysis, World Scientific, Singapore, 1995.

19



Index

σ-algebra, 3

generated by a class of sets, 5

generated by a family of mappings, 9

algebra, 3

generated by a class of sets, 5

Borel-σ-algebra, 7

closed set, 7

closed w.r.t.

intersections, 3

unions, 3

compact set, 7

cylinder set, 15

Dynkin class, 4

generated by a class of sets, 5

measurable

mapping, 8

rectangle, 13

set, 8

space, 8

open set, 7

product σ-algebra, 14

product (measurable) space, 14

semi-algebra, 3

simple function, 11

topological space, 6

trace-σ-algebra, 7

20


