TU Darmstadt Fachbereich Mathematik Klaus Ritter

WS 2008/09 12.11.08

5. Aufgabenblatt zur Vorlesung "Probability Theory"

1. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Show that if $f \in \mathcal{L}^1(\Omega, \mathcal{A}, \mu)$, then for each $\varepsilon > 0$ there is a $\delta > 0$ such that $\mu(A) < \delta$ implies $\int_A |f| d\mu < \varepsilon$.

2. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and $f \in \mathcal{L}^1(\Omega, \mathcal{A}, \mu)$. Show that for $\varepsilon > 0$ there exists a μ -integrable function $g = \sum_{i=1}^n \alpha_i \cdot 1_{A_i} \in \mathcal{S}(\Omega, \mathcal{A})$ such that

$$\int |f-g| \ d\mu < \varepsilon.$$

Moreover, if μ is finite and \mathcal{A} is generated by an algebra $\mathcal{A}_0 \subset \mathcal{P}(\Omega)$ then g can be taken with $A_1, \ldots, A_n \in \mathcal{A}_0$.

In the sequel, the underlying measure space is denoted by $(\Omega, \mathfrak{A}, \mu)$.

- **3.** Let $f_n, f \in \mathfrak{L}^{\infty}$. Prove or disprove $f_n \xrightarrow{\mathfrak{L}^{\infty}} f \Rightarrow f_n \xrightarrow{\mu-\text{a.e.}} f$ and $f_n \xrightarrow{\mu-\text{a.e.}} f \Rightarrow f_n \xrightarrow{\mathfrak{L}^{\infty}} f$.
- **4.** Let $p, q \in [1, \infty]$ such that 1/p + 1/q = 1. Moreover, let $f_n, f \in \mathfrak{L}^p$ and $g_n, g \in \mathfrak{L}^q$ such that $f_n \xrightarrow{\mathfrak{L}^p} f$ and $g_n \xrightarrow{\mathfrak{L}^q} g$.
- **a)** Show that $f_n \cdot g_n \xrightarrow{\mathfrak{L}^1} f \cdot g$.
- **b)** Let $A \in \mathfrak{A}$ and assume that $\mu(A) < \infty$ or p = 1. Show that

$$\lim_{n \to \infty} \int_A f_n \, d\mu = \int_A f \, d\mu.$$