

9./10. Jan. 2008

Analysis II für M, LaG und Ph, WS07/08, Übung 11

Gruppenübung

G 38 (Zur Erinnerung).

Skizziere und diskutiere innerhalb einer kleinen Gruppe den Beweis des "Satzes über die Umkehrfunktion".

Was besagt der Satz? Was sind die entscheidenen Hilfsmittel und Beweisideen?

G 39 (Das Newton-Verfahren).

Im Eindimensionalen besteht das Newton-Verfahren zur Bestimmung einer Nullstelle von f darin, auf die zur Gleichung f(x) = 0 äquivalente Fixpunktgleichung

$$x = x - (f'(x))^{-1}f(x), f' \neq 0$$

den Banachschen Fixpunktsatz anzuwenden. Man spricht vom vereinfachten Newton-Verfahren, wenn man f' nicht bei jedem Schritt neu ausrechnet, sondern durch eine Konstante $A \approx f'(x)$ ersetzt,

$$x = x - A^{-1}f(x).$$

In beiden Formen überträgt sich das Newton-Verfahren auf den \mathbb{R}^n . Dabei ist $x \in \mathbb{R}^n$, $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ und $A \approx J_x(f)$ eine $n \times n$ -Matrix. Die Bedingung $f' \neq 0$ vom Fall n = 1 geht über in die Forderung, dass die Jacobimatrix $J_x(f)$ bzw. die konstante Matrix A invertierbar ist.

Beweise den folgenden Satz: Die Matrix A sei invertierbar. Genügt die Funktion $F(x) := x - A^{-1}f(x)$ in der offenen Kugel $B_r(a)$ einer Lipschitzbedingung mit der Konstanten $\alpha = \frac{1}{2}$ und ist $||A^{-1}f(a)||_2 < \frac{1}{2}r$, so hat die Funktion f in $B_r(a)$ genau eine Nullstelle x_0 . Das Newton-Verfahren

$$x_{k+1} := x_k + A^{-1}f(x_k), \ k = 1, 2, 3, \dots \text{ mit beliebigem } x_1 \in B_r(a)$$

ist durchführbar (d.h. es führt nicht aus $B_r(a)$ hinaus), und es gilt $\lim_{k\to\infty} x_k = x_0$.

G 40 (Lokale Diffeomorphismen).

Zeige, dass die durch

$$f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}, \ f(x,y) := (x^2 - y^2, 2xy)$$

definierte Abbildung ein lokaler, aber kein globaler Diffeomorphismus ist.

G 41 (Globale Diffeomorphismen I).

Sei $U \subseteq \mathbb{R}^n$ offen und konvex. Ferner sei $f: U \to \mathbb{R}^n$ eine stetig differenzierbare Funktion. Zeige: Ist df(x) für alle $x \in U$ positiv definit, so ist f ein globaler Diffeomorphismus auf f(U).

Hausübung

H 44 (Ein interessanter Diffeomorphismus).

Betrachte den Vektorraum \mathbb{R}^n zusammen mit dem kanonischen Skalarprodukt $\langle \cdot, \cdot \rangle$. Zeige, dass die Abbildung der Einheitskugel in \mathbb{R}^n

$$f: B_1(0) \to \mathbb{R}^n, \ f(x) := \frac{x}{\sqrt{1 - \langle x, x \rangle}}$$

ein Diffeomorphismus ist, und berechne ihr Differential.

H 45 (Globale Diffeomorphismen II).

Es sei U eine offene Teilmenge des \mathbb{R}^n , $f \in C^1(U, \mathbb{R}^n)$ und es gilt

$$||f(x)-f(y)||_2 \ge \lambda ||x-y||_2$$
 für alle $x,y \in U$

und eine geeigneten Konstante $\lambda > 0$. Zeige, dass U diffeomorph auf f(U) abgebildet wird.

H 46 (Auflösen von Gleichungssystemen).

Für die Funktionen gegeben durch

$$f_1: \mathbb{R}^3 \to \mathbb{R}, \ f_1(x, y_1, y_2) := x^3 + y_1^3 + y_2^3 - 7$$

und

$$f_2: \mathbb{R}^3 \to \mathbb{R}, \ f_2(x, y_1, y_2) := xy_1 + y_1y_2 + y_2x + 2$$

betrachte das Gleichungssystem

$$f_1(x, y_1, y_2) = 0$$

$$f_2(x, y_1, y_2) = 0$$

und die Nullstelle (2, -1, 0). Untersuche das Gleichungssystem in der Nähe dieser Nullstelle hinsichtlich der Auflösbarkeit nach y_1, y_2 . Berechne im Falle der Auflösbarkeit die Ableitung der nach der Variablen x aufgelösten Funktionen im Punkt a = 2.

H 47 (Wurzeln matrixwertiger Funktionen).

Es sei U eine Umgebung von $0 \in \mathbb{R}^m$ und $A: U \to \mathrm{M}_n(\mathbb{R})$ eine C^1 -Abbildung mit A(0) = E, wobei $E := E_n$ die Einheitsmatrix von $\mathrm{M}_n(\mathbb{R})$ bezeichnet. Zeige: Es gibt in einer geeigneten Umgebung $U_1 \subseteq U$ von 0 eine C^1 -Abbildung $B: U_1 \to \mathrm{M}_n(\mathbb{R})$ mit B(0) = E und $B^2(x) = A(x)$.