§ 10 Hilberträume

10.1. DEFINITION. Sei X ein Vektorraum über \mathbb{K} . Eine Abbildung $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ heißt Skalarprodukt, falls

(a)
$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$
 für $x_1, x_2, y \in X$

(b)
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$
 für $x, y \in X, \lambda \in \mathbb{K}$

(c)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
 für $x, y \in X$ (Komplexe Konjugation nur im Falle $\mathbb{K} = \mathbb{C}$)

(d)
$$\langle x, x \rangle \ge 0$$
 und $\langle x, x \rangle = 0 \iff x = 0$ (für $x \in X$)

X versehen mit einem Skalarprodukt heißt Prähilbertraum.

10.2. LEMMA. Sei H ein Prähilbertraum. Es gelten:

- (a) Cauchy-Schwarz-Ungleichung: $|\langle x,y\rangle| \leq |\langle x,x\rangle|^{1/2} \cdot |\langle y,y\rangle|^{1/2}$ für alle $x,y\in H$.
- (b) Die Abbildung $x \mapsto \langle x, x \rangle^{1/2} =: ||x||$ ist eine Norm.

Beweis. (a) Seien $x, y \in H$ und λ , $|\lambda| = 1$ so, dass $\lambda \cdot \langle x, y \rangle = |\langle x, y \rangle|$. Betrachte die Funktion p definiert für $r \in \mathbb{R}$ wie folgt:

$$p(r) := \|x + r\lambda y\|^2 = \|x\|^2 + 2\operatorname{Re} \lambda r\langle x, y\rangle + \|\lambda r\|^2 \|y\|^2 = \|x\|^2 + 2r|\langle x, y\rangle| + r^2 \|y\|^2 \ge 0$$

So ist p(r) ein Polynom zweiten Grades, und es ist nicht negativ. Für die Diskriminante heißt dies $4|\langle x,y\rangle|^2 - 4\|y\|^2 \cdot \|x\|^2 \le 0$, die gewünschte Ungleichung.

(b) Seien $x, y \in H$. Wir rechen immer mit "Norm-Quadrat":

$$||x+y||^2 = ||x||^2 + 2\operatorname{Re}\langle x,y\rangle + ||y||^2 \le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2,$$

wobei wir die Cauchy-Schwartz-Ungleichung verwendet haben.

10.3. LEMMA [Parallelogrammgleichung]. Ein normierter Vektorraum ist ein Prähilbertraum genau dann, wenn für alle $x, y \in H ||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$ gilt.

Beweis. Nur eine Richtung: Sei H Prähilbertraum. Kurzes Nachrechnen liefert:

$$||x+y||^2 + ||x-y||^2 = \langle x+y, x+y \rangle + \langle x-y, x-y \rangle = ||x||^2 + 2\operatorname{Re}\langle x, y \rangle + ||y||^2 + ||x||^2 - 2\operatorname{Re}\langle x, y \rangle + ||y||^2.$$

10.4. DEFINITION. Sei H ein Prähilbertraum versehen mit der Norm $||c|| := \langle x, x \rangle^{1/2}$. Ist dieser normierte Vektorraum $(H, ||\cdot||)$ vollständig so heißt es ein Hilbertraum.

10.5. Beispiele von Hilberträumen

(a)
$$\mathbb{C}^d$$
 mit Skalarprodukt $\langle x, y \rangle := \sum_{i=1}^d x_i \overline{y_i}$.

(b)
$$\ell^2$$
 mit Skalarprodukt $\langle (x_n), (y_n) \rangle := \sum_{n=1}^{\infty} x_n \overline{y_n}$.

(c)
$$L^2(M,\mu)$$
 mit Skalarprodukt $\langle f,g \rangle := \int\limits_M f\overline{g} \,\mathrm{d}\mu.$

10.6. **Definition** [Orthogonalität]. Sei *H* ein Prähilbertraum.

- (a) Die Vektoren $x, y \in H$ heißen orthogonal $(x \perp y)$, falls $\langle x, y \rangle = 0$ gilt. (Aus Definition ist es leich zu sehen, dass \perp eine symmetrische Relation ist.)
- (b) Die Mengen $A, B \subseteq H$ heißen orthogonal $(A \perp B)$, falls $a \perp b$ für alle $a \in A, b \in B$.
- (c) Sei $M \subseteq H$. Das orthogonale Komplement von M ist definiert durch

$$M^{\perp} := \{ x \in H : x \perp M \}.$$

10.7. SATZ.

- (a) $x \perp y \implies ||x||^2 + ||y||^2 = ||x + y||^2$ (Pythagoras).
- (b) M^{\perp} ist ein abgeschlossener Unterraum von H.
- (c) $N, M \subseteq H, N \subseteq M \Longrightarrow M^{\perp} \subseteq N^{\perp}$
- (d) $M \subseteq M^{\perp \perp}$ und $\overline{\lim}(M)^{\perp} = M^{\perp}$

Beweis. (a) Es gilt $||x + y||^2 = ||x||^2 + 2\text{Re }\langle x, y \rangle + ||y||^2 = ||x||^2 + 0 + ||y||^2$ wegen $x \perp y$.

- (b) Seien $x, y \in M^{\perp}$ und $\lambda \in \mathbb{K}$. Es gilt $\langle x + \lambda y, z \rangle = \langle x, z \rangle + \lambda \langle y, z \rangle = 0 + 0$ für jedes $z \in M$. Also ist M^{\perp} ein Unterraum. Konvergiert $(x_n) \subseteq M^{\perp}$ gegen ein x, so gilt für jedes $z \in M$ auch die Konvergenz $\langle x_n, z \rangle \to \langle x, z \rangle$ (wegen Cauchy-Schwartz). Da $\langle x_n, z \rangle = 0$ gilt für jedes $z \in M$, so gilt $\langle x, z \rangle = 0$, d.h. $z \in M^{\perp}$.
- (c) Trivial aus Definition.
- (d) Sei $z \in M$. So ist $\langle x, y \rangle = 0$ für jedes $y \in M^{\perp}$, d.h. $z \in M^{\perp \perp}$. Also $M \subseteq M^{\perp \perp}$. Nach c) gilt $M^{\perp} \supseteq \overline{\lim}(M)^{\perp}$. Ist aber $y \perp M$ so ist wegen Linearität $y \perp \overline{\lim}(M)$, und wie in b zeigt man $y \perp \overline{\overline{\lim}}(M)$.
- 10.8. SATZ [Projektionssatz]. Sei H ein Hilbertraum, $K \subseteq H$ eine abgeschlossene, konvexe Menge und $x_0 \in H$. Dann existiert ein eindeutiges $x \in K$ mit $||x x_0|| = \inf_{y \in K} ||y x_0||$.

Beweis. OBdA nehmen wir $x_0 = 0$ und $0 \notin K$ an (sonst Verschiebung).

Existenz: Sei $\delta := \inf_{y \in K} ||y||$. Dann findet man eine Folge $(y_n) \subseteq K$ mit $||y_n|| \to \delta$. Nach der Parallelogrammgleichung

$$\delta^2 \le \left\| \frac{y_n + y_m}{2} \right\| \le \left\| \frac{y_n + y_m}{2} \right\|^2 + \left\| \frac{y_n - y_m}{2} \right\|^2 = \frac{1}{2} \|y_n\|^2 + \frac{1}{2} \|y_m\|^2 \to \delta^2,$$

d.h. (y_n) ist eine Cauchyfolge. Dann gilt $y_n \to y$ für ein $y \in K$, es gilt ferner $||y|| = \delta$.

Eindeutigkeit: Seien $x_1, x_2 \in K$ mit obiger Eigenschaft. Es gilt

$$\delta^{2} \leq \left\| \frac{x_{1} + x_{2}}{2} \right\|^{2} \leq \left\| \frac{x_{1} + x_{2}}{2} \right\|^{2} + \left\| \frac{x_{1} - x_{2}}{2} \right\|^{2} = \frac{1}{2} \|x_{1}\|^{2} + \frac{1}{2} \|x_{2}\|^{2} \leq \delta^{2},$$

d.h $\left\| \frac{x_1 - x_2}{2} \right\|^2 = 0$ und $x_1 = x_2$.

10.9. LEMMA. Sei H ein Hilbertraum, Y abgeschlossener Unterraum, $x_0 \in H$ und $x \in H$ mit $||x - x_0|| = \inf_{y \in Y} ||y - x_0||$. Dann ist $x - x_0 \perp Y$.

Beweis. Angenommen die Behauptung falsch ist, existiert ein $y \in Y$ mit $\langle x - x_0, y \rangle = \beta \neq 0$. Sei $z := x_0 - x$ und $\lambda \in \mathbb{K}$ mit $\overline{\beta} - \overline{\lambda} \langle y, y \rangle = 0$. Es gilt

$$||z - \lambda y||^2 = \langle z - \lambda y, z - \lambda y \rangle = ||z||^2 - \overline{\lambda}\beta - \lambda(\overline{\beta} - \overline{\lambda}\langle y, y \rangle) = ||z||^2 - \overline{\lambda}\beta,$$

Dann ist $\|z - \lambda y\|^2 = \|z\|^2 - \frac{|\beta|^2}{\|y\|^2} < \|z\|^2 = \delta^2$. Dies liefert aber einen Widerspruch, denn $z - \lambda y = x_0 - x - \lambda y$ und $x + \lambda y \in Y$.

10.10. SATZ. Sei Y ein abgeschlossener Unterraum eines Hilbertraums H. Dann

$$H = Y \oplus Y^{\perp}$$
.

Beweis. $Y \cap Y^{\perp} = \{0\}$ ist klarm denn $y \perp y$ impliziert y = 0. Der Raum Y ist abgeschlossen und natürlich konvex, also existiert nach dem Projektionssatz für alle $x \in H$ ein $y \in Y$ mit x = y + z und $z \in Y^{\perp}$ (siehe Lemma 10.9).

10.11. BEMERKUNG. Die Darstellung x = y + z definiert eine Abbildung $P : H \to Y, x \mapsto y = Px$. Der Operator P ist linear und heißt die *Orthogonalprojektion* von H auf Y. P ist beschränkt und *idempotent*, d.h. $P^2 = P$. Die Linerität von P zeigt man zum Beispiel so: Für $x, y \in H$ und $z \in Y$ gilt $x - Px, y - Py \in Y^{\perp}$ und damit

$$||(x+y) - z||^2 = ||(x - Px + y - Py) + (Px + Py - z)||^2$$

$$\stackrel{\text{Pyth.}}{=} ||x - Px + y - Py||^2 + ||Px + Py - z||^2 \ge ||x + y - (Px + Py)||^2.$$

Dies gilt auch für z = P(x+y), welches den Abstand dist((x+y), Y) minimisiert. Wir sheen also P(x+y) = Px + Py. Sei jetzt $\lambda \in \mathbb{K}$ und $x \in H$. Analog geht man vor:

$$\|\lambda x - z\|^2 = \|\lambda x - \lambda Px + \lambda Px - z\|^2 \stackrel{\text{Pyth.}}{=} \|\lambda x - \lambda Px\|^2 + \|\lambda Px - z\|^2 \ge \|\lambda x - \lambda Px\|^2,$$

gilt für alle $z \in Y$. Dies liefert $P(\lambda x) = \lambda Px$.

Beweis zum Idempotenz von P: für jedes $x \in H$ gilt $Px \in Y$, d.h. dist(Px, Y) = 0, und somit PPx = Px. Die Beschränktheit von P folgt mit dem Satz von Pythagoras: Es gilt $||Px||^2 \le ||Px||^2 + ||x - Px||^2 = ||x||^2$, und somit $||P|| \le 1$. Bemerke noch, dass $||P|| = ||P^2|| \le ||P||^2$, und damit entwede P = 0 oder ||P|| = 1.

10.12. Theorem [Rieszscher Darstellungsatz]. Sei H ein Hilbertraum. Dann existiert zu $\varphi \in H'$ genau ein $z \in H$ mit

$$\varphi(x) = \langle x, z \rangle$$
 für alle $x \in H$.

Weiter gilt $\|\varphi\| = \|z\|$.

Beweis. Existenz: Für $\varphi = 0$ wähle z = 0. Sei also im Weiteren $\varphi \neq 0$. Der Raum ker φ ist in H abgeschlossen, und es gilt ker $\varphi \neq H$, also enthält $(\ker \varphi)^{\perp}$ ein $z_0 \neq 0$. Für $x \in H$ setze $y := \varphi(x)z_0 - \varphi(z_0)x$. Dann gilt $\varphi(y) = \varphi(x)\varphi(z_0) - \varphi(z_0)\varphi(x) = 0$, d.h. $y \in \ker \varphi$. Daraus folgt

$$0 = \langle y, z_0 \rangle = \langle \varphi(x)z_0 - \varphi(z_0)x, z_0 \rangle = \varphi(x)\langle z_0, z_0 \rangle - \varphi(z_0)\langle x, z_0 \rangle$$

$$\implies \varphi(x) = \frac{\varphi(z_0)}{\langle z_0, z_0 \rangle} \langle x, z_0 \rangle \quad \text{für jedes } x \in H,$$

und $z := \frac{\overline{\varphi(z_0)}}{\langle z_0, z_0 \rangle} z_0$ ist der gewünschte Vektor.

Eindeutigkeit: Seien $z_1, z_2 \in H, \varphi(x) = \langle x, z_1 \rangle = \langle x, z_2 \rangle$ für alle $x \in H$. Dann gilt $z_1 - z_2 \in H^{\perp} = \{0\}$.

Die Norm: Der Fall $\varphi = 0$ ist klar. Da $||z||^2 = \langle z, z \rangle = \varphi(z) \le ||\varphi|| ||z||$ gilt, so erhalten wir $||z|| \le ||\varphi||$. Umgekehrt: $||\varphi(x)|| = |\langle x, z \rangle| \le ||x|| ||z|| \Longrightarrow ||\varphi|| \le ||z||$. Zusammenfassend ist $||\varphi|| = ||z||$.

10.13. Bemerkung.

(a) Theorem 10.12 kann auch so formuliert werden: die Abbildung $\Phi: H \to H', \ \Phi(x) := \langle \cdot, x \rangle$ ist bijektiv, isometrisch und konjugiert linear, d.h. $\Phi(x+y) = \Phi(x) + \Phi(y)$ und $\Phi(\alpha x) = \overline{\alpha}\Phi(x)$ für alle $x, y \in H$ und $\alpha \in \mathbb{K}$.

(b) Als Konsequenz erhalten wir die Reflexivität eines Hilbertraums.

10.14. DEFINITION. Sei $a: H \times H \to \mathbb{K}$ eine Sesquilinearform, d.h. es gelten:

- a(x + y, z) = a(x, z) + a(y, z)
- a(x, y + z) = a(x, y) + a(x, z)
- $a(\alpha x, y) = \alpha a(x, y)$
- $a(x, \alpha y) = \overline{\alpha}a(x, y)$ (komplexe Konjugierung nur falls $\mathbb{K} = \mathbb{C}$)

Dann heißt a

- (a) stetig, falls $\exists M > 0$ mit $|a(x,y)| \le M||x|| ||y||$ für alle $x, y \in H$.
- (b) koerziv, falls $\exists \alpha > 0$ mit Re $a(x, x) \ge \alpha ||x||^2$ für alle $x \in H$.

Bemerkung: In der Vorlesung war die Definition nur mit $a(x,x) \ge \alpha ||x||^2$ formuliert.

10.15. THEOREM [Lax-Milgram]. Sei $a: H \times H \to \mathbb{K}$ eine stetige, koerzive Sesquilinearform auf einem Hilbertraum H. Es existiert genau eine bijektive Abbildung $A \in \mathcal{L}(H)$ mit

$$\langle x, Ay \rangle = a(x, y)$$
 für alle $x, y \in H$.

Desweiteren gilt $||A|| \le M$ und $||A^{-1}|| \le 1/\alpha$.

Beweis. Für $y \in H$ ist $a(\cdot,y) \in H'$ und $\|a(\cdot,y)\|_{H'} \leq M\|y\|$. Nach dem Satz von Riesz 10.12 existiert ein eindeutiges Ay so, dass $a(x,y) = \langle x, Ay \rangle$ für alle $x \in H$ und $\|Ay\| = \|a(\cdot,y)\|_{H'} \leq M\|y\|$ gelten. Wegen der Eindeutigkeit ist $y \mapsto Ay$ linear. Also $A \in \mathcal{L}(H)$ und $\|A\| \leq M$.

A ist injektiv:
$$\alpha ||x||^2 \le \text{Re } a(x,x) = \text{Re } \langle x,Ax \rangle \le |\langle x,Ax \rangle| \le ||x|| ||Ax||$$

 $\implies ||x|| \le ||Ax||$
 $\implies \text{ker } A = \{0\}.$

A ist surjektiv: Zunächst zeigen wir, dass im(A) abgeschlossen ist. Sei $Ax_n \to y$, dann $||x_n - x_m|| \le 1/\alpha ||Ax_n - Ax_m|| \to 0$, d.h. x_n ist eine Cauchyfolge, also konvergiert (x_n) gegen ein $x \in H$. Aber dann muss $Ax_n \to Ax = y$ gelten, also $y \in \text{im}(A)$. Nun beweisen wir im(A) = H. Nehmen wir das Gegenteil an. Dann existiert ein $0 \neq y \in \text{im}(A)^{\perp}$, also

$$\alpha ||y||^2 \le \operatorname{Re} a(y, y) = \operatorname{Re} \langle y, Ay \rangle = 0.$$

Dies ist aber ein Widerspruch.

10.16. **DEFINITION** [Orthonormalsystem]. Sei H ein Prähilbertraum. Eine Folge $(e_n) \subseteq H$ heißt Orthogonalsystem, falls $e_i \perp e_j$, $i \neq j$, und Orthonormalsystem (ONS) falls $||e_i|| = 1$.

10.17. SATZ [Besselsche Ungleichung]. Sei H ein Hilbertraum und $\{e_n : n \in \mathbb{N}\}$ ein Orthonormalsystem in H. Dann gilt für alle $x \in H$ die Ungleichung

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2$$

Beweis. Sei $N \in \mathbb{N}$ und $x_N := x - \sum_{n=1}^N \langle x, e_n \rangle e_n$. Dann $x_N \perp e_j$ für $j = 1, \dots, N$. Also

$$\sum_{n=1}^{N} |\langle x, e_n \rangle|^2 \leq \|x_N\|^2 + \sum_{n=1}^{N} |\langle x, e_n \rangle|^2 = \|x_N\|^2 + \left\| \sum_{n=1}^{N} \langle x, e_n \rangle e_n \right\|^2 \stackrel{\text{Pyth.}}{=} \left\| x_N + \sum_{n=1}^{N} \langle x, e_n \rangle e_n \right\|^2 = \|x\|^2.$$

Nun lasse $N \to \infty$ um die Behauptung zu erhalten.

10.18. Beispiel.

(a) Betrachte $L^2_{\mathbb{C}}((-\pi,\pi))$ und $e_k(t) := e^{ikt}, k \in \mathbb{Z}$. Dann gilt für $k \neq l$:

$$\langle e_k, e_l \rangle = \int_{-\pi}^{\pi} e^{i(k-l)t} dt = \frac{1}{i(k-l)} \left(e^{i(k-l)\pi} - e^{-i(k-l)\pi} \right) = \frac{2}{k-l} \sin(k-l)\pi = 0,$$

d.h. $\{e_k : k \in \mathbb{Z}\}$ ist ein Orthogonalsystem. Normierung:

$$\langle e_k, e_k \rangle = \int_{-\pi}^{\pi} 1 \, \mathrm{d}t = 2\pi,$$

also ist $(\frac{1}{\sqrt{2\pi}}e_k)$ ein ONS.

(b) In ℓ^2 betrachte $e_k := (0, 0, \dots, 0, 1, 0 \dots)$, wobei 1 in dem k-ten Koordinate steht. Dann ist (e_k) ein ONS in ℓ^2 .

10.19. SATZ [Gram-Schmidt-Verfahren]. Sei H ein Hilbertraum und $\{x_n : n \in \mathbb{N}\}$ eine linear unabhängige Teilmenge von H. Dann existiert ein ONS S mit $\overline{\lim} S = \overline{\lim} \{x_n : n \in \mathbb{N}\}$.

Beweis. Setze $e_1 := \frac{x_1}{\|x_1\|}$. Betrachte $e_2 := \frac{x_2 - \langle x_2, e_1 \rangle e_1}{\|x_2 - \langle x_2, e_1 \rangle e_1\|}$, wegen linear Unabhängigkeit dürfen wir durch $\|x_2 - \langle x_2, e_1 \rangle e_1\| \neq 0$ dividieren. Es gilt ferner $e_1 \perp e_2$. Analog geht es weiter:

$$e_{k+1} := \frac{x_{k+1} - \sum_{i=1}^{k} \langle x_k, e_i \rangle e_i}{\|x_{k+1} - \sum_{i=1}^{k} \langle x_k, e_i \rangle e_i\|}.$$

So definiert man induktiv $S := \{e_1, e_2, \dots\}$, und man sieht, dass S ein ONS ist. Da $x_n \in \lim S$ und $e_n \in \lim \{x_1, x_2, \dots\}$, gilt auch $\overline{\lim} S = \overline{\lim} \{x_1, x_2, \dots\}$.

10.20. Beispiel.

(a) Die Anwendung des Gram–Schmidt–Verfahrens auf $\{1,t,t^2,\dots\}$ in $L^2([-1,1])$ liefert die Legendre-Polynome:

$$e_n(t) = \sqrt{n + \frac{1}{2}} \frac{1}{2^n n!} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^n (t^2 - 1)^n.$$

(b) Betrachte den Raum $L^{2}([-1,1],(1-t^{2})^{-1/2})$, wobei

$$\langle f, g \rangle := \int_{-1}^{1} f(t)\overline{g}(t) \frac{\mathrm{d}t}{\sqrt{1 - t^2}}.$$

Das Gram-Schmidt-Verfahren angewandt auf $\{1, t, t^2, \dots\}$ ergibt die Chebyshev-Polynome:

$$e_n(t) = \sqrt{\frac{2^{2n-1}}{\pi}} 2^{-n+1} \cos(n \arccos t).$$

(c) Betrachte den Raum $L^2(\mathbb{R}, e^{-t^2/2})$, wobei

$$\langle f, g \rangle := \int_{-1}^{1} f(t) \overline{g}(t) e^{-t^2/2} dt.$$

Das Gram-Schmidt-Verfahren angewandt auf $\{1, t, t^2, \dots\}$ ergibt die Hermite-Polynome.

10.21. Definition.

(a) Sei X ein normierter Vektorraum. Eine Folge $(x_n) \subseteq X$ heißt eine Schauder-Basis in X, falls für alle $x \in X$ genau eine Folge $(\alpha_n) \in \mathbb{K}$ mit $\sum_{j=1}^n \alpha_j x_j \to x$ existiert (oder X ist endlichdimensional und (x_n) ist eine algebraische Basis in X).

(b) Sei H ein Hilbertraum und $(e_n) \subseteq H$ ein Orthonormalsystem. Ist (e_n) ein Schauderbasis, dann heißt (e_n) Orthonormalbasis.

Bemerkung: Man kann auch überabzählbare Orthonormalbasen auch definieren.

10.22. SATZ. Sei H ein Hilbertraum und (e_n) ein Orthonormalsystem in H. Äquivalent sind:

(a) (e_n) ist eine Orthonormalbasis in H

(d)
$$\langle x, y \rangle = \sum_{n=1}^{\infty} \langle x, e_n \rangle \overline{\langle y, e_n \rangle}$$
 für alle $x, y \in H$.

(b) $\lim\{e_n : n \in \mathbb{N}\}\$ ist dicht in H

(c)
$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$$
 für alle $x \in H$.

(e)
$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2$$
 für alle $x \in X$.

Beweis. (a) \Rightarrow (b): Definition.

(b) \Rightarrow (c): Sei $x \in H$ und $x_n = \sum_{i=1}^{N_n} \alpha_{ni} e_i \to x$. Sei $N > N_n$. Dann gilt

$$\left\| x - \sum_{i=1}^{N} \langle x, e_i \rangle e_i \right\| = \operatorname{dist}(x, \ln\{e_1, \dots, e_N\}) \le \operatorname{dist}(x, \ln\{e_1, \dots, e_{N_n}\}) \le \|x - x_n\| \to 0.$$

- (c) \Rightarrow (d): Stetigkeit von $\langle \cdot, y \rangle$.
- (d) \Rightarrow (e): Setze y = x.

(e)
$$\Rightarrow$$
 (c): $\left\|x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i \right\|^2 = \sum_{j=1}^{\infty} \left|\langle x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i, e_j \rangle\right|^2 = \sum_{j=1}^{n} \left\|\langle x, e_j \rangle - \langle x, e_j \rangle\right|^2 + \sum_{n=1}^{\infty} \left|\langle x, e_j \rangle\right|^2 \to 0.$

(c) \Rightarrow (a): Es ist nur die Eindeutigkeit der Darstellung zu beweisen. Falls $0 = \sum_{i=1}^{\infty} \alpha_i e_i$ gilt, gilt auch

$$0 = \left\langle \sum_{i=1}^{\infty} \alpha_i e_i, e_j \right\rangle = \sum_{i=1}^{\infty} \left\langle \alpha_i e_i, e_j \right\rangle = \alpha_j.$$

10.23. Beispiel.

- (a) Trigonometrische Polynome in $L^2([-\pi, \pi])$ formen eine ONB.
- (b) Normierte Legendre-Polynome in $L^2([-1,1])$ formen eine ONB.

10.24. KOROLLAR. Jeder separable Hilbertraum H besitzt eine Orthonormalbasis. Falls H separabel und unendlichdimensional ist, so ist H isometrisch isomorph zu ℓ^2 .

Beweis. (a) Sei $\{x_i: i \in \mathbb{N}\}$ eine dichte Teilmenge in H und $H_n := \lim\{x_1, \ldots, x_n\}$. Sei P_n die Orthogonalprojektion auf H_n . Setze $\widetilde{e}_n := x_n - P_{n-1}x_n$, $N := \{n \in \mathbb{N} : \widetilde{e}_n \neq 0\}$ und $e_n := \widetilde{e}_n/\|\widetilde{e}_n\|$ für $n \in N$ und $e_n := 0$ sonst. Dann $e_n \in H_n \cap H_{n-1}^{\perp}$, also ist $(e_n)_{n \in \mathbb{N}}$ ein Orthonormalsystem. Da $\lim\{e_1, \ldots, e_n\} = H_n$, folgt die Dichtheit von $\lim\{e_n : n \in \mathbb{N}\}$ in H, also ist $(e_n)_{n \in \mathbb{N}}$ eine Orthonormalbasis.

(b) Sei dim $H = \infty$ und (e_n) eine ONB. Dann gilt für alle $x \in H$, $x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$. Betrachte $\Phi : H \to \ell^2$, $x \mapsto (\langle x, e_n \rangle)_{n \in \mathbb{N}}$. Dann ist $\langle \Phi(x), \Phi(y) \rangle_{\ell^2} = \langle x, y \rangle$ und Φ ist eine bijektive, lineare Isometrie.

10.25. Bemerkung. Jeder Hilbertraum H besitzt eine Orthonormalbasis (nicht unbedingt abzählbar!), d.h. eine dichte Teilmenge $S \subseteq H$ mit $x \perp y$ für $x, y \in S, x \neq y$ und ||x|| = 1.

Beweis. Idee: verwende Zorn-Lemma um ein maximales ONS zu erhalten. Dies wird eine ONB sein.