

WS 07/08 20.11.2007

Analysis III für M. & Ph.: Differentialgleichungen

3. Übung

G09 (Lineare DGLen)

Finde für jede Skizze von Vektorfeldern (Phasenpotraits) in Abb.1 eine Matrix mit ähnlichem Vektorfeld.

G10 (Jordansche Normalform)

- i) Bildet neue Gruppen, sodass in jeder Gruppe mindestens eine Person in der Lage ist, zu einer Matrix eine Basis aus Eigen -und Hauptvektoren zu bestimmen (Stichwort: Jordansche Normalform).
- ii) Erklärt bzw. lasst euch erklären, wie man eine Basis aus Eigen- und Hauptvektoren zu einer Matrix bestimmt. Verwendet, wenn ihr möchtet, die Matrix $A = \begin{pmatrix} 0 & 1 & -1 \\ -2 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}$.
- iii) Verwendet eure Kenntnisse nun dazu, ein Fundamentalsystem der DGL x'(t) = Ax(t) für obiges A zu gewinnen.

G11 (Gedämpfter Oszillator)

Wir betrachten die Differentialgleichung eines ungedämpften harmonischen Oszilators

$$x''(t) + x(t) = f(t).$$

Verwende das Verfahren zur Reduktion der Ordnung und bestimme dann die allgemeine Lösung.

G12 (Asymptotisches Verhalten)

Sei $A: \mathbb{K}^n \to \mathbb{K}^n$ eine lineare Abbildung und sei $x(t): \mathbb{R} \to \mathbb{K}^n$ eine Lösung von x'(t) = Ax(t) mit $x(t_0) = x_0$ für ein $t \in \mathbb{R}$. Gib Bedingungen dafür an, dass $\lim_{t \to \infty} ||x(t)|| = \infty$ oder dass $\lim_{t \to \infty} ||x(t)|| = 0$.

- i) Orientiere dich zuerst an den Abbildungen in G09 und stelle Vermutungen an.
- ii) Nimm an, A sei diagonalisierbar.
- iii) Betrachte jetzt den allgemeinen Fall.

Heißt das, dass für alle Lösungen $||x(t)|| \to \infty$ oder $||x(t)|| \to 0$ gilt? Gibt es andere Fälle?

H07 (Lineares AWP) 4 Punkte

Bestimme die allgemeine Lösung der linearen Differentialgleichung x'(t)) = $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix} x(t)$.

Löse dann das AWP $x(0) = (1, 1, \sqrt{2} - 1)^t$.

H08 (Translation) 4 Punkte

i) Sei P_n der n+1-dimensionale Vektorraum aller Polynome auf $\mathbb R$ vom Grad kleiner oder gleich n, und sei $D:\ P_n\to P_n$ die Differentiation. Zeige, dass für jedes Polynom $p\in P_n$ und alle $x,t\in\mathbb{R}$ gilt

$$(e^{Dt}p)(x) = p(x+t).$$

ii) Sei $\lambda \in \mathbb{R}$ fest gegeben und sei Q_n der n+1-dimensionale Vektorraum aller Funktionen der Gestalt $e^{\lambda x}p(x), p \in P_n$ (der Vektorraum der so genannten " λ -Quasipolynome" vom Grade $\leq n$). Zeige, dass die Differentiation wiederum eine lineare Abbildung $D: Q_n \to Q_n$ definiert, und dass wiederum für jedes feste $f \in Q_n$ und für alle $x, t \in \mathbb{R}$ gilt:

$$(e^{Dt}f)(x) = f(x+t).$$

Welcher wichtige Satz aus der Analysis zeigt sich in dieser Aufgabe in neuem Licht?

H09 (Jeder Fluss genügt einer DGL)

4 Punkte

Eine Familie von linearen Abbildungen $T_t \in L(\mathbb{R}^n, \mathbb{R}^n), t \geq 0$ bildet einen Fluss (vgl. 2.8.6 Vorlesung), falls sie folgende Eigenschaften besitzt:

- 1. $T_0 = 1$,
- 2. $T_{s+t} = T_s T_t$ für alle $s, t \ge 0$,
- 3. $\lim_{t\to 0} ||T_t \mathbb{1}||_{op} = 0.$

Zeige, dass für einen Fluss genau ein $A \in L(\mathbb{R}^n, \mathbb{R}^n)$ existiert, sodass $T_t = e^{tA}$. Orientiere dich bei deinem Beweis entlang der Punkte i)-iv).

- i) Zeige, dass für hinreichend kleine $\epsilon > 0$ die Abbildung $\frac{1}{\epsilon} \int_0^{\epsilon} T_s ds$ invertierbar ist. Zeige hierfür, dass $||\mathbb{1} - \frac{1}{\epsilon} \int_0^{\epsilon} T_s \, ds||_{op} \le 1.$
- ii) Zeige, dass T_t an der Stelle t=0 differenzierbar ist. Betrachte hierfür $\frac{T_h-1}{h}\int_0^\epsilon T_s\,ds$ und benutzte i).
- iii) Zeige nun, dass T_t an jeder Stelle differenzierbar ist.
- iv) Setze $A := (T_t)'|_{t=0}$. Finde dann eine DGL, der T_t genügt, um daraus $T_t = e^{At}$ zu folgern.
- iv) Wieso muss A eindeutig sein?

Ergänzung: Der Beweis zeigt: Die Aussage gilt ebenso für T_t aus $L(\mathbb{K}^n, \mathbb{K}^n)$. Besonders wichtig ist der Fall eines unitären Flusses U_t (man sagt auch, einer unitären Einparameter-Gruppe). In diesem Fall gibt es also eine Matrix mit $U_t = e^{iAt}$; man sieht leicht, in diesem Fall ist A selbstadjungiert.

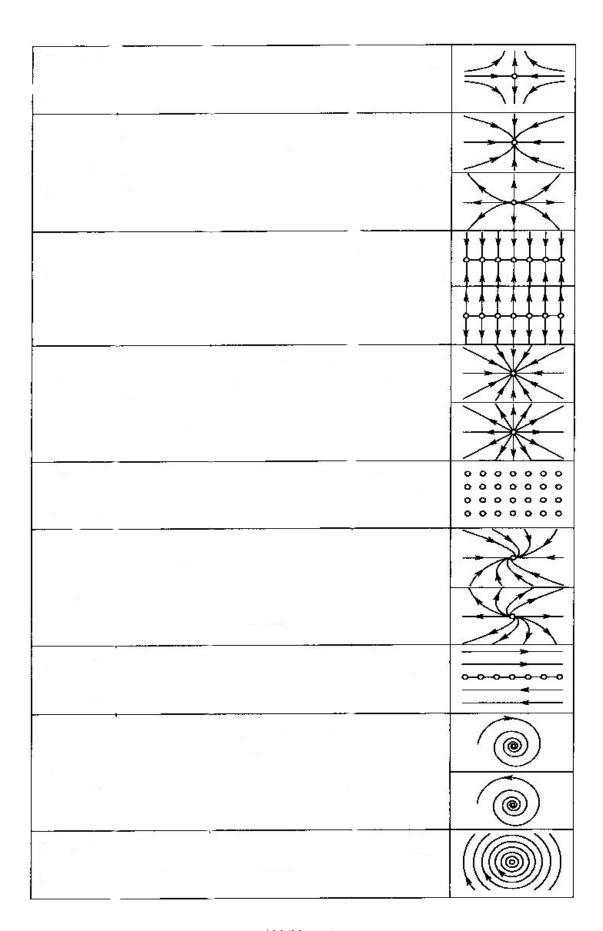


Abbildung 1: