V. Fišerová

K. Götze

K. Schumacher

5. November 2007

3. Übung zu Mathematik III für ET

Gruppenübungen

G1 (Noch ein Integralsatz)

Es seien $u: \mathbb{R}^3 \to \mathbb{R}^3$ und $\phi: \mathbb{R}^3 \to \mathbb{R}$ stetig differenzierbar. Sei außerdem $G \subset \mathbb{R}^3$ ein C^1 -Normalbereich. Zeigen Sie mit Hilfe des Gaußschen Integralsatzes die Formel

$$\iiint\limits_{G} (\operatorname{div} u)(x)\phi(x) \, dx = \iint\limits_{\partial G} \phi(x)u(x) \cdot N \, d\sigma - \iiint\limits_{G} u(x) \cdot \nabla \phi(x) \, dx.$$

G2 (Der Integralsatz von Stokes)

Sei $H(x, y, z) = (-y^3, x^3, -z^3)$ ein Vektorfeld. Sei $Y : \mathbb{R} \to \mathbb{R}^3$ die Schnittkurve des Zylinders $x^2 + y^2 = 1$ mit der Ebene x + y + z = 1. Der Weg Y beschreibe den Rand ∂S der Fläche S. Bestimmen Sie

$$\int_{\partial S} H \cdot dY$$

mit Hilfe des Integralsatzes von Stokes.

G3 (Trennung der Veränderlichen)

Finden Sie alle Lösungen der Differentialgleichung

$$y' + \frac{(1+x)}{x}y = 0.$$

Lösen Sie dann das Anfangswertproblem $y' + \frac{(1+x)}{x}y = 0$, y(1) = 1 und geben Sie das maximale Existenzintervall der Lösung an.

Hausübungen

H1 (Potential, Rotation) (3 Punkte)

(i) Sei $D = \{(x_1, x_2) \in \mathbb{R}^2 \setminus \{0\}, x_1^2 + x_2^2 < 1\}$ und

$$f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$$
, $f(x_1, x_2) = \frac{1}{\|\vec{x}\|^2} \cdot (-x_2, x_1)^T$, $\vec{x} = (x_1, x_2)^T$, $D(f) = D$

ein Vektorfeld auf \mathbb{R}^2 . Zeigen Sie, dass für f gilt

$$\frac{\partial f_1}{\partial x_2} = \frac{\partial f_2}{\partial x_1}.$$

(ii) Besitzt f ein Potential? Überprüfen Sie dazu, ob Wegintegrale über geschlossene Kurven gleich 0 sind.

H2 (Der Integralsatz von Stokes) (4 Punkte)

Sei $\Phi: [0,2\pi] \times [0,\frac{\pi}{2}] \to \mathbb{R}^3$ definiert durch

$$\Phi(u, v) = (\cos u \cdot \cos v, \sin u \cdot \cos v, \sin v)^{T}$$

und sei \mathcal{F} die durch Φ gegebene Fläche. Der Weg $Y: \mathbb{R} \to \mathbb{R}^3$ beschreibe den Rand $\partial \mathcal{F}$ der Fläche \mathcal{F} . Weiterhin sei die Funktion

$$H: \mathbb{R}^3 \to \mathbb{R}^3$$
 gegeben durch $H(x, y, z) = (y, x^2, x^2 + y^2)$.

- (i) Skizzieren Sie die Fläche \mathcal{F} .
- (ii) Berechnen Sie

$$\int_{\partial \mathcal{F}} H \cdot dY$$

unter Verwendung des Integralsatzes von Stokes.

(iii) Sei nun $D = \{(u, v) \in \mathbb{R}^2 : u \in [0, 2\pi], v \in [0, \frac{\pi}{2}]\}$ und $X : \mathbb{R} \to \mathbb{R}^2$ der Weg, der den Rand ∂D von D beschreibt. Berechnen Sie das Wegintegral

$$\int_{\Phi(X)} H \cdot dY.$$

H3 (Trennung der Veränderlichen) (3 Punkte)

Finden Sie die Lösung des folgenden Anfangswertproblems, und geben Sie den maximalen Existenzbereich der Lösung an.

$$y' = 1 - y^2$$
, $y(1) = 0$.

Hinweis: Bei der Integration empfiehlt es sich, auf Partialbruchzerlegung zurückzugreifen.

H4 (Zusatzaufgabe: Energierhaltung bei stationären Strömungen) (4 Punkte)

Eine zeitlich konstante Strömung einer Flüssigkeit mit konstanter Viskosität ν in einem Stömungsgebiet G kann mit den stationären Navier-Stokes-Gleichungen,

$$-\nu\Delta u + u \cdot \nabla u + \nabla p = f \quad \text{auf } G,$$

$$\operatorname{div} u = 0 \quad \text{auf } G,$$

$$u = 0 \quad \text{auf } \partial G,$$
(1)

beschrieben werden. Dabei ist $u:G\to\mathbb{R}^3$ das Geschwindigkeitsfeld der Strömung, $p:G\to\mathbb{R}$ der Druck und $f:G\to\mathbb{R}^3$ eine gegebene Kraftdichte. Sei genauer G ein C^1 -Normalbereich und f ein stetiges Vektorfeld. Seien außerdem u zweimal und p einmal stetig differenzierbar auf \overline{G} , so dass (1) erfüllt ist. Dabei sind alle Ableitungen komponentenweise zu verstehen. Das heißt z.B.

$$\nabla u = \begin{pmatrix} \nabla u_1 \\ \nabla u_2 \\ \nabla u_3 \end{pmatrix}.$$

Zeigen Sie

- (1) $-\iiint_G \Delta u \cdot u \, dx = \iiint_G |\nabla u|^2 \, dx = \iiint_G \sum_{i=1}^3 \sum_{k=1}^3 (\partial_i u_k)^2 \, dx$
- (2) $\iiint_G \nabla p \cdot u \, dx = 0,$
- (3) $\iiint u \cdot \nabla u \cdot u \, dx = -\iiint u \cdot \nabla u \cdot u \, dx = 0.$
- (4) Folgern Sie die Gleichung

$$\nu \iiint_G |\nabla u|^2 dx = \iiint_G f \cdot u \, dx.$$

Das heißt, die Energie, die durch die Reibung der Flüssigkeitsteil
chen aneinander vernichtet wird, ist gleich der durch die äußere Kraf
tfaufgebrachten Arbeit.