Statistik I für Human- und Sozialwissenschaftler

Skript zur Vorlesung

Fachbereich Mathematik
Technische Universität Darmstadt

im Wintersemester 2007/08

Inhaltsverzeichnis

1	Einführung	3
2	Statistische Kennwerte	12
3	Wahrscheinlichkeitstheorie	24
4	Wahrscheinlichkeitsverteilungen	42
5	Parameterschätzung	65
6	Intervallschätzung	76
7	Statistische Tests	86
	7.1 Einführung	86
	7.2 T-Test und Gauß-Test	93
	7.3 Chi-Quadrat-Streuungstest und F-Test	111
	7.4 U-Test von Mann-Whitney und Wilcoxon-Test	117
	7.5 Kolmogorow-Smirnow-Test, Chi-Quadrat-Anpassungstest und	d Chi-Quadrat
	Unabhängigkeitstest	132
8	Zusammenfassung	143

1 Einführung

Die Statistik beschäftigt sich mit der Auswertung	von, die unter
Einfluss des bei	,
oder	entstanden sind.
Sie bedient sich dabei	
und hat zum Ziel,	
 (1) große Datenmengen durch Angabe charakteri rer zu machen (sog),
Datenerhebung zugrundeliegen	
(sog).
Die der Datengewinnung dienende oder	
	·
Die erhobenen Sachverhalte heißen	Die Daten sind das
Ergebnis der	und heißen
odor	

Die _	lassen sich unterschied-
licher	zuordnen. Dazu ein Beispiel:
Beis	PIEL 1
In ei	ner Statistik-Vorlesung wurden die anwesenden Studenten befragt nach:
(1.1)	Geschlecht
(1.2)	Familien stand
(1.3)	Interesse an der Vorlesung (gemäß folgenden Einstufungen: sehr interessiert - interessiert - mäßig interessiert - kaum interessiert - nicht interessiert)
(1.4)	Beurteilung des Dozenten (gemäß folgenden Einstufungen: sehr gut - gut - befriedigend - mangelhaft - schlecht - sehr schlecht)
(1.5)	Alter
(1.6)	Anzahl der Fachsemester
(1.7)	Weglänge von der Wohnung zur Hochschule
(1.8)	Monatliches Einkommen
	n dieser Befragung erhobenen Merkmale sind gerade
	bis
Die N	Merkmalsausprägungen des Merkmals (1.1) sind:,
	· die Merkmalsausprägungen des Merkmals (12) sind·

; usw. bis zum Merkmal (1.8): Seine Merkmalsausprägu
en sind Geldbeträge in Euro, d.h. positive reelle Zahlen mit bis zu zwei Nachkon
nastellen. (Beantworten Sie sich selbst die Frage, was die Merkmalsausprägunge
er Merkmale (1.3) bis (1.7) sind!)
Vir kommen nun zu den unterschiedlichen, denen d
Merkmalsausprägungen angehören können:
(1) Nominalskala
Die Merkmalsausprägungen einer Nominalskala lassen sich lediglich
Sinnvoll können hier nur Gleichheits- ode
Ungleichheitsoperationen angewendet werden.
Im letzten Beispiel sind die Merkmale un
nominal skaliert.
(2) Ordinalskala
Die Merkmalsausprägungen einer Ordinalskala lassen sich lediglich
und Hier läs
sich eine sinnvolle Rangreihenfolge der Merkmalsausprägungen angeben, un
die Operationen "<", ">", "≤" und "≥" können sinnvoll angewendet werde
Im letzten Beispiel sind die Merkmale
unc
ordinal skalier

(3)	Intervallskala
	Die Merkmalsausprägungen einer Intervallskala lassen sich
	und und
	darüberhinaus läßt sich lediglich die Größe ihrer
	voneinander in ganzen Einheiten bestimmen. Man kann sinnvoll beantworten,
	um wieviele ganze Einheiten größer einzelne Merkmalsausprägungen sind als
	andere und die Operationen Addition und Subtraktion (im Bereich der ganzen
	Zahlen) können sinnvoll angewendet werden. Im letzten Beispiel sind
	die Merkmale und
(4)	Verhältnisskala Die Merkmalsausprägungen einer Verhältnisskala lassen sich
	tion und Division sinnvolle Operationen. Im letzten Beispiel sind die Merkmale

verhältnisskaliert.

Nominalskala und Ordinalskala bezeichnet man als
Skalen, Intervallskala und Verhältnisskala hingegen als Skalen.
Wenn wir nun eine Statistische Erhebung durchgeführt haben, egal welche Ska-
lenart vorliegt, ist die erste Aktion, die der Statistiker an den vorliegenden Daten
vornimmt, die Auszählung von
Wir unterscheiden dabei
(1) die eines Merkmals:
Das sind die Anzahl der Messwerte, die jeweils einer Merkmalsausprägung
zugeordnet werden können; sowie
(2) die eines Merkmals:
Das sind die absoluten Häufigkeiten jeder Merkmalsausprägung dividiert durch
die Gesamtanzahl der Messwerte dieses Merkmals. Damit wir bei den relativen
Häufigkeiten Prozentwerte herausbekommen, werden die relativen Häufigkei-
ten noch mit 100 multipliziert.
Beispiel 2
Wir fragen 10 zufällig vorbeigehende Personen nach ihrer Größe (in cm):
176, 160, 187, 154, 157, 163, 192, 157, 172, 182.
Eine graphische Darstellung dieser Daten, der sog,
ist das

Hierfür werden auf der waagrechten Achse eines Koordinatensystems die Merkmalsausprägungen abgetragen und darüber stehen Stäbe. Die Stabhöhen sind gerade die absoluten oder relativen Häufigkeiten, welche auf der senkrechten Achse abgetragen werden.

Stabdiagramm für die absoluten Häufigkeiten:

Sind die in der	_ vorkommenden Zahlen fast alle voneinander
verschieden, so bietet sich der Überg	gang zu klassierten Daten an. Wir teilen die
Merkmalsausprägungen in Klassen ei	n und erstellen nun eine
	:

Als graphische Darstellung von klassierten Daten verwendet man häufig das
Es besteht aus Rechtecken, die über den einzelnen Klas-
sen so errichtet werden, daß die Rechtecksfläche proportional zur jeweiligen Häufig-
keit der Klasse ist.
Histogramm für die relativen Häufigkeiten (in Prozent):
Nach Möglichkeit sollten die Klassengrenzen gewählt
werden. Die Höhen der Histogramm-Rechtecke sind dann proportional zur Häufig-
keit der jeweiligen Klasse.
Eine Alternative zum Histogramm ist das
Es besteht aus dem Strecken-
zug, der die Mitten aller oberen Rechteckseiten des Histogramms verbindet. Die so
entstandene Linie nennt man

Mit Hilfe von Histogrammen	lassen sich bestimmte Charakteristika der Verteilungen
der Häufigkeiten erkennen.	Daten haben nur ein
Maximum,	Daten sind dagegen mehrgipfelig. Die
Daten können um einen We	rtoder
	verteilt sein. Bei linksschiefen Verteilungen fällt die lin-
ke Seite langsamer ab als di	e rechte.

Charakteristika von Häufigkeiten:

Schließlich interessieren wir uns noch für die	
	und die
	Häufigkeiten.
Diese erhält man durch sukzessives Aufsummierer	ı wie folgt:
Dabei muss die unterste Zahl in der Spalte "kum	ulierte absolute Häufigkeit" stets
die Gesamtanzahl der Beobachtungen ergeben un	ad die unterste Zahl in der Spalte
"kumulierte relative Häufigkeit" muss stets 100 (k	oei Prozentwerten) sein.
Für eine kürzere Schreibweise in den Tabellen verw	venden wir folgende Abkürzungen:
: absolute Häufigkeit der k-ten	Merkmalsausprägung
: relative Häufigkeit der k-ten $\mathbb N$	Merkmalsausprägung
: absolute kumulierte Häufi	gkeit der k-ten Merkmalsausprägung
: relative kumulierte Häufig	gkeit der k-ten Merkmalsausprägung
Dabei ist k einfach ein	_ , der die Merkmalsausprägungen
durchnumeriert.	

2 Statistische Kennwerte

Wir wollen uns nun der Beschreibenden Statistik zuwenden, d.h. für eine vorliegende
Datenmenge charakteristische Kennzahlen, sog.
, angeben. Wir betrachten dazu nur Daten aus
metrischen Skalen.
Seien also die hintereinandergeschriebenen
Messwerte eines metrisch skalierten Merkmals, d.h ist der erste Messwert
dieses Merkmals, ist der zweite Messwert, usw.
heißt
Dabei ist stets die Gesamtanzahl der vorliegenden Messwerte. Ordnet man die
Zahlen dieser Messreihe der Größe nach, so schreiben wir die
mit in Klammern gesetzten Indizes wie folgt:
mit

Für eine reelle Zahl x , (kurz $x \in \mathbb{R}$), bezeichne $m(x)$ die Anzahl der Werte in
der Messreihe, die kleiner oder gleich der Zahl \boldsymbol{x} sind. Wir definieren die sogenannte
durch:
Es handelt sich dabei um eine Treppenfunktion, deren
die Werte der Messreihe sind. Die jeweiligen
sind die relativen Häufigkeiten der Messwerte in der
Messreihe.
Beispiel 3
18 Schüler eines Mathematik-Kurses in der Oberstufe eines Gymnasiums werden
nach ihrer letzten Klausurnote befragt. Wir erhalten folgende Messreihe:
2, 1, 4, 4, 3, 2, 3, 3, 5, 4, 2, 3, 2, 1, 3, 4, 3.

Durch eine Strichliste ermitteln wir die Häufigkeiten der einzelnen Noten:

Empirische Verteilungsfunktion:		
Für jedes Merkmal bzw. für jede Messreihe eines Merkmals lassen sich nun folgende		
Statistische Kennwerte angeben:		
(1) Dereines Merkmals ist der am häufig-		
sten vorkommende Messwert einer Messreihe. In Formeln:		
Der ist nicht unbedingt eindeutig.		
An der Strichliste könne wir den Modalwert ablesen: Hier ist		
der Modalwert eindeutig. Falls wir jedoch die Schüler mit Note 3 von der Befragung		
ausschließen, dann wäre der Modalwert nicht mehr eindeutig, da dann die Noten 2		
und 4 beide mit derselben größten Häufigkeit vorkommen.		

(2)	Um den	eines Merkmals zu	bestimmen,
	müssen wir die geordnete Messreihe betrachten (mit Vielfachheiten).		
Falls n (=Anzahl der Messwerte) ungerade, so ist der			
	der mittlere	e Messwert; falls n gerade, so ist der	die
	Hälfte der	Summe aus den mittleren beiden Messwerten. In Forme	eln:
Um o	len Median	zu bestimmen, bilden wir die geordete Messreihe:	
D	10	. l. 7. ll'a 'a l. M. l'. l'. Helfa l. C	241.
Da n	=18 eme ger	rade Zahl ist, ist der Median die Hälfte der Summe aus de	n mittleren
beide	en Messwert	en:	
(3)	Ein	einer Messreihe zerlegt diese in einen u	interen und
	einen obere	en Teilbereich. Der	
bezeichnet dabei stets die relative Häufigkeit im unteren Teilbereich			ch. Der
		ist der kleinste Messwert	mit der Ei-
	genschaft,	daß verglichen mit ihm mindesten	der Messwer-
	te nicht grö	ößer sind.	

(4) Das
eines Merkmals ist die Summe aller Messwerte dividiert durch die Anzahl aller
Messwerte einer Messreihe. In Formeln:
Ein anderer Name für das
ist auch
Für das Arithmetische Mittel addieren wir alle Noten der Messreihe. (Achtung!!!
Die Noten und nicht die Häufigkeiten werden addiert!!!) Die so berechnete Summe
dividieren wir noch durch n=18 und erhalten das Arithmetische Mittel:
Das heißt: Die in der letzten Klausur erzielte Durchschnittsnote ist
In bestimmten Situationen sind dem arithmetischen Mittel andere Arten von Durch-
schnittswerten vorzuziehen.
(5) Das
eines Merkmals ist die n -te Wurzel aus dem Produkt aller Messwerte. Es ist
nur für nichtnegative Zahlen definiert. In Formeln:
Ein Beispiel ist die durchschnittlichen Inflationsrate: 1. Jahr 15%, 2. Jahr 10%, 3
Jahr 20%.

Fährt	t man 100 km mit 50 km/h und dann 100 km mit 100 km/h, so legt man 200
km in	a 3 Stunden zurück, die Durchschnittsgeschwindigkeit ist 66 2/3 km/h. Dies ist
das _	Mittel von 50 und 100.
(6)	Das
	eines Merkmals ist der Kehrwert des arithmetische Mittel der Kehrwerte. Es
	ist nur für positive Zahlen definiert. In Formeln:
Das .	ist geeignet für Größen, von denen das Produkt anstelle der Summe in-
terpre	etierbar ist, z. B. von Verhältnissen oder Wachstumsraten. Daseignet
sich f	ür Größen, die durch einen (relativen) Bezug auf eine Einheit definiert sind.
Zwei	weitere wichtige Statistische Kennwerte sind die folgenden:
(7)	Die eines Merkmals ist die Summe der qua-
	drierten Differenzen der Messwerte zum Arithmetischen Mittel dividiert durch
	die Anzahl aller Messwerte der Messreihe. In Formeln:
(8)	Dieeines
	Merkmals ist die Wurzel aus der Varianz. In Formeln:

und
sind Maße für die Streuung der Messwerte um den Mittelwert und heißen auch
; wohingegen,
,, und Auskunft geben über die
Lage der Messwerte auf der Zahlengeraden; deswegen heißen sie auch
·
Beispiel 4 (Fortsetzung von Beispiel 3)
Zur Berechnung von Varianz und Standardabweichung in Beispiel 3 gehen wir nun
$schrittweise\ vor\ und\ erweitern\ obige\ H\"{a}ufigkeitstabelle\ um\ folgende\ zus\"{a}tzliche\ Spal-$
ten:
Nun summieren wir die Einträge der letzten Spalte auf und erhalten :
Dieses Ergebnis entspricht genau der Summe aus der
Formel! Warum? Weil wir uns mit Hilfe der absoluten Häufigkeiten in der Formel
die Arbeit verkürzt haben:

Dieses Ergebnis jetzt noch durch 18 dividiert ergibt die Varianz:
Und daraus die Wurzel gezogen ergibt die Standardabweichung:
Das heißt: Der mittlere Abstand der Klausurnoten von der Durchschnittsnote ist und der mittlere quadratische Abstand der Klausurnoten von der
Durchschnittsnote ist
Eine weitere Möglichkeit, die Varianz zu berechnen, erhalten wir durch Umformen der Varianzformel:
(Beide Formeln zur Berechnung der Varianz haben Vor- und Nachteile; das hängt
von den vorgegebenen Daten ab.)

Beisi	PIEL 5 (Fortsetzung von Beispiel 3)
Die Z	Tabelle zur Berechnung der Varianz mit der alternativen Berechnungsformel
sieht	nun wie folgt aus:
Sum n	nation aller Einträge der letzten Spalte ergibt:
Diese	Zahl dividiert durch n=18 ergibt Davon noch
subtre	ahiert ergibt die Varianz:
Und	dies ist unser bekanntes Ergebnis aus den vorhergehenden Berechnungen.
(9)	Dereines
	Merkmals ist die Standardabweichung dividiert durch das arithmetische Mit-
	tel. In Formeln:
Der	wird vor allem
beim	Vergleich von Daten mit sehr unterschiedlichen Mittelwerten verwendet.

Modalwert, Median, Arithmetisches Mittel, Varianz und Standardabweichung sind		
alles Statistische Kennwerte, die sich für jedes einzelne Merkmal eine	r Statistischen	
Erhebung berechnen lassen. Deswegen heißen sie auch Kennwerte für $\underline{\ }$		
(oder) Messreihen.	
Wir werden jetzt noch		
(oder) Messreihen kennenlernen.		
Messreihen bestehe	en aus den Mess-	
werten Merkmale einer Statistischen Erhebung, die	e wir als Paare	
schreiben wie folgt:		
Die zugehörige zweidimensionale Häufigkeitstabelle heißt		
und eine geeignete graphische Darstellung ist das		

Beispiel 6

(a) 7 Studentinnen und 11 Studenten eines Seminars werden gefragt, ob sie Raucher oder Nichtraucher sind. Dabei ergab sich folgende zweidimensionale Messreihe bestehend aus den Datenpaaren (Erster Eintrag: Geschlecht (m oder w),
Zweiter Eintrag: R für Raucher oder N für Nichtraucher):

$$(m, N), (m, N), (m, R), (w, N), (m, N), (m, R), (w, N), (m, N), (w, R),$$

 $(m, N), (w, R), (w, N), (m, N), (m, R), (w, N), (m, N), (w, N), (m, N).$

Aus diesen Datenpaaren erstellen wir folgende beiden Kontingenztafeln:

und

Die untere Kontingenztafel erhalten wir aus der oberen, indem wir alle oberen Einträge durch n=18 dividieren und mit 100 multiplizieren (damit wir in der unteren Kontingenztafel Prozentwerte erhalten).

(b)	In einer Studie über den Einfluss von Düngung auf die Ernteerträge bei Wei-
	zen wurden 7 Felder untersucht. Dabei ergab sich folgende zweidimensionale
	Messreihe bestehend aus den Datenpaaren (Erster Eintrag: Dünger in kg pro
	ha, Zweiter Eintrag: Ernte in dz pro ha):

Aus diesen Datenpaaren erstellen wir folgendes Punktediagramm:

An diesem Punktediagramm können wir die positive Tendenz erkennen, dass vermehrte Düngung zu höherem Ernteertrag auf den untersuchten Feldern führt.

3 Wahrscheinlichkeitstheorie

Die Wahrscheinlichkeitstheorie st	zellt
zur Verfüg	gung, mit deren Hilfe die einer Statistischen
Erhebung zugrundeliegenden	
beschrieben werden können.	
Wir bezeichnen einen Vorgang, o	der nach einer ganz bestimmten Vorschrift durch-
geführt wird, und dessen Ausgan	g (oder dessen Ergebnis) vom Zufall abhängt, also
nicht vorhersagbar ist, als ein _	
Die Menge aller Ausgänge (Ergeb heißt	nisse) eines
Diese	bezeichnen wir kurz mit und ihre
einzelnen	, die,
bezeichnen wir mit	·
Eine Teilmenge von hei	ßt Für solche Teilmengen
schreiben wir meist Großbuchsta	aben Einelementige Teil-
mengen von heißen	·

Beispiel 7

(a)	Wir betrachten das Zufallsexperiment: "Werfen eines Würfels"	
	Ergebnismenge:	
	Elementarereignisse:	
	Beispiele für Ereignisse:	
	Ereignis A: "Gerade Augenzahl" \implies A=	
	Ereignis B: "Ungerade Augenzahl" \implies B=	
	Ereignis C : "Augenzahl größer als 3" \Longrightarrow $C=$	
Ereignis D: "Augenzahl kleiner als 2" \implies D=		
	Bemerkung: A, B, C und D sind alles Teilmengen von Ω , werden also mit	
Mengenklammern geschrieben, auch wenn nur ein einziges Element drin		
(b)	Zufallsexperiment: "Einfacher Münzwurf"	
(')	Ergebnismenge: oder kurz	
	Elementarereignisse:	
	oder kurz	
	Beispiele für Ereignisse:	
	Ereignis A: "Wappen" \implies A=	
	Ereignis B: "Nicht Wappen" \implies B=	
	Ereignis C: "Wappen oder Zahl" \implies C=	
	Ereignis D: "Wannen und Zahl" \implies D=	

(c)	c) Zufallsexperiment: "Zweifacher Münzwurf"	
	Ergebnismenge:	
	Elementar er eignisse:	
	Beispiele für Ereignisse:	
	Ereignis A: "Mindestens einmal tritt Zai	hl auf"
	\implies $A = $	
	Ereignis B: "Beidesmal Wappen" \implies	B=
Seien	A, B Ereignisse, d.h. A, B $\subseteq \Omega$.	
(a)	$A \cup B$ heißt	von A und B (A oder B treten ein)
(b)	$A \cap B$ heißt	von A und B (A und B treten ein)
(c)	$\overline{\mathbf{A}} = \Omega \setminus \mathbf{A}$ heißt	
	oder	von A
(d)	Falls $A = \emptyset$, so heißt A	
(e)	Falls $A = \Omega$, so heißt A	
(f)	Falls A \cap B = \emptyset , so heißen A und B	oder
		·
(Dab	ei wird mit "∅" stets die leere Menge "{}	" bezeichnet und "\" heißt "ohne".)

Beispiel 8 (Fortsetzung des letzten Beispiels)

$$zu\ (a):\ A\cup B=$$

$$A \cap B = \underline{\hspace{1cm}}$$

$$C \cup D =$$

$$C \cap D =$$

$$\overline{A} = \underline{\hspace{2cm}}$$

$$\overline{B} = \underline{\hspace{1cm}}$$

$$\overline{C} = \underline{\hspace{1cm}}$$

$$\overline{D} =$$

$$zu\ (b):\ A\cup B=$$

$$A \cap B =$$

$$B \cup C =$$

$$B \cap C = \underline{\hspace{1cm}}$$

$$\overline{A} = \underline{\hspace{2cm}}$$

$$\overline{B} = \underline{\hspace{1cm}}$$

$$\overline{C} = \underline{\hspace{1cm}}$$

$$zu(c)$$
: $A \cup B =$

$$A \cap B = \underline{\hspace{1cm}}$$

$$\overline{A} = \underline{\hspace{1cm}}$$

$$\overline{B} = \underline{\hspace{1cm}}$$

Im nächsten Schritt ordnen wir jedem uns interessierenden Ereignis A $\subseteq \Omega$ eine Za	hl		
zwischen 0 und 1 zu, die sog.			
des Eintretens von Ereignis A. Dafür schreiben wir			
	,		
Damit diese mathematis	ch		
gut handhabbar sind, müssen sie die sog.			
(I) bis (III) erfüllen:			
(I) P(A)≥0 für jedes Ereignis A⊆ Ω , d.h. Wahrscheinlichkeiten sind immer ≥ 0);		
(II) $P(\Omega)=1$, d.h. die Wahrscheinlichkeit des Ganzen ist immer 1;			
(III) Sind die Ereignisse $A_1,\ A_2,\ \dots\ \subseteq\Omega$ paarweise disjunkt, so muss die Wahr-			
scheinlichkeit ihrer Vereinigung gleich die Summe der Einzelwahrscheinlichkei-			
ten sein; in Formeln:			
(sog)			
Aus den Kolmogoroff'schen Axiomen lassen sich nun folgende			
herleiten	ı:		
Seien dazu A, B $\subseteq \Omega$. Dann gelten:			
$(1) \underline{\hspace{1cm}} \leq P(A) \leq \underline{\hspace{1cm}};$			
(2) $P(\emptyset) = \underline{\hspace{1cm}} \text{ und } P(\Omega) = \underline{\hspace{1cm}};$			

(3)	$P(\overline{A}) = \underline{\hspace{1cm}};$	
(4)	$P(A \cup B) = \underline{\hspace{1cm}}$	
	(sog	.);
(5)	Aus A \subset B folgt	
Beis	PIEL 9 (Fortsetzung der letzten beiden Beispiele)	
zu (a):	(Werfen eines Würfels)	
	$P(A \cup B) = P(\Omega) = $	
	$P(A \cap B) = P(\emptyset) = \underline{\hspace{1cm}}$	
	$P(B \cup C) = P(\{1,3,4,5,6\}) = $	
	$P(B \cap C) = P(\{5\}) = \underline{\hspace{1cm}}$	
	$P(\overline{C}) = P(\{1,2,3\}) = \underline{\hspace{1cm}}$	
	oder mit Rechenregel (3):	
	$P(\overline{C}) = 1 - P(C) = 1 - P(\{4,5,6\}) = $	
Die V	Vahrscheinlichkeiten im letzten Beispiel haben wir durch	einfaches Abzählen
besti	mmt. Das geht immer dann, wenn ein sog.	
	vorliegt. Ein	
	ist ein Zufallsexperiment, das nur	endlich viele,
näml	ich n, Ausgänge besitzt, die alle gleichwahrscheinlich sind	d.
Das l	neißt:	
Jeder	Ausgang oder jedes Elementarereignis eines	
	tritt mit Wahrscheinlichkeit	ein

Beispiel 10 (Fortsetzung der letzten drei Beispiele)	
zu (a): (Werfen eines Würfels)	
$Hier\ ist\ n = \underline{\qquad}\ und\ es\ liegt\ ein\ Laplace-Experiment\ vor,\ d.h.\ jede\ Augenzahl$	
tritt mit derselben Wahrscheinlichkeit auf.	
zu (b): (Einfacher Münzwurf)	
$Hier\ ist\ n = \underline{\qquad}\ und\ es\ liegt\ ebenfalls\ ein\ Laplace-Experiment\ vor,\ d.h.\ jede$	
Seite der Münze tritt mit derselben Wahrscheinlichkeit auf.	
Die Wahrscheinlichkeit eines Ereignisses $\mathbf{A} \subseteq \Omega$ von einem Laplace-Experiment lässt	
sich ganz einfach bestimmen: Wir müssen dazu nur abzählen, wieviele Elemente A	
enthält und diese Zahl durch n dividieren. Mit anderen Worten:	
Die Wahrscheinlichkeit eines Laplace-Experiments, dass Ereignis A eintritt, ist die	
Anzahl aller Ausgänge dividiert durch die Anzahl aller	
Ausgänge dieses Laplace-Experiments.	
In Formelschreibweise:	
(sog)
Beispiel 11 (Fortsetzung der letzten vier Beispiele)	
zu(c): $P(A) =$	
D/D)_	

Um uns die Abzählarbeit bei der Ermittlung der "günstigen" und der "möglichen"				
Ausgänge eines Laplace-Experiments zu erleichtern, bedienen wir uns der Kombi-				
natorik. Dazu führen wir zwei Symbole ein:				
(sprich: "n Fakultät")				
(sog. Binomialkoeffizient, sprich: "n über k")				
Variation: Die Anzahl aller möglichen Anordnungen eines m-stufigen Experiments,				
bei dem auf der ersten Stufe k_1 verschiedene Ausgänge möglich sind, auf der zwei-				
ten Stufe k_2 verschiedene Ausgänge, usw. bis auf der m-ten Stufe k_m verschiedene				
Ausgänge, lautet:				
BEISPIEL 12: Ein Würfel und eine kleine Pyramide werden gleichzeitig geworfen.				
Die 4 Pyramidenseiten seien mit den römischen Ziffern I, II, III und IV beschriftet.				
Hier ist $k_1 = $ (Würfel) und $k_2 = $ (Pyramide).				
Also ergibt sich für die Anzahl der Möglichkeiten				

Kombination: Sei n \geq k. Die Anzahl aller Möglichkeiten, aus n verschiedenen
Objekten k Objekte ohne Zurücklegen und ohne Beachtung der Reihenfolge heraus-
zunehmen, lautet:
Beispiel 13:
Mithilfe der Variationsregel und der Kombinationsregel lassen sich die Anzahl der
Mglichkeiten in bestimmten Situationen herleiten.
Beispiel 14 Die Anzahl aller möglichen Ausgänge $ \Omega $, bei:
(a) Zweimaliges Werfen eines Würfels. Hier ist $ \Omega =$
(b) Dreifacher Münzwurf. Hier ist $ \Omega =$
Beispiel 15 Lotto 6 aus 49:
Die Anzahl aller Möglichkeiten, aus 49 Kugeln 6 Kugeln mit einem Griff herauszu-
nehmen. Oder: Die Anzahl aller Möglichkeiten, auf einem Lottofeld mit 49 Plätzen
6 Kreuze zu machen, beträgt

Beispiel 16 Auf wieviele verschiedene Arten können 10 Bücher in einem Bücher-
regal angeordnet werden? Man stelle sich dazu das Bücherregal eingeteilt in 10 Plätze
nebeneinander vor. Für die Besetzung des 1. Platzes hat man noch alle 10 Bücher zur
Auswahl, also 10 Möglichkeiten. Für den 2. Platz hat man nur noch 9 Möglichkeiten,
für den dritten Platz 8, usw. bis für den letzten Platz nur noch 1 Buch übrigbleibt.
Insgesamt sind das
$M\"{o}glichkeiten.$

Beispiel 17 Wieviele Möglichkeiten gibt es für die 4 - stellige Codezahl eines Safes, wenn für jede Stelle die Ziffern 0 bis 9 zur Verfügung stehen, aber keine der Ziffern doppelt vorkommen darf? Für die 1. Stelle gibt es noch alle 10 Möglichkeiten, für die 2. Stelle nur noch 9 Möglichkeiten, für die 3. Stelle 8 Möglichkeiten und für die 4. Stelle 7 Möglichkeiten; also insgesamt

Möglichkeiten.

BEISPIEL 18 In einer Urne befinden sich 10 Kugeln, beschriftet mit den Ziffern 1 bis 10. Es darf 4 mal hineingegriffen werden. Wieviele Möglichkeiten gibt es, wenn beim 1. Griff 1 Kugel herausgeholt werden darf, beim 2. Griff 2 Kugeln, beim 3. Griff 3 Kugeln und beim 4. Griff 4 Kugeln?

Wir kommen nun zu einem weiteren wichtigen Begriff in der Wahrscheinlichkeits-
theorie:
Seien $A,B\subseteq\Omega$ zwei Ereignisse. Die Wahrscheinlichkeit für Ereignis B unter der Be-
dingung, dass Ereignis A bereits eingetreten ist, heißt
und wird mit
bezeichnet. (ausgesprochen: "P von B gegeben A")
Für $P(A) > 0$ sei
Beispiel 19
$\label{lem:autoconstraint} \textit{Zufalls experiment: Zweimaliges Werfen eines W\"{u}rfels. \ \textit{Die Ergebnismenge} \ \Omega \ \textit{ist:}$
Betrachte die Ereignisse:
A:
B:
Dann ist die Wahrscheinlichkeit des Ereignisses, dass im zwei-
ten Wurf Augenzahl "6" fällt unter der Bedingung, dass im ersten Wurf bereits
Augenzahl "1" gefallen ist.

Berechnung von	
wobei	-
und	
Also ist	

Falls nun gilt:	, d.h. falls die Bedingte Wahr-
scheinlichkeit von B gegeben A	von A ist und
damit gleich der Wahrscheinlichkeit von B	dann heißen die Ereignisse A und B
voneinand	er und es gilt die folgende sog.
	:
Falls die	
nicht erfüllt ist, sind A und B nicht voneina	nder unabhängig.
Beispiel 20 (Fortsetzung vom letzten Beis	oiel)
A =	
B=	
$A \cap B =$	
P(A)= und $P(B)=$	
Daraus folgt:	
$P(A) \cdot P(B) =$	
und damit ist	
$P(A \cap B) =$	
Somit erfüllen A und B die Unabhängigkeits	sgleichung, d.h. die Ereignisse A und B
sind unabhängig.	

Wir lernen jetzt noch zwei wichtige Formeln zum Rechnen mit Bedingten Wahrscheinlichkeiten kennen:

Es seien $A_1, A_2, \ldots, A_n \subset \Omega$ Ereignisse mit $P(A_i) > 0$ für alle $1 \le i \le n, \bigcup_{i=1}^n A_i = \Omega$ und $A_i \cap A_j = \emptyset$ für alle $i \ne j$.

1) Die Formel von der Totalen (oder Vollständigen) Wahrscheinlichkeit Für alle Ereignisse $B\subseteq \Omega$ gilt:

2) Die Formel von Bayes

Für alle Ereignisse $B\subseteq \Omega$ mit P(B)>0 gilt:

Sobald wir ein ______ Zufallsexperiment vorliegen haben, bei dem die Wahrscheinlichkeiten der Ausgänge auf der 2. Stufe _____ sind von den Ausgängen der 1. Stufe, hilft uns die Formel von der totalen Wahrscheinlichkeit, die Wahrscheinlichkeit für ein Ereignis der _____ Stufe zu berechnen.

Beispiel 21

Gegeben sei eine Urne mit 3 schwarzen und 5 weißen Kugeln. Aus dieser Urne soll zweimal nacheinander mit verbundenen Augen je eine Kugel ______ Zurücklegen gezogen werden.

Gesucht ist nun di	te Wahrscheinlichkeit des Ereignisses, dass	die zweite gezogene
Kugel schwarz ist.	Seien folgende Ereignisse gegeben:	
A_1 :		
A_2 :		
B:		
Da wir	Zurücklegen ziehen, ist die Wahrscheinli	chkeit der 2. Ziehung
	vom Ergebnis der 1. Ziehung. (Wa	rum? Und warum ist
das Zu	rücklegen nicht so?)	
Das heißt: Wir mü	ssen die Formel von der Totalen Wahrsche	einlichkeit anwenden,
um P(B) zu berechi	nen:	
Nun ist $P(A_1)=$	$und\ P(A_2) =$	
sowie $P(B A_1)=$	$und \ P(B A_2) =$	
Damit ergibt sich in	nsgesamt:	

Falls wir ein zweistufiges Zufallsexperiment vorliegen haben, bei dem alle Wahr-
scheinlichkeiten und alle bedingten Wahrscheinlichkeiten
gegeben sind, so hilft uns die Formel von Bayes, die
Bedingte Wahrscheinlichkeit für
$1 \le i \le n$ auszurechnen.
Beispiel 22
Zur Erkennung von Krankheiten stehen in der Medizinischen Diagnostik Tests zur
Verfügung, die so angelegt sind, dass sie ausfallen sollen, falls
eine Erkrankung vorliegt, und, falls keine Erkrankung vorliegt.
Diese Bedingungen sind in der Realität aber nicht hundertprozentig erfüllt.
Nehmen wir an, es geht um einen medizinischen Test für eine seltene Krankheit.
Sei A ₁ das Ereignis:
und A ₂ das Ereignis:
Nehmen wir an, es sei $P(A_1) = $ Dann ist $P(A_2) = $
Sei nun B das Ereignis:
Nehmen wir ferner an, der Test erfülle folgende Wahrscheinlichkeiten:

sowie

ch
V.

Dazu folgende Erklärung:		
Wegen	ist bei	Personen mit
Kranken und	Gesunden zu rechn	nen.
Von den Kranken werden	positiv getestet, da	s sind Personen.
Von den Gesu	ınden werden fälschlicherwe	eise positiv
getestet, das sind Pe	ersonen.	
Insgesamt werden also		Personen positiv ge-
testet. Aber nur die dav	von sind wirklich krank! Ur	nd das sind wie gehabt
Letztendlich ist dieser Prozentsan ist, und der Anteil der fälschlich	· · · · · · · · · · · · · · · · · · ·	
Falls nämlich	und damit	
	_ , dann sieht das Ergebnis	schon ganz anders aus:
Falls	$___$ und $__$	
dann berechnet sich ein noch höh	herer Prozentsatz:	
Das bedeutet: Je weniger selten e	eine Krankheit, desto zuverl	ässiger ist der Test, ge-

 $Person\ auch\ wirklich\ eine\ Erkrankung\ vorliegt.$

 $nauer\ gesagt:\ desto\ gr\"{o}\beta er\ ist\ die\ Wahrscheinlichkeit,\ dass\ bei\ einer\ positiv\ getsteten$

${\bf 4} \quad {\bf Wahrscheinlichkeitsverteilungen}$

Bei vielen Zufallsexperimenten interessiert	man sich nicht nur für die Ergebnismenge		
$\Omega,$ sondern auch für Zahlenwerte, die den einzelnen Ergebnissen (oder Ausgängen)			
$\omega \in \Omega$ eines Zufalls experiments zugeordnet	werden. Für solche Zuordnungen verwen-		
det man in der Wahrscheinlichkeitsthoerie s	og		
Eine	_ wird meist mit einem Großbuchstaben		
(X oder Y oder Z od.a.) bezeichnet und ist e	eine, die jedem		
Ausgang $\omega \in \Omega$ eine reelle Zahl $X(\omega)$ zuo	rdnet. Die Menge aller $X(\omega)$ bezeichnet		
man als	von X, kurz: Die Elemente		
von heißen oder _	von X.		
Beispiel 23			
(a) Zweimaliges Werfen eines Würfels.	$Die\ Zufallsvariable\ X\ sei\ eine\ Funktion,$		
die jedem Ausgang $\omega \in \Omega$ ihre Auge	nsumme zuordne. Der Wertebereich von		
X ist somit			
Beispiele von Wertzuordnungen sind.	•		
	$_$, $usw.$		
(b) 10-maliges Werfen eines Würfels. Hi	er ist die Ergebnismenge:		

	Die Zufallsvariable Y sei eine Funktion, die jedem Ausgang $\omega \in \Omega$ den Anteil
	der Würfe zuordne, wie oft unter den 10 Würfen eine "6" gewürfelt wurde.
	$Dann\ ist\ z.B.$
	oder
	Der Wertebereich von Y ist die Menge
(c)	Zufällig vorbeigehende Studenten in der Mensa werden nach ihrem Studien-
	$fach\ befragt.\ Hier\ soll\ die\ Zufallsvariable\ Z\ jedem\ Student\ den\ Zahlenschlüssel$
	$seines\ Studien fachs\ zuordnen,\ etwa\ Psychologie=1,\ Biologie=2,\ Elektrotech-leine fachs\ zuordnen,\ etwa\ psychologie=1,\ Elektrotech-leine fachs\ zuordnen,\ etwa\ zu$
	nik=3, $Maschinenbau=4$.
	Dann wäre der Wertebereich von Z:
(d)	Von zufällig ausgewählten Patienten eines Arztes werden Körpergröße (in cm)
	und Gewicht (in kg) gemessen. Hier soll die Zufallsvariable X jedem befragten
	Patient ω ein Messdatenpaar mit Körpergröße und Gewicht zuordnen, z.B.
	·
	$Der\ Wertebereich\ W(X)\ von\ X\ ist\ dann\ die\ Menge\ aller\ solchen\ Messdaten-$
	paare:

Je nachdem, wie der Wertebereich einer Zufallsvariablen aussieht, machen wir fol-		
gende Unterscheidung:		
Eine Zufallsvariable heißt, falls ihr Wertebereich eine Teil-		
menge der ganzen Zahlen $\mathbb Z$ oder der gebrochen-rationalen Zahlen $\mathbb Q$ ist (wie in den		
vorhergenden Beispielen (a), (b) oder (c)).		
Eine Zufallsvariable heißt, falls ihr Wertebereich ein Intervall		
aus den reellen Zahlen $\mathbb R$ ist (wie Körpergröße und Gewicht im vorhergehenden		
Beispiel (d)).		
Als nächstes interessiert es uns, mit welcher Wahrscheinlichkeit bei einem Zufalls-		
experiment eine bestimmte Realisierung der Zufallsvariablen X auftritt, d.h. wie		
wahrscheinlich die einzelnen Werte aus $W(X)$ sind.		
Bei Zufallsvariablen X werden diese Wahrscheinlichkeiten		
von der sog.		
f_X angegeben. Diese Funktion f_X ist wie folgt definiert:		
Es gelten folgende Eigenschaften:		
(1)		
(2)		

Beispiel 24		
$\label{eq:Zweimaliger Wurf eines Würfels. Zufallsvariable X = Augensumme beider Würfe.}$		
Dann gilt für die Wahrscheinlichkeitsfunktion f_X :		
$f_X(2) =$		
$f_X(3) =$		
$f_X(4) =$		
usw.		
Insgesamt:	-	
Falls wir uns z.B. für das Ereignis "Augensumme zwischen 3 und 4" interessieren,		
so berechnet sich mit Hilfe der Wahrscheinlichkeitsfunktion die Wahrscheinlichkeit		
des Eintretens dieses Ereignisses wie folgt:		
BeiZufallsvariablen gibt uns die sog		
(oder kurz	.)	
$f_{\boldsymbol{X}}$ an, wie wahrscheinlich es ist, dass die Werte einer Zufallsvariablen X in ein Inter-		
vall [a,b] fallen. Eine		f_X
ist eine nicht negative integrierbare Funktion mit folgenden Eigenschaften:		
(1)		
(2)		

Eigenschaft (1) besagt, dass die Fläche unter dem Graphen der Wahrscheinlichkeitsdichte f_X über dem Intervall [a,b] gleich der Wahrscheinlichkeit $P(a \le X \le b)$ ist (d.h. der Wahrscheinlichkeit, dass die Zufallsvariable X Werte im Intervall [a,b] annimmt) und Eigenschaft (2) besagt, dass die Gesamtfläche unter dem Graphen von f_X gleich 1 ist.

Beispiel 25

Wir stehen an einer Bushaltestelle und messen die Wartezeit der Personen, die auf ihren Bus warten. Wir interessieren uns für das Ereignis: "Die Wartezeit beträgt zwischen 5 und 10 Minuten".

Üblicherweise wird diese Wartezeit durch eine Zufallsvariable X beschrieben mit folgender Wahrscheinlichkeitsdichte:

Dann besitzt X die sog. Exponentialverteilung mit Parameter λ . Wir rechnen Eigenschaft (2) nach:

Gemäß Eigenschaft (1) berechnet sich die Wahrscheinlichkeit für obiges Ereignis:
Schließlich lernen wir noch die $_$ F_X
einer Zufallsvariablen X kennen. Sie ordnet jeder reellen Zahl t folgende Wahrschein-
lichkeit zu:
Für eine Verteilungsfunktion ${\cal F}_X$ ergeben sich folgende Eigenschaften:
(1) Für alle $a < b$ gilt;
(2) $\lim_{t\to\infty} F_X(t) = \underline{\qquad}$, $\lim_{t\to\infty} F_X(t) = \underline{\qquad}$;
(3) F_X ist monoton wachsend, d.h;
(4) F_X ist rechtsseitig stetig, d.h
Es gilt:
Durch die Verteilungsfunktion ${\cal F}_X$ einer Zufallsvariablen X werden alle ihre wahr-
scheinlichkeitstheoretischen Eigenschaften eindeutig festgelegt. (!) In diesem Sinne
sprechen wir von der
oder kurz: einer Zufallsvariablen X.

Für	Zufallsvariablen folgt:
mit o	der zugehörigen Wahrscheinlichkeitsfunktion f_X .
Für	Zufallsvariablen gilt:
mit o	der zugehörigen Wahrscheinlichkeitsdichte f_X .
Bei s	stetigen Zufallsvariablen entspricht ${\cal F}_X(t)$ dem Flächeninhalt unter dem Graph
der I	Dichte f_X über dem Intervall $(-\infty,t]$ auf der x-Achse:
Beis	PIEL 26
(a)	$Beispiel \ f\"{u}r \ eine \ diskrete \ Zufallsvariable: \ Zweimaliger \ Wurf \ eines \ W\"{u}rfels, \ X$
	= Augensumme beider Würfe. Mit Hilfe der Verteilungsfunktion berechnen wir
	das Ereignis "Augensumme kleiner oder gleich 4" wie folgt:

(b) Beispiel für eine stetige Zufallsvariable: Wir betrachten $X=$ Wartezeit von
Personen an einer Bushaltestelle. Mit Hilfe der Verteilungsfunktion berechnen
wir das Ereignis "Die Wartezeit beträgt höchstens 7 Minuten" wie folgt:
Wir kommen nun zu einem weiteren wichtigen Begriff in der Theorie der Wahr-
scheinlichkeitsverteilungen, welcher insbesondere im Zusammenhang mit Statisti-
schen Tests häufig vorkommt:
Für einnennen wir das
einer Zufallsvariablen X die kleinste reelle Zahl für die gilt:
Ist die Verteilungsfunktion F_X stetig, dann gilt
bezeichnet also diejenige Stelle auf der x-Achse, bis zu welcher der Flächen-
inhalt unter dem Dichtegraphen genau ist.

Das 0,5-Quantil $x_{0,5}$ wird auch	genannt (in Anlehnung an
deneiner Messreihe);	
Das 0,25-Quantil $x_{0,25}$ heißt	_ und das 0,75-Quantil $x_{0,75}$
heißt Die Differenz	
der beiden Quartile heißt	
Ganz analog zu den Statistischen Kennwerten Arithmet	isches Mittel \bar{x} und Varianz
s^2 einer werden wir hier den _	
und die	einer
definieren. (Wir schreiben manch	nal auch
und, um zu verdeutlichen	ı, dass Erwartungswert und
Varianz der Zufallsvariablen X gemeint sind.) Die posi	tive Quadratwurzel aus der
Varianz einer Zufallsvariablen heißt auch	(wie
die Standardabweichung s einer Messreihe).	
BeiZufallsvariablen gilt:	

(Hier ist f_X die zugehörige Wahrscheinlichkeitsfunktion.)

Bei Z	ufallsvariablen gilt:
(Hier ist f_X die zugehörige	Wahrscheinlichkeitsdichte.)
Ganz allgemein gibt der Er	wartungswert einer Zufallsvariablen die Mitte (oder auch
den Schwerpunkt) ihrer Ve	erteilung an und die Varianz einer Zufallsvariablen gibt
die mittlere quadratische A	Abweichung ihrer Verteilung vom Erwartungswert an.
Wie bei der Varianz einer l	Messreihe gibt es auch hier bei der Varianz einer Zufalls-
variablen eine alternative I	Berechnungsformel für die Varianz:
Bei	Zufallsvariablen:
Falls	
dann ist	
Bei	_ Zufallsvariablen:
Falls	
dann ist	
dann ist	

Beispiel 27

(a) diskreter Fall: Zweimaliger Wurf eines Würfels, X= Augensumme beider Würfe, $W(X)=\{2,3,....,12\}$. Wir berechnen Erwartungswert und Varianz wie folgt:

(b) stetiger Fall: $X = Wartezeit \ von \ Personen \ an \ einer \ Bushaltestelle.$ Hier berechnen sich Erwartungswert und Varianz wie folgt:

Wir betrachten nun Rechenregeln für den Erwartungswert und die Varianz. Seien
X_1, \ldots, X_n Zufallsvariablen und a eine reelle Zahl. Dann gilt:
111, 111, 111 Buttaile variables and a cine recise Built Built give
Für die Varianz der Summe von Zufallsvariablen gilt eine ähnliche Rechenregel.
Dazu definieren wir den Begriff der Unabhängigkeit für Zufallsvariablen.
Die Zufallsvariablen X_1, \dots, X_n heißen unabhängig, falls für alle Vektoren
$(x_1,\ldots,x_n)\in\mathbb{R}^n$ gilt:
Seien X_1, \ldots, X_n unabhängige Zufallsvariablen, dann gilt:
Wir führen nun folgende Abkürzungen ein: Wir schreiben: " $\mathbf{X}_1,,\mathbf{X}_n$ i.i.d." für
X_1,\ldots,X_n
", was bedeutet, dass die Zufallsvariablen $X_1,,X_n$ alle
voneinander unabhängig sind und alle dieselbe Verteilung besitzen; insbesondere
haben sie alle denselben Erwartungswert und dieselbe Varianz.

(Man denke z.B. an den n-fachen Wurf eines Würfels; hier sind alle Würfe voneinander unabhängig, d.h. kein Wurf beeinflusst den anderen, und jeder Wurf besitzt dieselbe Wahrscheinlichkeitsverteilung. Genauso beim n-fachen Münzwurf oder beim Ziehen einer Kugel aus einer Urne mit Zurücklegen, usw..)

Wir lernen nun wichtige diskrete Verteilungen kennen:
Geometrische Verteilung
Wir betrachten ein Zufallsexperiment. Auf jeder Stufe
seien genau zwei Ausgänge möglich, einmal mit Wahrscheinlichkeit
p, wobei 0 <p<1, einmal="" mit="" td="" und="" wahrscheinlichkeit<=""></p<1,>
1-p. Die Ausgänge der einzelnen Stufen seien
voneinander (d.h. sie beeinflussen sich nicht gegenseitig). Ein solches Zufallsexperi-
ment nennen wir auch eine Folge von
mit
p.
Die Zufallsvariable X beschreibe nun die Anzahl der Versuche bis einschliesslich des
ersten Treffers. Dann gilt:
Jede Zufallsvariable X mit einer solchen Wahrscheinlichkeitsfunktion f_X heißt
mit Parameter, kurz:

Ist	, dann besitzt die Zufallsvariable X den Erwartungswert
	und die Varianz
Beispiel 28	
Ein Würfel wird so	lange wiederholt geworfen, bis zum ersten Mal eine 6 erscheint.
Es ist	_ zu wählen. Für die Wahrscheinlichkeit, daß höchsten 3 Würfe
benötigt werden, erh	ält man
Binomialverteilun	\mathbf{g}
Wir betrachten eine	Folge von n Bernoulli-Versuchen mit Trefferwahrscheinlichkeit
p, wobei $0 .$	Die Zufallsvariable X beschreibe nun die Anzahl der Treffer in
einer solchen Versuc	hsreihe. Dann gilt:
Jede Zufallsvariable	X mit einer solchen Wahrscheinlichkeitsfunktion f_X heißt
	$\underline{\hspace{1cm}} \text{ mit den Parametern } \underline{\hspace{1cm}} \text{ und } \underline{\hspace{1cm}},$
kurz:	
Es gilt:	

Dabei gibt der Erwartungswert die mittlere Anzahl der Treffer an.

Beispiel 29
10 zufällig ausgewählte Studenten einer Vorlesung werden gefragt, ob sie Rechtshände
oder Linkshänder sind. Die Wahrscheinlichkeit dafür, dass eine Person Rechtshänder
ist, betrage 0,95. Die Zufallsvariable X beschreibe die Anzahl der Rechtshänder unter
den 10 Studenten. Dann können wir davon ausgehen, dass X
ist mit den Parametern und
Wieviele Rechtshänder unter den 10 Studenten können wir erwarten?
Wie groß ist die Wahrscheinlichkeit, dass von den 10 Studenten mindestens 8 Rechts-
händer sind? Es gilt:
Poissonverteilung
Die Anzahl der Stufen eines Zufallsexperiments sei

_____, d.h. wir betrachten _____ Ereignisse.

und die Trefferwahrscheinlichkeit p sei _____

In diesem Fall lässt sich die Wahrscheinlichkeitsfunktion f_X einer binomialverteilten Zufallsgröße X annähernd berechnen durch:

(wobei e $\approx\!2,\!72$ die sog. Euler'sche Zahl ist). Jede Zufallsvariable X mit einer Wahrscheinlichkeitsfunktion

heißt	mit Para	meter
kurz:	Es gilt	

Beispiel 30

Nicht nur 10 zufällig	ausgewählte Stude	enten, sondern	1000 were	den gefragt, ob sie
Rechts- oder Linkshän	der sind. Die Wahr	cscheinlichkeit,	dass eine I	Person Rechtshänder
ist, betrage wieder 0,95	5. Da die Poissonve	erteilung die V	erteilung _	
	_ ist, fragen wir na	ch der Anzah	Y der Lin	kshänder. Die Zu-
fallsvariable Y ist dans	n annähernd Poisso	on-verteilt mit	Parameter	
(für	und	<i>).</i>	Im Mittel	können wir unter
den 1000 Studenten				_ Linkshänder er-
warten. Wir interessi	eren uns nun für o	die Wahrscher	inlichkeit, a	lass von den 1000
Studenten genau 40 S	tudenten Linkshän	der sind. Dies	e berechnet	sich wie folgt:

_	trnovecom of vicebo	•	$/ \alpha m$		11100
	lypergeometrische	v	'ег	. —	111119
_	, per geometric incline	•	O-	001	

Aus einer Urne, welche M schwarze und N-M weiße Kugeln enthält, werden ohne Zurücklegen n Kugeln gezogen. Die Zufallsvariable X beschreibe nun die Anzahl der gezogenen schwarzen Kugeln. Dann gilt:

Jede Zufallsvariable X mit einer solchen Wahrscheinlichkeitsfunktion heißt	
mit den Parametern , und , kurz:	
Es gilt:	

Beispiel 31

Es ist bekannt, dass es unter 1000 Studenten 50 Linkshänder gibt. Es werden nun von diesen 1000 Studenten 10 zufällig ausgewählte und gefragt, ob sie Rechtshänder oder Linkshänder sind. Die Zufallsvariable X beschreibe die Anzahl der Rechtshänder unter den 10 Studenten. Dann können wir davon ausgehen, dass X _______ Wieviele Rechtshänder unter den 10 Studenten können wir erwarten?

Wir kommen nun zu den stetigen Wahrscheinlichkei	tsverteilungen. Die wichtigste
davon ist die	und ihr Spezialfall
die	
Normalverteilung	
Eine stetige Zufallsvariable X heißt	mit
und	,
kurz, falls i	hre Wahrscheinlichkeitsdichte
f_X folgende Gestalt hat:	
wobei $\pi \approx 3.14$ und $e \approx 2.72$.	
Den zu f_X gehörigen Graphen bezeichnet man aufgru	ınd seiner Gestalt auch als
	Sie ist symmetrisch zu
und umso flacher, je größer ist. Die Fläc	che unter dem Graph ist 1.
Bei und liegen Wendepunkt	e.
Beispiel 32	
(a)	

Eine normalverteilte Zufallsvariable Z mit Erwartungswert und Varianz
nennt man
kurz Die zugehörige Verteilung heißt
Die zugehörige
Verteilungsfunktion wird mit bezeichnet, ihre Werte sind tabelliert. (Diese
Tabellen findet man im Anhang von Statistik-Büchern, z.B. Tabelle B im Anhang
vom Bortz.) Die Wahrscheinlichkeitsdichte einer $N(0,1)$ -verteilten Zufallsvariablen
Z hat folgende Gestalt:
Zugehöriger Dichtegraph:
entspricht dem Flächeninhalt von bis
unter dem Dichtegraphen einer standardnormalverteilten Zufallsvariablen Z

Es gibt eine Möglichkeit, jede	Zufallsvariable
X in eine	Zufallsvariable Z
zu transformieren. Dies hat den Vorteil, da	ss man nur noch Tabelle,
nämlich die der	,
benötigt.	
Sei dazu X eine	Zufallsvariable.
Definiere nun die sog.	Zufallsvariable Z wie
folgt:	
Diese	_ Zufallsvariable Z ist
·	

Die Bedeutung der Normalverteilung zeigt der folgende Satz.

Zentraler Grenzwertsatz

Sei Y_1, Y_2, \ldots eine Folge von i.i.d. Zufallsvariablen mit Erwartungswert $E(Y_i) = 0$ und $Var(Y_i) = 1$ für alle natürlichen Zahlen i, dann gilt für alle reellen Zahlen x:

Der Zentrale Grenzwertsatz besagt grob, der Gesamteffekt, der Summe vieler kleiner zentrierter unabhängiger Einzeleffekte ist, ist näherungsweise normalverteilt.

Aufgrund des Zentralen Grenzwertsatz lassen sich mit Hilfe der Verteilungsfunktion der Standardnormalverteilung Näherungswerte für bestimmte Wahrscheinlichkeiten angeben.

Seien X_1, \ldots, X_n i.i.d. Zufallsvariablen mit Erwartungswert $E(X_i) = \mu$ und $Var(X_i) = \sigma^2$ für $1 \le i \le n$, dann gilt für alle a < b:

Eine B(n,p)-verteilte Zufallsvariable X ist als Summe $X = \sum_{i=1}^{n} X_i$ unabhängiger B(1,p)-verteilter Zufallsvariablen darstellbar. (X_i nehmen den Wert eins an, wenn man auf der i-ten Stufe des Zufallsexperiments einen Treffer erhält. Bei Fehlschlag auf der i-ten Stufe nimmt X_i den Wert null an.) Somit gilt näherungsweise für a < b:

Im folgenden betrachten wir nun weitere stetige Wahrscheinlichkeitsverteilungen. Auf deren Bedeutung werden wir später noch eingehen.

Chi-Quadrat (kurz: χ^2) - Verteilung
Seien $Z_1,,Z_n$ i.i.d. $N(0,1)$ -verteilte Zufallsvariablen. Dann heißt die Zufallsvariable
mit
, kurz:
t-Verteilung
Seien Z, $Z_1,,Z_n$ i.i.d. $N(0,1)$ -verteilte Zufallsvariablen. Dann heißt die Zufallsva-
riable
•,
mit ,
kurz:
F-Verteilung
Seien $Z_1,,Z_{n_1},Z_{n_1+1},,Z_{n_1+n_2}$ i.i.d. $N(0,1)$ -verteilte Zufallsvariablen. Dann heißt
die Zufallsvariable
mit
und,
kurz:

5 Parameterschätzung

In den ersten beiden Kapiteln haben wir uns mit der Beschreibenden Statistik beschäftigt. Sie dient dazu, vorhandenes Datenmaterial durch Berechnung charakteristischer Kennzahlen übersichtlicher zu machen.

Wir kommen nun zu der Schließenden Statistik. Sie dient dazu, au	ıfgrund des vorlie-
genden Datenmaterials auf die dem zufälligen Vorgang der Datener	hebung zugrunde-
liegenden Gesetzmäßigkeiten zurückzuschließen, kurz: Von einer $_$	
auf die	zu schließen.
Dabei bezeichnen wir als	oder auch
die Menge aller zu untersuchen	den Elemente, die
Träger eines bestimmten Merkmals sind. Als	bezeich-
nen wir eine beschreibbare Teilmenge daraus	

Beispiel 33

- (a) Grundgesamtheit: Alle Wähler bei einer Bundestagswahl. Eine mögliche Stichprobe daraus wäre die Teilmenge derjeniger Wähler, die vor einem Wahllokal
 von einem Fernsehteam befragt werden.
- (b) Grundgesamtheit: Alle Käufer eines bestimmten Produkts. Eine mögliche Stichprobe daraus wäre die Teilmenge derjeniger Käufer, die innerhalb einer bestimmten Zeitspanne Reklamationen an den Produkthersteller richten.

Der Statistiker interessiert sich nun sehr oft für bestimmte Statistische Kennwerte
der Grundgesamtheit. Oft jedoch ist es z.B. aus Kostengründen nicht möglich, mit
der ganzen Grundgesamtheit eine Statistische Erhebung durchzuführen, um diese
Statistischen Kennwerte zu ermitteln. So begnügt man sich meist damit, eine Stati-
stische Erhebung nur mit einer Stichprobe durchzuführen, um durch die Statistischen
Kennwerte der Stichprobe (sog.
) wenigstens Näherungswer-
te für die gesuchten Statistischen Kennwerte der Grundgesamtheit zu erhalten.
Diese aus irgendwelchen Gründen nicht ermittelbaren Statistischen Kennwerte der
Grundgesamtheit bezeichnet man als
Mögliche Parameter sind: oder
Mögliche Parameter sind:oder
Mögliche Parameter sind: oder eines Merkmals der Grundgesamtheit.
Mögliche Parameter sind: oder eines Merkmals der Grundgesamtheit. Um jedoch deutlich zu machen, dass damit die nicht ermittelbaren (oder anders
Mögliche Parameter sind: eines Merkmals der Grundgesamtheit. Um jedoch deutlich zu machen, dass damit die nicht ermittelbaren (oder anders ausgedrückt: die gesuchten) Statistischen Kennwerte der Grundgesamtheit gemeint
Mögliche Parameter sind:
Mögliche Parameter sind:

Es gibt verschiedene Möglichkeiten, eine Stichprobe auszuwählen; der Statistiker sagt: eine Stichprobe zu ziehen. Generell sollte die Stichprobe stets sehr sorgfältig gezogen werden, damit sie die Grundgesamtheit möglichst genau repräsentiert. Eine solche Stichprobe nennt man dann eine repräsentative Stichprobe.

Beispiel 34 (Zum letzten Beispiel)

- (a) Je nach Zeitpunkt der Befragung und je nach Wahllokal sind beliebig viele unterschiedliche Stichproben möglich.
- (b) Je nach Zeitspanne und Produkt sind auch hier beliebig viele unterschiedliche Stichproben möglich.

Die letzten beiden Beispiele machen deutlich, dass sich die Ziehung einer Stichprobe		
aus einer Grundgesamtheit in gewisser Weise als ein		
betrachten lässt.		
Für eine Stichprobe der Größe n können wir dann die Befragung der i-ten Person		
(z.B. im Kontext der letzten beiden Beispiele (a)) jeweils durch eine		
(für i=1,,n) beschreiben, wobei die als i.i.d. ange-		
nommen werden.		
Das Befragungsergebnis der i-ten Person ist dann eine Realisierung der		
(für i=1,,n). Diese Realisierung schreiben wir mit Kleinbuchstaben $___$ als Un-		
terscheidung zur Zufallsvariablen $___$ (für i=1,,n).		
Der Statistiker redet dann oft von der Stichprobe		

und meint damit den eben beschriebenen Sachverhalt.

Wie zieht nun der Statistiker Rückschlüsse von der Stichprobe auf die Grundge
samtheit, d.h. wie geht das?
Dazu verwendet er sog Ein is
eine n-dimensionale Funktion mit den Zufallsvariablen al
Platzhaler, die angibt, wie man den gesuchten Parameter der Grundgesamtheit au
den Stichprobenergebnissen näherungsweise berechnen kann.
Wenn man dann die vorliegenden Stichprobenrealiesierungen
anstelle der Platzhalter in die Schätzfunktion einsetzt, erhäl
man einen konkreten Schätzwert.
Ein häufig verwendeter Schätzer für den Mittelwert μ der Grundgesamtheit is
ist selbst wieder eine
Durch Einsetzen der Realisierungen einer bestimmten Stichprobe erhält man der
Schätzwert, das ist gerade der

Beispiel 35

Eine Sportlehrerin interessiert sich für die durchschnittliche Körpergröße 12-jähriger Jungen, um ihren Geräteaufbau bei einem Sportfest für diese Altersklasse optimal planen zu können.

Dazu misst sie die Größe von zehn 12-jährigen Jungen aus ihrer Schulklasse und
berechnet aus diesen zehn Messergebnissen den (Stichproben-)Mittelwert.
Die vorliegende Grundgesamtheit ist hier die Menge aller
Der gesuchte Parameter der Grundgesamtheit ist die
eines
Die von der Sportlehrerin gezogene Stichprobe sind die
aus ihrer Schulklasse.
Wir können nun die Größe jeder dieser zehn Jungen durch eine
beschreiben (für $i=1,,10$), wobei wir diese als
i.i.d. annehmen.
Der von der Lehrerin verwendete Schätzer ist
Durch Einsetzen der Messergebnisse erhält sie den Schätz-
wert, das ist gerade der Stichprobenmittelwert,
als näherungsweise Schätzung für den unbekannten Parameter
Wenn wir aus derselben Grundgesamtheit nicht nur eine, sondern beliebig viele Stich-
proben ziehen, können wir den Stichprobenmittelwert für jede einzelne Stich-
probe berechnen. Diese Stichprobenmittelwerte werden mehr oder weniger stark vom
Populationsparameter abweichen. Je weniger sie von abweichen, desto
besser oder genauer schätzt ein Stichprobenmittelwert den Parameter

Anders ausgedrückt: Je geringer die Streuung der Verteilung der Zufallsvariablen
(bei diesen vielen Stichproben) ausfällt, d.h. je geringer die Schwankung von
um, desto besser schätzt ein einzelner Stichprobenmittelwert den
unbekannten Parameter
Dies alles gilt nicht nur für den Stichprobenmittelwert \overline{x} , sondern auch für jeden
anderen Stichprobenkennwert, z.B. für die Stichprobenvarianz. Es gilt stets: Je ge-
ringer die der sog. Stichprobenkennwerteverteilung, desto
genauer schätzt ein einzelner Stichprobenkennwert den gesuchten Parameter.
Die Streuung der Stichprobenkennwerteverteilung heißt
Speziell heisst die Streuung von \overline{X} Standardfehler des Mittelwerts und wird mit
bezeichnet.
Es gilt nun: Je größer die Streuung der Messwerte in der Grundgesamtheit, desto
größer ist auch Und: Je größer der
, desto kleiner ist
(Denn: Der wachsende nähert
sich immer mehr der Größe der Grundgesamtheit, und demzufolge bildet auch die
Stichprobe immer besser die Eigenschaften der Grundgesamtheit ab, was insbe-
ondere für den Mittelwert gilt. Und dies bedeutet gerade, dass die Streuung von
immer geringer wird.)

Es gibt in der Statistik viele verschiedene	Arten, Schätzer zu definieren. Das Ziel
bei der Definition sollte immer sein, einen s	solchen Schätzer (d.h. eine solche Schätz-
funktion) zu finden, dessen (zur Stichprob	be gehöriger) Schätzwert den gesuchten
Parameter der	am besten schätzt, d.h. am be-
sten annähert.	
Dazu wurden in der Statistik Gütekriteri	en entwickelt, welche die verschiedenen
Schätzer beurteilen. Die bekanntesten Gütel	kriterien sind
	_ ,und
Wir werden hier nur	r die
herausgreifen:	
Ein Schätzer heißt	, falls der
des	Schätzers gleich dem gesuchten Parame-
ter der Grundgesamtheit ist, falls also der	r Schätzer den gesuchten Parameter im
Mittel auch wirklich trifft.	
Beispiel 36 (Zum letzten Beispiel)	
Der von der Lehrerin verwendete Schätzer is	st
Wegen	_ ist
Damit und wegen den Rechenregeln für der	n Erwartungswert gilt:
womit das Kriterium für die Erwartungstre	ue erfüllt ist. Somit ist ein erwar-
tungstreuer Schätzer für den Mittelwert	eines Merkmals der Grundgesamtheit.

Ein erwartungstreuer Schätzer für die Varianz eines betrachteten Merkmals
in der Grundgesamtheit ist
Die Forderung der Erwartungstreue bedingt den Vorfaktor im Unter-
The Portering der Erwartungstrede bedrigt den vorraktor im Onter-
schied zur Definition der Varianz einer Messreihe; hier ist der Vorfaktor
:
Followin in den enwentungstreuen Schätzen die Beelieienungen aus einen
Falls wir in den erwartungstreuen Schätzer die Realisierungen x_1, \ldots, x_n einer
Stichprobe einsetzen, dann nennen wir den so erhaltenen Schätzwert
Dia maritima One destrument demons
Die positive Quadratwurzel daraus:
heisst
Der zugehörige Schätzer
ist allerdings erwartungstreuer Schätzer für die Streuung des
betrachteten Merkmals in der Grundgesamtheit.
Der gesuchte Parameter der Grundgesamtheit muss aber nicht unbedingt oder
sein, es können auch andere sein.

Generell gibt es verschiedene Methoden, wie man einen Schätzer für einen beliebig				
vorgegebenen Parameter der Grundgesamtheit bestimmen kann, wie z.B. die sog.				
oder die sog				
Wir werden hier eine häufig verwendete Methode zur Bestimmung eines Schätzers kennenlernen, die sog.				
. Mit dieser Methode lässt sich ein Schätzer für einen				
unbekannten Parameter der Grundgesamtheit ermitteln, vorausgesetzt die Vertei-				
lung des untersuchten Merkmals ist bekannt.				
Dass heißt, die Zufallsvariable X_i (für $i=1,\ldots,n$) der i.i.d. Stichprobe X_1,\ldots,X_n				
besitzt eine vom unbekannten Parameter θ der Grundgesamtheit abhängige bekannte				
Wahrscheinlichkeits- oder Dichtefunktion				
Man wähle nun zur Stichprobenrealisierung x_1, \ldots, x_n denjenigen Wert als				
Schätzwert für den unbekannten Parameter der Grundgesamtheit, unter dem				
die Wahrscheinlichkeit für das Eintreten dieses Ergebnisses am größten (bzw. die				
entsprechende Wahrscheinlichkeitsdichten) ist.				

Die Funktion
wird Likelihood-Funktion genannt. Jedes , welches die Likelihood-Funktion
maximiert ist ein sogenannter Maximum-Likelihood-Schätzwert.
Beispiel 37
Ein Hersteller produziert Blitzgeräte. Er interessiert sich für die Wahrscheinlichkeit
, mit der ein defektes Blitzgerät produziert wird. Diese Wahrscheinlichkeit
ist also der gesuchte Parameter der Grundgesamtheit aller produzierten Blitz-
geräte.
Zur Bestimmung des Parameters entnimmt der Hersteller eine Stichprobe
von produzierten Blitzgeräten und stellt fest, dass davon Blitzgeräte
$defekt\ sind.$
Die Stichprobe kann somit durch i.i.d
Zufallsvariablen beschrieben werden mit den Ausprägungen
, falls Blitzgerät intakt und, falls Blitzgerät defekt
(für $i=1,\ldots,n$). Es gilt:
Gesucht wird dasjenige, für das die Likelihood-Funktion

Dazu wenden wir zuerst auf beiden Seiten der obigen Gleichung den Logarithmus an,
denn dabei bleiben die Maximalstellen unverändert. Es ergibt sich unter Beachtung
$der\ Logarithmus$ -Rechenregeln:
Jetzt differenzieren wir und setzen die erste Ableitung gleich Null, um eine Extrem-
stelle zu ermitteln:
Die so gefundene Extremstelle ist tatsächlich ein Maximum, wie man
anhand des negativen Vorzeichens der zweiten Ableitung überprüfen kann.
Das bedeutet: Der durch diese Methode gefundene sog.
für den Parameter der
Grundgesamtheit ist, und das ist gerade die relative Häufigkeit defekter Blitz-
geräte in der Stichprobe.

6 Intervallschätzung

 x_1, \ldots, x_n befinden.

Bei der Parameterschätzung haben wir einen Schätzwert für einen gesuchten Parameter bestimmt. Der konkret gefundene Schätzwert sagt aber noch nichts darüber aus, wie groß seine Abweichung vom gesuchten Parameter in Wirklichkeit ist. Bei der Intervallschätzung wird nicht ein einzelner Schätzwert ermittelt, sondern ein ganzes Intervall, in dem der gesuchte Parameter mit einer bestimmten vorgegebenen Wahrscheinlichkeit $1-\alpha$ darin liegt. Solche Intervalle heißen _____ (oder _______) zum Um eine gewisse Genauigkeit zu gewährleisten, sollten Konfidenzintervalle möglichst klein sein. Generell gilt, dass der Stichprobenumfang die Größe des Konfidenzintervalls beeinflusst, und zwar benötigt man für ein _____ Konfidenzintervall einen _____ Stichprobenumfang bei gleichem α . Ein Konfidenzintervall ist eindeutig festgelegt durch seine obere und untere Für Diese gibt es Berechnungsformeln, sog. Konfidenzintervall-Formeln, in denen sich die Zufallsvariablen X_1,\dots,X_n als Platzhalter für die Stichprobenrealisierungen

Sei a	also X_1 ,	\ldots, X_n	eine Sti	ichprob	e i.i.d. <u> </u>			verteilte	er Zufall	lsvariab	len.
Wir	unterso	heiden :	zunächs	t vier F	älle:						
<u>Fall</u>	1:										
Der	gesucht	e Param	eter der	Grund	gesamth	eit sei d	er				·
Die					_aus der						
sei b	ekannt.	. Dann l	berechn	et sich e	ein Kon	fidenzin	tervall f	är	zum	Konfide	enz-
nive	au			_ gemäß	der Fo	rmel:					
dabe	∍i ist	der	Stichpro	henmit	telwert.	und		ist o	das		_
			der Sta	maaran	.011пату	ertenung	3 IN(U,1)	•			
Die	wichtig	sten Ou	antile d	ler N(O	1)-Verte	eilung z	ur Kont	fidenzin	tervall-I	Rerechn:	ung
											ung
ппа	en sicn i	ın rorger	aaer sog	;. ~ z-1 a	ibelle":	(Quant	The z_p α	er N(U,	l)-Verte	nung)	
p	0.55	0.6	0.7	0.75	0.8	0.85	0.9	0.95	0.975	0.99	0.995
z_p	0.126	0.253	0.524	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576
Weit	tere Qu	antile d	er N(0,1	.)-Verte	ilung er	hält ma	n mit d	er Gleic	chung:		
				_ , z.B.:							_ •

Beispiel 38				
Bei einer Untersuchung über das Verhalten von Schulkindern im Straßenverkehr				
interessiert sich ein Psychologe für den Erwartungswert μ der Reaktionszeit von				
10-jährigen Schülern in einer bestimmten Verkehrssituation.				
Aus früheren Untersuchungen weiß er, dass sich die Reaktionszeit durch eine				
-verteilte Zufallsvariable beschreiben lässt. Bei 61 Messungen				
errechnete er einen Stichprobenmittelwert für die Reaktionszeit von $\bar{x}=0.8$ s.				
Für die Berechnung der Konfidenzintervall-Grenzen benötigen wir noch den zu-				
gehörigen Wert aus der z-Tabelle:				
Damit ergibt sich insgesamt das folgende Konfidenzintervall:				

Wir haben hier ein Konfidenzniveau von _____ vorliegen. Das bedeutet exakt

Veranschaulichen lässt sich dieser Sachverhalt wie folgt:	
veransenament iassi sien aieser saenvernan wie joigi.	
Die exakte Interpretation unseres oben ausgerechneten Konfidenzinterv	all lautet so-
mit: Falls unsere Stichprobe zu den "zutreffenden" Stichpr	oben gehört,
dann liegt die erwartete Reaktionszeit μ von 10-jährigen Schülern (in die	eser betimm-
ten Verkehrssituation) zwischen und Sekunden.	

Fall 2:

Genauso wie Fall 1, nur diesmal sei die Varianz σ^2 unbekannt. Diese Veränderung bewirkt, dass in der Formel statt σ^2 die Stichprobenvarianz \bar{S}^2 vorkommt und statt N(0,1)-Quantile kommen Quantile der t-Verteilung vor. In diesem Fall berechnet sich ein Konfidenzintervall für μ zum Konfidenzniveau $1-\alpha$ gemäß der Formel:

wobeidas	·
Verteilung ist. Die Stichprobenvarian z \bar{S}^2 berechnet sich gemäß der	r Formel:
Beispiel 39 (Fortsetzung des letzten Beispiels)	
Angenommen, die Varianz σ^2 sei unbekannt, und aus den Realisier	ungen der Stich-
probe errechnet sich eine Stichprobenvarianz von $\bar{S}^2=0,0484.$ A	us Tabelle D er-
mitteln wir: Damit ergib	t sich insgesamt

für das gesuchte Konfidenzintervall:

Dieses Konfidenzintervall ist größer als in Fall 1, weil wir hier in Fall 2 wegen der unbekannten Varianz auch weniger Information vorliegen haben.

Fall 3:

Der gesuchte Parameter der Grundgesamtheit sei die Varianz σ^2 . Der Mittelwert μ aus der $N(\mu, \sigma^2)$ -Verteilung sei bekannt. Dann berechnet sich ein Konfidenzintervall für σ^2 zum Konfidenzniveau $1-\alpha$ gemäß der Formel:

Dabei ist	das		der
	und	ist das	
	der		·
Beispiel 40			
Um die Größe ein	es Regenauffangbeckens besse	r planen zu können,	interessiert sich
ein Gärtner für d	ie Varianz σ^2 der Niederschl	agsmengen im regen	areichsten Mona
April. Als Stichpre	obe liegen ihm die Niederschle	ngsmengen [in mm]	seiner Stadt von
Monat April der l	etzten 20 Jahre vor.		
Es wird angenom	nen, dass die vorliegenden M	esswerte Realisierun	ngen von 20 i.i.d
	verteilten Zufallsvarial	olen sind. Für die S	Summe errechne
sich der Wert		·	
Aus Tabelle C had	en wir:		$___$ und
Damit ergibt sich	folgendes Konfidenzintervall	$zum\ Konfidenznivea$	u 0, 95:

<u>Fall 4:</u>

Genauso wie Fall 3, nur diesmal sei der Mittelwert μ unbekannt. Diese Veränderung bewirkt, dass in der Formel statt der Summe ein Ausdruck mit der Stichprobenvarianz \bar{S}^2 auftaucht und die Freiheitsgrade der χ^2 -Quantile im Nenner jeweils um eines herabgesetzt werden. In diesem Fall berechnet sich ein Konfidenzintervall für σ^2 zum Konfidenzniveau $1-\alpha$ gemäß der Formel:

Dabei ist $\chi^2_{n-1;1-\frac{\alpha}{2}}$ das $1-\frac{\alpha}{2}$ -Quantil der χ^2_{n-1} -Verteilung und $\chi^2_{n-1;\frac{\alpha}{2}}$ ist das $\frac{\alpha}{2}$ -Quantil der χ^2_{n-1} -Verteilung.

Beispiel 41 (Fortsetzung des letzten Beipiels)

Angenommen, der Mittelwert μ sei unbekannt, und aus den Realisierungen der Stichprobe errechnet sich eine Stichprobenvarianz von $\bar{S}^2 = 51, 5$. Aus Tabelle C haben
wir: ______ und _____.

Dann ergibt sich insgesamt für das gesuchte Konfidenzintervall:

Diese Konfidenzintervall ist größer als in Fall 3, weil wir hier in Fall 4 durch den unbekannten Mittelwert auch weniger Informationen vorliegen haben.

In den letzten vier Fällen hatten wir stets normalverteilte Zufallsvariablen vorliegen. In manchen Fällen kann mit Hilfe von Grenzwertsätzen (wie z.B. dem zentralen Grenzwertsatz) Konfidenzintervalle näherungsweise bestimmt werden.

<u>Fall 5:</u>

Sei X_1, \ldots, X_n eine Stichprobe i.i.d. verteilter Zufallsvariablen mit unbekannten Mittelwert μ und bekannter Varianz σ^2 . In diesem Fall berechnet sich für große n näherungsweise ein Konfidenzintervall für μ zum Konfidenzniveau $1-\alpha$ gemäß der Formel aus dem Fall 1:

dabei ist \bar{x} der Stichprobenmittelwert und $z_{1-\frac{\alpha}{2}}$ ist das $1-\frac{\alpha}{2}$ -Quantil der Standardnormalverteilung N(0,1).

<u>Fall 6:</u>

Sei X_1, \ldots, X_n eine Stichprobe i.i.d. verteilter Zufallsvariablen mit unbekannten Mittelwert μ und unbekannter Varianz σ^2 . In diesem Fall berechnet sich für große n näherungsweise ein Konfidenzintervall für μ zum Konfidenzniveau $1 - \alpha$ gemäß der Formel:

dabei ist \bar{x} der Stichprobenmittelwert, S^2 die Varianz und $z_{1-\frac{\alpha}{2}}$ ist das $1-\frac{\alpha}{2}$ -Quantil der Standardnormalverteilung N(0,1).

Beispiel 42

Vor einer Wahl möchte ein Meinungsforscher den Anteil p der Wähler von Partei A unter den Wahlberechtigten ermitteln; d.h. die Grundgesamtheit ist die Menge aller Wahlberechtigten und der gesuchte Parameter p ist der Anteil der Wähler von Partei A.

Dazu befragt er 35 zufällig ausgewählte Wahlberechtigte nach ihrer Wahlabsicht. 14 davon wollen Partei A wählen. Der Meinungsforscher möchte nun wissen, in welchem Bereich p liegt zum Konfidenzniveau 0.95.

Hier ist X_1, \ldots, X_n eine Stichprobe i.i.d. ______-verteilter Zufallsvariablen. Dabei sei die Erfolgswahrscheinlichkeit p der unbekannte gesuchte Parameter der Grundgesamtheit. Es gilt:

Da die Varianz ebenfalls unbekannt ist, sind wir im Fall 6. Sei k die Anzahl der Befragten mit der Wahlabsicht Partei A (bzw. die Anzahl der Treffer in der Stichprobe).

Daraus ergibt sich folgendes Konfidenzintervall:

Hier haben wir:
Dieses Konfidenzintervall ist dem Meinungsforscher zu groß. Er will es genauer wis-
sen und erhöht den Stichprobenumfang. Er befragt nochmal 165 zufällig ausgewählte
Wahlberechtigte nach ihrer Wahlabsicht und findet darunter 66 Wähler von Parter
A, d.h. insgesamt ist jetzt:
Dafür berechnet er nochmals ein Konfidenzintervall für p zum Konfidenzniveau 0.95
und erhält
D.h. zu 95% oder mit einer Wahrscheinlichkeit von 0.95 wird Partei A in der Wahr
einen Stimmenanteil p zwischen und
erreichen können. Mit diesem Ergebnis gibt sich der Meinungsforscher zufrieden.

7 Statistische Tests

7.1 Einführung

Wir kommen nun zum wichtigsten Kapitel in dieser Vorlesung: Statistische Tests. In den letzten beiden Kapiteln haben wir uns damit beschäftigt, Schätzungen für einen unbekannten Parameter der Grundgesamtheit anhand den Ergebnissen einer Stichprobe zu finden. Häufig geht es aber in der Statistik auch darum, zu fällen in Situationen, in denen sich eine neue und eine althergebrachte Meinung über einen bestimmten Sachverhalt gegenüberstehen und dem Statistiker die Frage gestellt wird: Welche Meinung ist besser? Die althergebrachte Meinung nennt man in der Statistik und die neue Meinung _____ Dabei war die althergebrachte Meinung (also die ______) die bisher übliche und gültige solange, bis eine neue, dazu konkurrierende Meinung (die ______) aufgetaucht ist, die es jetzt zu überprüfen gilt. Die Statistik hat Verfahren entwickelt, welche _____ liefern dafür, wann eine althergebrachte Meinung abzulehnen ist und wann nicht. Diese Verfahren heißen Statistische Tests.

Dabei gilt: Im Fall der	der Nullhypothese (wir sagen
auch: Die Nullhypothese wird) hat sich die Alterna-
tivhypothese durchgesetzt;	
Im Fall der	der Nullhypothese wird die
Nullhypothese beibehalten (d.h. sie wird)
solange, bis eine neue Alternativhypothese	auftaucht und der Entscheidungsprozess
erneut beginnt.	
In diesem Sinne sind die Statistischen Tests	nichts anderes als
für die	<u> </u>
Beispiel 43	
Ein Lehrer behauptet, eine neue Unterrichts	smethode sei besser als die herkömmliche.
Hier gilt folgende Einteilung:	
	: Die neue Unterrichtsmetho-
de ist besser als die alte.	
: Dr	ie alte Unterrichtsmethode ist besser oder
genausogut wie die neue. Alternative Formu	lierung: Die beiden Unterrichtsmethoden
unterscheiden sich nicht oder die neue Met	chode ist sogar schlechter als die alte.
Im letzten Beispiel wird durch die Worte eine Wertung	
druck gebracht bei der Formulierung von l	Nullhypothese und Alternativhypothese.
Man spricht dann von einem	

Möchte man in einer neutralen Art und Weise einfa	ach nur überprüfen, ob die neue
Methode eine Veränderung bewirkt (egal in welche	Richtung) oder nicht, so spricht
man von einem Tes	st und verwendet folgende For-
mulierung:	
Beispiel 44 (Zum letzten Beispiel)	
Alternativhypothese: Die neue Unterrichtsmethode	unterscheidet sich von der alten
(egal in welche Richtung).	
Nullhypothese: Es gibt keinen Unterschied zwischen	den beiden Unterrichtsmethoden
(beide sind gleichgut oder gleichschlecht).	
In der Statistischen Testtheorie wird die Nullhypot	hese mit bezeichnet und
die Alternativhypothese mit Sobald man nu	ın und aufgestellt
hat, wird wie folgt weiterverfahren:	
Es wird eine Stichprobe gezogen. Dann werden d	ie Stichprobenrealisierungen in
einen zu der vorliegenden Test-Situation passenden $\underline{\ }$	eingesetzt,
dessen Verteilung (unter H_0) bekannt ist, und ein	ausgerechnet
Ein solcher Schätzer heißt Testgröße oder Prüfgröße u	ind wird mit
bezeichnet. Der zugehörige Schätzwert heißt Wert	der Testgröße oder Wert der
Prüfgröße und wird mit	_ bezeichnet.

Schließlich wird überprüft, ob der	errechnete Wert der Testgröße in einen zu der vor-
liegenden Test-Situation passende	en
(man sagt auch:) fällt und daraufhin
folgende Entscheidung getroffen:	
Falls	_ in den
fällt, wird H_0 ve	erworfen, ansonsten beibehalten (d.h. nicht verwor-
fen). D.h. im ersten Fall hat sich	durchgesetzt und im zweiten Fall
Wie wir aber in den letzten beider	n Kapiteln gelernt haben, unterliegt eine Stichprobe
immer Zufallsschwankungen, wei	l sie die Situation eines Sach-
verhalts in der Grundgesamtheit i	immer nur
wiedergeben kann. Das bedeutet:	Der Statistiker macht bei seiner Entscheidung für
oder gegen eine Nullhypothese zw	vangsläufig Fehler.
Dabei sind zwei verschiedene Fel	ıler möglich:
1.) der sog	_ oder
nämlich: Die Nullhypothese zu v	erwerfen, obwohl sie richtig ist;
2.) der sog	_oder
nämlich: Die Nullhypothese nich	zu verwerfen, obwohl sie falsch ist.

Beispiel 45 (Zum vorletzten Beispiel)
Wenn wir hier einen α -Fehler oder einen Fehler erster Art begehen, dann ent-
scheiden wir uns fälschlicherweise die Nullhypothese, obwohl sie
ist; d.h. es wird fälschlicherweise angenommen, die neue Lehr-
methode sei besser als die alte, was z.B. zu teuren und unnötigen Umschulungsmaß-
nahmen der Lehrer führen könnte.
Wenn wir hier einen β -Fehler oder einen Fehler zweiter Art begehen, dann entschei-
den wir uns fälschlicherweise die Nullhypothese, obwohl sie
ist; d.h. es wird fälschlicherweise angenommen, die neue Lehrmethode sei nicht bes-
ser oder sogar schlechter als die alte, was dazu führen könnte, dass die Schüler
weiterhin nach der alten Lehrmethode unterrichtet werden anstatt mit der besseren
neuen Lehrmethode und eine Chance zu Fortschritt vertan wird.
Die Wahrscheinlichkeit für das Auftreten eines α -Fehlers bezeichnet man als Irrtums-
wahrscheinlichkeit. Die Irrtumswahrscheinlichkeit ist eine bedingte Wahrscheinlich-
keit, nämlich:

Die Irrtumswahrscheinlichkeit spielt in einem Statistischen Test eine große Rolle für den Ablehnungsbereich. Der ist nämlich stets so konzipiert, dass die Irrtumswahrscheinlichkeit kleiner oder gleich einem bestimmten Prozentwert α ist.

Diese obere Grenze der Irrtumswahrcheinlichkeit bezeichnet man als
oder als
Die Statistiker sprechen dann davon, dass sie sich aufgrund einer vorliegenden Stich-
probe für oder gegen die Ablehnung der Nullhypothese
"auf einem bestimmten"
entscheiden und meinen damit, dass sie ihre Entscheidung (für oder gegen die Ab-
lehnung der Nullhypothese) mit einer bestimmten vorgegebenen Höchst - Irrtums-
wahrscheinlichkeit treffen.
Natürlich sollte nicht nur die Wahrscheinlichkeit für einen α -Fehler, sondern auch
die Wahrscheinlichkeit für einen $\beta\text{-Fehler}$ möglichst klein gehalten werden. Beide
zusammen klein zu halten, ist aber leider nicht möglich, denn sie verhalten sich
gegenläufig.
Was aber möglich ist: Bei festen kleingehaltenen betrachtet man,
wobei wir hier mit die Wahrscheinlichkeit des Auftretens eines β -Fehlers
bezeichnen, d.h. die Wahrscheinlichkeit, eine Nullhypothese zu
verwerfen, obwohl sie ist.
$1-\beta$ ist dann die zugehörige Gegenwahrscheinlichkeit, d.h. die Wahrscheinlichkeit,
eine falsche Nullhypothese auch wirklich zu verwerfen. $1-\beta$ heißt
oder "power" des Tests. Erwünscht ist eine möglichst große
(zu einem festen vorgegebenen Signifikanzniveau!)

Es gilt: Die Teststärke wird umso größer, je größer der
ist.
Sowie: Die Teststärke wird umso größer, je kleiner die
des betrachteten Merkmals in der Grundgesamtheit ist.
Wir fassen zusammen:
Ein Statistischer Test auf einem Signifikanznivea u α ist ein Entscheidungsverfahren
für oder gegen die Verwerfung einer aufgestellten Hypothese.
Aus den Realisierungen einer Stichprobe wird der Wert einer Testgröße ermittelt
und geprüft, ob er in einen (vorher festgelegten) Ablehnungsbereich fällt oder nicht.
Falls ja, dann wird die Nullhypothese verworfen und die Alternativhypothese hat
sich durchgesetzt. Falls nein, dann wird die Nullhypothese nicht verworfen, d.h. sie
wird beibehalten.
Dabei ist der Ablehnungsbereich stets so konzipiert, dass eine
Nullhypothese nur mit einer Wahrscheinlichkeit kleiner oder gleich dem Signifikanz-
niveau α verworfen wird; α wird vorher festgelegt.
Auf diesem vorher festgelegten Signifikanzniveau α sollte der Statistische Test eine
möglichst große Teststärke aufweisen (d.h. eine Nullhypothese soll-
te mit einer möglichst großen Wahrscheinlichkeit auch wirklich verworfen werden).

7.2 T-Test und Gauß-Test

Wir kommen nun zu konkreten Statistischen Tests:

1.) <u>T-Test</u> (für eine Stichprobe)	
Gegeben sei eine Stichprobe X_1, \ldots, X_n i.i.d.	verteilter
Zufallsvariablen mit unbekannten Erwartungswert μ und	unbekannter Varianz σ^2 .
<u>Fall 1:</u> (zweiseitiger Test)	
<u>Fall 2:</u> (einseitiger Test)	
<u>Fall 3:</u> (einseitiger Test)	
Testgröße: (für alle drei Fälle)	
wobei der S	stichprobenmittelwert ist
und die S	Stichprobenvarianz ist.

Verteilung der Testgröße:	
Falls wir annehmen, dass	gilt, dann ist
·	
Ablenhungsbereiche:	
Ablehnung von H_0 , falls	
Fall 1:	
Fall 2:	
Fall 3:	,
wobe i α das (vorher festgelegte) Si	ignifikanzniveau des Tests ist. (Die Quantile de
t_{n-1} -Verteilung finden sich in Tab	pelle D.)

Beispiel 46

An einer Schule wird ein neuer, junger Sportlehrer eingestellt, der seine Schüler nach einer neuen Trainingsmethode unterrichten will. Ein bereits an der Schule unterrichtender älterer Sportlehrer trainiert seine Schüler schon seit Jahren nach einer alten Trainingsmethode. Beide Sportlehrer möchten ihre unterschiedlichen Trainingsmethoden miteinander vergleichen. Eine Möglichkeit des Vergleichs von neuer und alter Trainingsmethode ist die folgende:

Eine Gruppe von n Schülern wird mit der neuen Trainingsmethode unterrichtet und im Anschluss daran wird ein Leistungsnachweis durchgeführt, dessen Ergebnisse mit den Erfahrungswerten desselben Leistungstests unter der alten Trainingsmethode verglichen werden. Der Leistungstest ist ein Sprint auf einer bestimmten agbesteckten Strecke entlang des Schulgebäudes, die schon immer für Schnelllauftrainings benutzt wurde, und für die genügend Daten aus Wettläufen vergangener Jahre vorliegen.

Wir gehen davon aus, dass sich die E	rgebnisse [d.h. Zeit in Sekunden] der n Schüler
in diesem Schnelllauf durch i.i.d. N(μ, σ^2)-verteilte Zufallsvariablen X_1, \ldots, X_n be-
schreiben lassen. Wir wissen nun aus	s Erfahrung, dass der Mittelwert aus dem ver-
gleichbaren Leistungstest unter der e	alten Trainingsmethode gleich ist. Be-
trachten wir zuerst die	Testsituation. Hier ist die Null-
hypothese:,	d.h. die Mittelwerte der Leistungstests beider
Trainingsmethoden unterscheiden sic	h nicht.
Und die Alternativhypothese ist:	, d.h. es gibt einen Unter-
schied zwischen den Mittelwerten der	Leistungstests beider Trainingsmethoden.
Falls nun der Stichprobenmittelwert _	nahe bei liegt, so wird durch
$das\ Stich probener gebnis\ unterst\"utzt.\ I$	n diesem Fall ist die Differenz
klein, im Idealfall gleich Null. Falls	weit weg von liegt, d.h. falls die
Differenz groß ist, s	so wird durch das Stichprobenergebnis
$unterst\"utzt.$	

Wir berechnen nun den Wert der Tes	stgröße durch Einsetzen der Stichpro	ben-Realisie-
rungen x_1, \ldots, x_n in und erh	calten mit	
genau diese Differenz	dividiert durch eine positive	:Konstante,
d.h. es gilt auch hier: Kleine Werte	(nahe bei Null) von $T(x_1, \ldots, x_n)$	$unterst\"{u}tzen$
und große Werte von $T(x_1,$	(x_n) unterstützen	·
Wir wissen nun: Falls zut	trifft, so ist die Testgröße	verteilt
mit Erwartungswert, d.h. es	liegt folgende Situation vor:	
Die Gesamtfläche unter der Dichtek	surve ist 1. Die beiden eingezeichnet	ten Quantile
derVerteilung schneide	en von der Gesamtfläche jeweils	Flächen-
einheiten ab, d.h. in der Mitte bleibt	t ein Flächeninhalt von	Flächen-
einheiten übrig.		
Das bedeutet: Mit Wahrscheinlichke		
dem mittleren Bereich der x-Achse un	nd mit Wahrscheinlichkeit	auf
einen der beiden Randbereichen; imr	mer unter der Annahme, dass die N	full hypothese
zutrifft.		

Der Ablehnungsbereich ist nun gerade so konzipiert, dass H_0 verworfen wird, falls
der Wert der Testgröße in einen der beiden Randbereiche fällt. Und das bedeutet:
Unter der Annahme, , wird H_0 höchstens mit
$einer\ Wahrscheinlichkeit\ \alpha\ abgelehnt,\ was\ wiederum\ bedeutet:\ Das\ Signifikanzniveau$
lpha des Tests wird eingehalten.
Und genau auf diesem Prinzip basieren alle Ablehnungsbereiche eines Statistischen
Tests! Sie sind stets so konzipiert, dass das vorgegebene Signifikanzniveau α einge-
halten wird.
Unser Beispiel konkret mit Zahlen:
n=25 Schüler erreichen nach der neuen Trainingsmethode ein mittleres Sprint-
ergebnis von $\bar{x}=16.3$ (in Sekunden). Das mittlere Sprintergebnis unter der alten
Trainingsmethode sei $\mu_0 = 15.0$. Als Stichprobenvarianz berechne sich $\bar{S}^2 = 64$.
Damit erhalten wir folgenden Wert der Testgröße:
Aus Tabelle D erhalten wir für ein Signifikanzniveau von $\alpha = 0.05$:
The Tabout B common arr fair con significancea a con a concess.
Wegen fällt der Wert der Testgröße
in den Ablehnungsbereich, und somit kann die Nullhypothese auf die-
sem Signifikanzniveau verworfen werden. D.h. der Test zeigt keine
Unterschiede in den mittleren Testergebnissen der beiden Trainingsmethoden.

Das liegt daran, dass das mittlere Testergebnis \bar{x} der neuen Trainingsmethode zu
nahe am mittleren Testergebnis μ_0 der alten Trainingsmethode liegt, d.h. die Dif-
ferenz $\bar{x} - \mu_0$ ist zu klein und daher fällt $T(x_1, \dots, x_n)$ nicht in die schraffierten
$(Ablehnungs-) Randbereiche \ der \ Dichtefunktion, \ sondern \ bleibt \ im \ mittleren \ Bereich.$
Das Testergebnis unterstützt damit nicht die Ablehnung von , d.h. die beiden
Trainingsmethoden erbringen keine wesentlich abweichenden mittleren Testergebnis-
se, die eine Verwerfung von rechtfertigen würden.
Wäre das mittlere Testergebnis μ_0 der alten Trainingsmethode gleich 12.8, so erhielten wir als Wert der Testgröße:
Wegen ist in diesem Fall die Abweichung
Wegen ist in diesem Fall die Abweichung von \bar{x} und μ_0 groß genug, so dass H_0 (auf demselben Signifikanzniveau) verwor-
von \bar{x} und μ_0 groß genug, so dass H_0 (auf demselben Signifikanzniveau) verwor-
von \bar{x} und μ_0 groß genug, so dass H_0 (auf demselben Signifikanzniveau) verworfen werden kann. D.h. in diesem Fall weist der Test Unterschiede in den mittleren
von \bar{x} und μ_0 groß genug, so dass H_0 (auf demselben Signifikanzniveau) verworfen werden kann. D.h. in diesem Fall weist der Test Unterschiede in den mittleren Leistungstestergebnissen der beiden Trainingsmethoden nach.
von \bar{x} und μ_0 groß genug, so dass H_0 (auf demselben Signifikanzniveau) verworfen werden kann. D.h. in diesem Fall weist der Test Unterschiede in den mittleren Leistungstestergebnissen der beiden Trainingsmethoden nach. Es gibt noch eine andere Möglichkeit, wie alte und neue Trainingsmethode aus dem
von \bar{x} und μ_0 groß genug, so dass H_0 (auf demselben Signifikanzniveau) verworfen werden kann. D.h. in diesem Fall weist der Test Unterschiede in den mittleren Leistungstestergebnissen der beiden Trainingsmethoden nach. Es gibt noch eine andere Möglichkeit, wie alte und neue Trainingsmethode aus dem letzten Beispiel miteinander verglichen werden können:
von \bar{x} und μ_0 groß genug, so dass H_0 (auf demselben Signifikanzniveau) verworfen werden kann. D.h. in diesem Fall weist der Test Unterschiede in den mittleren Leistungstestergebnissen der beiden Trainingsmethoden nach. Es gibt noch eine andere Möglichkeit, wie alte und neue Trainingsmethode aus dem letzten Beispiel miteinander verglichen werden können: Eine Gruppe von Schülern wird ein Schuljahr lang nach der alten Trainings-

Das heißt: Hier werden zwei voneinander unabhängige Stichproben gezogen und nicht nur eine wie in unseren vorhergehenden Betrachtungen. Diese neue Stuation benötigt folgenden neuen Statistischen Test: Den t-Test für zwei unabhängige Stichproben.

2.) <u>T-Test</u> (für zwei unabhängige Stichproben)

Gegeben seien zwei voneinander unabhängige Stichproben $X_1, \ldots X_{n_1}$ i.i.d. ________- verteilter Zufallsvariablen und $Y_1, \ldots Y_{n_2}$ i.i.d. ________- verteilter Zufallsvariablen mit unbekannten Erwartungswerten μ_1, μ_2 und unbekannter Varianz σ^2 . (Man beachte: σ^2 ist für beide Stichproben derselbe Wert!)

<u>Fall 1:</u> (zweiseitiger Test) <u>Fall 2:</u> (einseitiger Test) <u>Fall 3:</u> (einseitiger Test)

 $H_0: \mu_1 = \mu_2$ $H_0: \mu_1 \le \mu_2$ $H_0: \mu_1 \ge \mu_2$

 $H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 > \mu_2$ $H_1: \mu_1 < \mu_2$

Testgröße: (für alle drei Fälle)

mit

Stichprobenvarianz der ersten bzw. zweiten Stichprobe sowie _____Stichprobenmittelwert der ersten und _____Stichprobenmittelwert der zweiten Stichprobe.

Verteilung der Testgröße:
Falls wir annehmen, dass gilt, dann ist
Ablenhungsbereiche:
Ablehnung von H_0 , falls
<u>Fall 1:</u>
ran 1.
<u>Fall 2:</u>
<u>Fall 3:</u>
wobei α das (vorher festgelegte) Signifikanzniveau des Tests ist. (Die Quantile der
$t_{n_1+n_2-2}$ -Verteilung finden sich in Tabelle D.)
x_1, \ldots, x_n sind die Realisierungen der ersten Stichprobe und
y_1, \ldots, y_n sind die Realisierungen der zweiten Stichprobe.
Beispiel 47 (Fortsetzung vom letzten Beispiel)
Wir betrachten die Zwei-Stichproben-Situation: Schüler werden mit der alten
Trainingsmethode unterrichtet und Schüler mit der neuen. Dann wird in
beiden Gruppen ein Leistungstest durchgeführt. Wir gehen davon aus, dass sich die
Testergebnisse der Schüler aus der ersten Gruppe durch i.i.d. $N(\mu_1, \sigma^2)$ -verteilte
$Zufallsvariablen\ X_1,\ldots,X_n\ beschreiben\ lassen\ und\ die\ Testergebnisse\ der\ Schüler$
aus der zweiten Gruppe durch $N(\mu_2, \sigma^2)$ -verteilte Zufallsvariablen $Y_1, \dots Y_n$.

Wir betrachten die zweiseitige Testsituation mit folgender Nullhypothese:			
, d.h. die mittleren Leistungstestergebnisse sind gleich;			
und mit folgender Alternativhypothese:, d.h. die mitt-			
$leren\ Leistungstestergebnisse\ sind\ unterschiedlich.$			
Seien konkret in der ersten Gruppe $n_1=20$ Schüler und in der zweiten Gruppe			
$n_2=22$ Schüler. In der ersten Gruppe sei $\bar{x}=15.7$ und in der zweiten Gruppe sei			
$\bar{y}=16.9$ mit Stichprobenvarianzen $\bar{s}_x^2=9.3$ und $\bar{s}_y^2=8.1$. Dann errechnet sich für			
die Testgröße folgender Wert:			
Aus Tabelle D lesen wir ab für $\alpha = 0.05$:			
Es gilt nun: , d.h. der Wert der Test-			
größe fällt in den Ablehnungsbereich, und somit kann die Nullhypo-			
these auf diesem Signifikanzniveau verworfen werden, was bedeutet,			
dass kein Unterschied in den mittleren Leistungstestergebnissen der beiden Trai-			
ningsmethoden nachgewiesen werden kann.			

Dies liegt daran, dass die mittleren Leistungstestergebnisse und zu
dicht beieinander liegen, d.h. die Differenz ist zu klein, liegt nahe
bei Null und kommt daher nicht in die (schraffierten) Randbereiche der zugehörigen
Dichtefunktion, wie wir das im letzten Beispiel ausführlich beschrieben haben. Da
das Testergebnis keinen Anlass dazu gibt, H_0 zu verwerfen, wird sie beibehalten.
Wäre das mittlere Testergebnis in der zweiten Gruppe schlechter, etwa $\bar{y}=18.1,$
dann hätten wir folgenden Wert für die Testgröße:
Wegen wird nun
verworfen, da der errechnete Wert der Testgröße in den Ablehnungsbereich
fällt; d.h. die mittleren Testergebnisse weichen weit genug voneinander ab, so dass
nicht mehr aufrechterhalten werden kann, und somit kann ein Unterschied
in den mittleren Leistungstestergebnissen beider Trainingsmethoden nachgewiesen
werden.

Sowohl beim Ein-Stichprober	n-t-Test als auch beim Zwei-	Stichproben-t-Test sind wir		
von normalverteilten Zufallsv	riablen mit	Varianz σ^2		
ausgegangen. Falls uns nun d	lie Varianz σ^2	ist, dann können		
wir diese Zusatzinformation i	nutzen, um statt dem t-Test	einen anderen Statistischen		
Test, den Gauß-Test, zu verv	venden, der eine bessere			
aufweist als der t-Test.				
3.) <u>Gauß-Test</u> (für eine S	tichprobe)			
Gegeben sei eine Stichprobe	$X_1, \dots X_n$ i.i.d.	verteilter Zu-		
fallsvariablen mit unbekannten Erwartungswert μ und bekannter Varianz $\sigma_0^2.$				
<u>Fall 1:</u> (zweiseitiger Test)	<u>Fall 2:</u> (einseitiger Test)	<u>Fall 3:</u> (einseitiger Test)		
$H_0: \mu = \mu_0$	$H_0: \ \mu \leq \mu_0$	$H_0: \mu \geq \mu_0$		
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$		
<u>Testgröße:</u> (für alle drei Fälle)				
wobei \bar{X} der Stichprobenmittelwert ist.				
Verteilung der Testgröße:				
Falls wir annehmen, dass	gilt, dann ist			

Ablenhungsbereiche:
Ablehnung von H_0 , falls
<u>Fall 1:</u>
<u>Fall 2:</u>
<u>Fall 3:</u> ,
wobei α das (vorher festgelegte) Signifikanzniveau des Tests ist. Die Quantile der
Standardnormal-Verteilung (N(0,1)-Verteilung) finden sich in der z-Tabelle.
Beispiel 48 (Fortsetzung vom letzten Beispiel)
Wir betrachten die Ein-Stichproben-Situation. Eine Gruppe von $n=25$ Schülern
werde mit der neuen Trainingsmethode gelehrt und es wird ein mittleres Leistungs-
testergebnis von $\bar{x} = 16.5$ erreicht.
Ein Erfahrungswert des mittleren Leistungstestergebnisses unter der alten Trainings-
methode sei $\mu_0=15.2$. Ferner sei die Varianz $\sigma_0^2=8.7$ der Leistungstestergebnisse
bekannt.
Wir wollen zweiseitig testen, d.h. die Nullhypothese ist,
und die Alternativhypothese ist Als Wert der Testgröße
eraiht sich:

Für $\alpha = 0.05$ lesen wir aus der z-Tabelle das ______ -Quantil der N(0,1)Verteilung ab:

Da nun wegen

der Wert der Testgröße in den Ablehnungsbereich fällt, wird die Nullhypothese auf diesem Signifikanzniveau verworfen. Das heißt: Die Nullhypothese, dass sich die mittleren Leistungstestergebnisse von alter und neuer Trainingsmethode nicht unterscheiden, wird abgelehnt.

Falls wir als Signifikanzniveau $\alpha=0.02$ wählen, erhalten wir folgendes Quantil aus der z-Tabelle:

In diesem Fall kann wegen

die Nullhypothese nicht verworfen werden, d.h. auf diesem strengeren Signifikanzniveau fällt der Wert der Testgröße nicht in den Ablehnungsbereich, was wiederum
bedeutet: Die Stichprobenergebnisse rechtfertigen auf diesem Signifikanzniveau keine
Ablehnung der Nullhypothese.

Wir kommen nun zum Gauß-Test für den Zwei-Stichproben-Fall. Auch hier ist zum t-Test wieder der Unterschied, dass uns diesmal die Varianzen (beide) bekannt sind. (Und diesmal dürfen beide Varianzen auch unterschiedlich sein, im Gegensatz zum 2-Stichproben-t-Test!)

4.) Gauß-Test (für zwei unabhängige Stichproben)

<u>Fall 1:</u> (zweiseitiger Test) <u>Fall 2:</u> (einseitiger Test) <u>Fall 3:</u> (einseitiger Test)

 $H_0: \mu_1 = \mu_2$ $H_0: \mu_1 \le \mu_2$ $H_0: \mu_1 \ge \mu_2$

 $H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 > \mu_2$ $H_1: \mu_1 < \mu_2$

 $\underline{\text{Testgr\"oße:}} \text{ (f\"ur alle drei F\"alle)}$

mit \bar{X} Stichproben
mittelwert der ersten und \bar{Y} Stichprobenmittelwert der zweiten Stichprobe.

Verteilung der Testgröße:

Falls wir annehmen, dass _____ gilt, dann ist ____

Ablenhungsbereiche:		
Ablehnung von H_0 , falls		
<u>Fall 1:</u>		
<u>Fall 2:</u>		
Fall 3:		
wobe i α das (vorher festgelegte) Signifika	nzniveau des Tests ist.	Die Quantile der
N(0,1)-Verteilung finden sich in der z-Tabe	elle. x_1, \ldots, x_n sind die I	Realisierungen der
ersten Stichprobe und y_1, \ldots, y_n sind die I	Realisierungen der zweit	ten Stichprobe.
Beispiel 49 (Fortsetzung vom letzten Be	cispiel)	
Wir betrachten die Zwei-Stichproben-Situa	<i>ution:</i> $n_1 = 20, n_2 = 22$	$mit \ \bar{x} = 15.7,$
$\bar{y} = 16.9$ und es seien zusätzlich bekannt:	$\sigma_1^2 = 9.0 \ und \ \sigma_2^2 = 8.0.$	Wir wollen zwei-
seitig testen (d.h.	,	_) und berechnen
dazu folgenden Wert der Testgröße:		
And don't Tabella forder win fin a 0.05		
Aus der z-Tabelle finden wir für $\alpha = 0.05$:		
Wegen	_ kann auf diesem Sign	nifikanzniveau die
Nullhypothese verworfe	en werden, weil der W	ert der Testgröße
in den Ablehnungsbereich	h fällt.	

Im Gegensatz zum Ein-Stichproben-t-Test liegt uns also hier nicht ein Erfahrungswert _____ des mittleren Leistungstestergebnisses der alten Trainingsmethode aus
der Vergangenheit vor, sondern ein konkret erhobenes mittleres Leistungstestergebnis ____ der alten Trainingsmethode.

Und dafür gibt es folgenden Statistischen Test:

5.) <u>T-Test</u> (für zwei abhängige Stichproben)

Gegeben seien zwei voneinander abhängige Stichproben X_1, \ldots, X_n i.i.d. $N(\mu_1, \sigma_1^2)$ verteilter Zufallsvariablen und Y_1, \ldots, Y_n i.i.d. $N(\mu_2, \sigma_2^2)$ -verteilter Zufallsvariablen
mit unbekannten Erwartungswerten μ_1, μ_2 und unbekannten Varianzen σ_1^2 und σ_2^2 .

Ferner seien die Differenzen _______ für $i = 1, \ldots, n$) alles normalverteilte Zufallsvariablen.

(Merkhilfe: X_1, \ldots, X_n sind die Stichprobenergebnisse "vorher" und $Y_1, \ldots Y_n$ sind die Stichprobenergebnisse "nachher".)

<u>Fall 1:</u> (zweiseitiger Test) <u>Fall 2:</u> (einseitiger Test) <u>Fall 3:</u> (einseitiger Test)

 $H_0: \mu_1 = \mu_2$ $H_0: \mu_1 \le \mu_2$ $H_0: \mu_1 \ge \mu_2$

 $H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 > \mu_2$ $H_1: \mu_1 < \mu_2$

Testgröße: (für alle drei Fälle)

wobe
i \bar{X} und \bar{Y} die beiden Stichproben
mittelwerte sind und

Verteilung der Testgröße:

Falls wir annehmen, dass $\mu_1 = \mu_2$, dann ist $T(X_1, \dots, X_n, Y_1, \dots, Y_n)$ $t_{(n-1)}$ -verteilt.

Ablenhungsbereiche: Ablehnung von H_0 , falls

Fall 1:
$$|T(X_1, ..., X_n, Y_1, ..., Y_n)|$$

Fall 2:
$$T(X_1, \ldots, X_n, Y_1, \ldots, Y_n)$$

Fall 3:
$$T(X_1, \ldots, X_n, Y_1, \ldots, Y_n)$$

wobei α das (vorher festgelegte) Signifikanzniveau des Tests ist.

Beispiel 50 (Fortsetzung von den letzten Beispielen)

Wir betrachten die Zwei-Stichproben-Situation mit zwei abhängigen Stichproben: n=24 Schüler werden zuerst mit der alten und dann mit der neuen Trainingsmethode gelehrt. Das mittlere Leistungstestergebnis nach der alten Methode sei $\bar{x}=14.1$ und nach der neuen Methode sei $\bar{y}=17.2$. Ferner errechne sich aus den Realisierungen beider Stichproben der Wert $\bar{D}^2=49$. Damit ergibt sich für die Testgröße:

Auf einem Signifikanzniveau von $\alpha = 0.05$ lesen wir in Tabelle D ab:

Wegen _____ kann hier die Nullhypothese verworfen werden, d.h. die Stichprobenergebnisse rechtfertigen die Alternativhypothese, dass
es einen Unterschied zwischen den beiden Trainingsmethoden gibt.

7.3 Chi-Quadrat-Streuungstest und F-Test

Alle bisher besprochenen Statistischen Tests sind sog. Tests über die Mittelwerte; denn ihre Nullhypothesen handeln vom Vergleich entweder zweier Mittelwerte oder eines Mittelwertes mit einem konstanten Wert.

In verschiedenen realen Sachverhalten ist es aber sinnvoller, nicht die Mittelwerte zu testen, sondern die Varianzen, da es in der zugrundeliegenden Fragestellung um die Streuung von Messwerten geht. Insbesondere wenn die Streuung recht groß wird, besitzt dann der Mittelwert nur noch wenig Aussagekraft. In solchen Fällen sind Nullhypothesen über Varianzen erheblich sinnvoller. (Allerdings kommen diese Fälle auch seltener vor als Fälle, in denen Tests über die Mittelwerte angesagt sind.)

In diesem Zusammenhang behandeln wir hier zwei Tests: Einmal den Chi-Quadrat-Streuungstest für den Ein-Stichproben-Fall und einmal den F-Test für den Fall zweier voneinander unabhängiger Stichproben.

6.) Chi-Quadrat-Streuungstest (für eine Stichprobe)

Gegeben sei eine Stichprobe X_1,\ldots,X_n i.i.d. $N(\mu;\sigma^2)$ - verteilter Zufallsvariablen mit ______ Erwartungswert μ und Varianz σ^2 .

 $\underline{\underline{Fall\ 1:}}\ (zweiseitiger\ Test) \qquad \underline{\underline{Fall\ 2:}}\ (einseitiger\ Test) \qquad \underline{\underline{Fall\ 3:}}\ (einseitiger\ Test)$

 $H_0: \ \sigma^2 = \sigma_0^2 \qquad \qquad H_0: \ \sigma^2 \le \sigma_0^2 \qquad \qquad H_0: \ \sigma^2 \ge \sigma_0^2$

 $H_1: \sigma^2 \neq \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$

Testgröße: (für alle drei Fälle) wobei die Stichprobenvarianz ist und $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ der Stichprobenmittelwert. Verteilung der Testgröße: Falls wir annehmen, dass _____ gilt, dann ist ____ Ablenhungsbereiche: Ablehnung von H_0 , falls $T(x_1,\ldots,x_n)$ _____ oder $T(x_1,\ldots,x_n)$ _____ <u>Fall 1:</u> $T(x_1,\ldots,x_n)$ <u>Fall 2:</u>

wobei α das (vorher festgelegte) Signifikanz
niveau des Tests ist. Die Quantile der χ^2_{n-1} -Verteilung finden sich in Tabelle C.

 $T(x_1,\ldots,x_n)$

<u>Fall 3:</u>

Beispiel 51 Ein Möbelhersteller möchte eine r	neue Regalserie produzieren. Um den
richtigen Abstand der Regalböden voneinander	planen zu können, besorgt sich der
Möbelhersteller die Höhenmaße von	Buchtypen. Aus diesen Maßen
errechnet er eine Stichprobenvarianz von	·
Mit dem Chi-Quadrat-Anpassungstest soll nur	n überprüft werden, ob die Varianz
der Buchhöhen den Wert	, der beim Bau der
alten Regalserie zugrundegelegt wurde, überschr	eitet oder nicht; d.h. ob bei der neu-
en Regalserie ein größerer Abstand der Regalbö	öden voneinander eingeplant werden
soll als bei der alten Regalserie oder nicht.	
Getestet werden soll also die Nullhypothese	
gegen die Alternativhypothese	. Wir legen
ein Signifikanzniveau von zug	grunde.
Für die Testgröße berechnet sich ein Wert von	
Aus Tabelle C haben wir:	Wegen
kann	die Nullhypothese selbst auf diesem
großzügigen Signifikanzniveau nicht abgelehnt w	erden, d.h. es ist nicht nötig, bei der
neuen Regalserie einen größeren Abstand einzu	1 1 1 1 1

7.)	$\underline{\text{F-Test}}$	(für	$\mathbf{z}\mathbf{w}\mathbf{e}\mathbf{i}$	$unabh\"{a}ngige$	Stichproben)
-----	-----------------------------	------	--	-------------------	-------------	---

Gegeben seien zwei voneinander unabhängige Stichproben X_1, \ldots, X_{n_1} i.i.d. $N(\mu_1; \sigma_1^2)$ verteilter Zufallsvariablen und Y_1,\ldots,Y_n i.i.d. $N(\mu_2;\sigma_2^2)$ -verteilter Zufallsvariablen mit _____ Erwartungswerten μ_1 , μ_2 und _____ Varianzen σ_1^2 , σ_2^2 .

<u>Fall 1:</u> (zweiseitiger Test) <u>Fall 2:</u> (einseitiger Test) <u>Fall 3:</u> (einseitiger Test)

 $H_0: \ \sigma_1^2 = \sigma_2^2 \qquad \qquad H_0: \ \sigma_1^2 \le \sigma_2^2 \qquad \qquad H_0: \ \sigma_1^2 \ge \sigma_2^2$

 $H_1: \ \sigma_1^2 \neq \sigma_2^2 \qquad \qquad H_1: \ \sigma_1^2 > \sigma_2^2 \qquad \qquad H_1: \ \sigma_1^2 < \sigma_2^2$

Testgröße: (für alle drei Fälle)

wobei

die Stichprobenvarianz der ersten Stichprobe ist und

die Stichprobenvarianz der Zweiten. Sowie $\bar{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$ und $\bar{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$.

Verteilung der Testgröße:

Falls wir annehmen, dass _____ gilt, dann ist _____

Ablenhungsbereiche: Ablehnung von H_0 , falls

Fall 1:
$$T(x_1, ..., x_{n_1}, y_1, ..., y_{n_2})$$
 oder $T(x_1, ..., x_{n_1}, y_1, ..., y_{n_2})$

Fall 2:
$$T(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})$$

Fall 3:
$$T(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})$$

wobei α das (vorher festgelegte) Signifikanzniveau des Tests ist. n_1-1 sind die Zählerfreiheitsgrade und n_2-1 sind die Nennerfreiheitsgrade. (Die Quantile der F_{n_1-1,n_2-1} -Verteilung finden sich in Tabelle E.)

Hinweis:

Ein F-Test auf Gleichheit der Varianzen (also Fall 1) wird oft einem t-Test für zwei unabhängige Stichproben vorgeschaltet, um zu überprüfen, ob die Voraussetzung gleicher Varianzen in beiden Stichproben abzulehnen ist oder nicht. Statistik-Software-Computer-Programme machen dies z.T. automatisch und geben ggf. eine Warnmeldung heraus, falls die Annahme gleicher Varianzen durch den F-Test nicht bestätigt wird.

Beispiel 52 Ein Möbelhersteller möchte eine neue Regalserie mit modernem Design herstellen, die eine alte Regalserie mit altmodischem Design ablösen soll. Um den richtigen Abstand der Regalböden voneinander planen zu können, liegen dem Möbelhersteller für die alte Regalserie die Höhenmaße von _______ damals auf dem Markt befindlichen unterschiedlichen Buchtypen vor mit Stichprobenvarianz ______ und für die neue Regalserie liegen dem Möbelhersteller

Höhenmaße von	heute auf dem Markt befindlichen unterschied-
lichen Buchtypen vor mit Stichpro	benvarianz
Beim ersten Durchsehen seiner Da	uten glaubt der Möberhersteller bei den Höhenma-
ßen der neuen Buchtypen eine kleir	nere Varianz zu erkennen als bei den Höhenmaßen
der alten Buchtypen; jedoch die Mi	ttelwerte von alten und neuen Höhenmaßen fallen
ziemlich gleich aus. Die Fragestell	ung lautet nun: Kann bei der modernen Regalse-
rie ein kleinerer Abstand der Rega	lböden voneinander eingeplant werden als bei der
alten Regalserie?	
Dazu soll mit einem $F-Test$ z	zum Signifikanzniveau geprüft
werden, ob die Varianz der neuen	Buchhöhen kleiner ist als die Varianz der alten
Buchhöhen oder nicht.	
Es soll also die Nullhypothese	gegen die Alterna-
tivhypothese	getestet werden (Fall). Wir
berechnen dazu den Wert der Test	größe aus den beiden Stichproben und erhalten:
Aus Tabelle E:	
Da nun gilt:	, fällte der Wert der Testgröße
in den Ablehnung	$gsbereich,\ d.h.\ H_0\ kann\ auf\ diesem\ Signifikanzni-$
veau verworfen	werden; was spricht, bei der
neuen Regalserie einen kleineren A	Abstand einzuplanen als bei der alten.

7.4 U-Test von Mann-Whitney und Wilcoxon-Test

In allen bisher behandelten Statistischen Tests wurde stets vorausgesetzt, dass die
Zufallsvariablen, welche die Stichprobendaten (oder die Beobachtungsdaten) be-
schreiben, normalverteilt sind. In vielen Situationen kann man aber nicht davon
ausgehen!
Oftmals sind die zugrundeliegenden Stichprobendaten (oder Beobachtungsdaten)
noch nicht einmal verhältnis-skaliert, sondern lediglich intervallskaliert oder sogar
nur ordinal skaliert.
In der Statistik wurden dafür spezielle Tests entwickelt, die sog.
oder
Tests. Wir werden im folgenden zwei solcher Tests vorstellen:
Tests. Wir werden im folgenden zwei solcher Tests vorstellen:
Tests. Wir werden im folgenden zwei solcher Tests vorstellen:
Tests. Wir werden im folgenden zwei solcher Tests vorstellen: 8.) <u>U-Test von Mann-Whitney</u> (für zwei unabhängige Stichproben)
8.) <u>U-Test von Mann-Whitney</u> (für zwei unabhängige Stichproben)
8.) <u>U-Test von Mann-Whitney</u> (für zwei unabhängige Stichproben) Dieser Test eignet sich für mindestens ordinalskalierte Beobachtungsdaten, welche
8.) <u>U-Test von Mann-Whitney</u> (für zwei unabhängige Stichproben) Dieser Test eignet sich für mindestens ordinalskalierte Beobachtungsdaten, welche wir uns reell codiert vorstellen.

______, für ein ______.

Getestet wird dann:
H_0 :
H_1 :
(Merkhilfe: H_0 : Gleiche Wirkung, H_1 : unterschiedliche Wirkung)
Testgröße:
wobei
Um den Wert der Testgröße zu ermitteln, verfahren wir folgendermaßen: Wir sortie-
ren alle Stichproben realisierungen $x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}$ aus den beiden Stichproben
der Größe nach und vergeben Rangplätze von für den kleinsten Stichproben-
wert bis für den größten Stichprobenwert. Dann betrachten wir
jeden einzelnen Stichprobenwert aus der Stichprobe und zählen, wie
viele Stichprobenwerte aus der Stichprobe einen echt größeren Rang-
platz haben als
Dies ergibt die Anzahl der sog. Rangplatzüberschreitungen für
jedes einzelne aus der Stichprobe. Alle diese Rangplatzüberschreitun-
gen aufsummiert ergibt den Wert der Testgröße, nämlich:

Dazu ein Beispiel: Es liegen uns folgende Stichprobenrealisierungen aus den bei-					
den Stichproben vor, denen wir ihrer Größe nach Rangplätze zuweisen. In der letzten					
Zeile schließlich stehen bei jedem Stichprobenwert der ersten Stichprobe die Anzahl					
der Stichprobenwerte aus der zweiten Stichprobe, die einen größeren Rangplatz auf-					
weisen:					
Diese Zahlen der letzten Zeile aufsummiert ergeben den Wert der Testgröße:					
Verteilung der Testgröße:					
Falls wir annehmen, dass gilt, und falls entweder oder					
(also bei mindestens einer hinreichend großen Stichprobe),					
dann istnäherungsweise					
mit					

<u>Ablenhungsbereich:</u> Ablehnung von H_0 , falls

wobei α das (vorher festgelegte) Signifikanzniveau des Tests ist und das $z_{1-\alpha/2}$ —Quantil der Standardnormalverteilung in der z-Tabelle zu finden ist.

Vorliegen von Bindungen:

Je nachdem, wie die beiden Stichproben ausfallen, kann es vorkommen, dass unter
den Stichprobenrealisierungen $x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}$ Werte
vorkommen, d.h. die Rangplätze können nicht mehr vergeben
werden. In diesem Fall spricht man vom Vorliegen von sog. Bindungen und wir ver-
fahren wie folgt:
Wir sortieren alle Stichprobenrealisierungen $x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}$ der Größe nach,
nur dass jetzt die mehrfach vorkommenden Werte nebeneinander stehen. Dann ver-
geben wir Rangplätze an die einzeln vorkommenden Werte,
und an die mehrfach vorkommenden Werte wird jedem der
der für diese Werte normalerweise zu vergebenden Rangplätze zugewiesen.

Dazu ein Beispiel: Seien 1; 1; 2; 3; 3; 4 die bereits der Größe nach sortierten Stichprobenrealisierungen aus den beiden Stichproben. Dann werden ihnen folgende Ränge zugeordnet:

Die <u>Testgröße</u> beim Vorliegen von Bindungen ist wie bisher die Summe der Rang-
platzüberschreitungen:
wobei wieder
Verteilung der Testgröße:
Falls wir annehmen, dass gilt, und falls entweder $n_1 > 10$ oder $n_2 > 10$
(also bei mindestens einer hinreichend großen Stichprobe), dann ist $U(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$
näherungsweiseund
wobei = Anzahl der verschiedenen Werte, die jeweils mehrfach vorkommen,
und zwar mit Häufigkeiten

Hier ist	und				(Erklärung:	Es gibt zwei
verschieden	e Stichprobenwerte	e, die me	ehrfach vor	kommen,	nämlich die	und
die	Also ist		_ kommt zw	veimal vor	, also ist	
komr	nt dreimal vor, also	o ist		_).		
Für die Sur	mme berechnet sich	damit:				
Ablehnungs	sbereich beim Vorli	egen vor	n Bindunge	n:		
Ablehnung	von H_0 , falls					

wobei α wieder das Signifikanzniveau des Tests ist und das $z_{1-\alpha/2}$ -Quantil in der z-Tabelle zu finden ist.

Bemerkung: In beiden Fällen (sowohl ohne als auch mit Vorliegen von Bindungen) kann man sagen, dass die Testgröße den Grad der Durchmischung der Stichprobenwerte beider Stichproben misst. Je schlechter durchmischt die Werte beider Stichproben sind, desto extremer wird der Wert der Testgröße ausfallen, d.h. die Abweichung von μ_u wird entweder in die eine oder in die andere Richtung sehr groß, und desto eher wird es zu einer Verwerfung der Nullhypothese kommen. Je besser durchmischt die Werte beider Stichproben sind, desto mehr nähert sich der Wert der Testgröße μ_u an, und desto unwahrscheinlicher wird eine Verwerfung der Nullhypothese.

Beispiel 53

(In den Stichproben zu diesem Beispiel kommen keine Bindungen vor; diesen Fall werden wir in den Übungen behandeln.)

Ein Arzt gibt 12 Patienten, die unter Schlafstörungen leiden, für eine Nacht Medikament A und 14 anderen Patienten, die ebenfalls unter Schlafstörungen leiden,

gibt er für eine Nacht Medikament B.

Medikan		Medikament B		
Schlafdauer	Rangplatz	Schlafdauer	Rangplatz	
3:55	8	9:25	26	
4:08	10	3:37	6	
8:11	23	5:09	13	
2:46	5	1:18	1	
1:43	2	2:25	3	
7:23	21	4:53	12	
6:14	17	3:59	9	
9:01	25	7:13	20	
5:13	14	4:18	11	
8:33	24	6:45	19	
7:29	22	3:48	7	
5:38	16	2:37	4	
		6:41	18	
		5:27	15	

Der Arzt vermutet eine unterschiedliche Wirkungsweise beider Medikamente und möchte dies mit Hilfe eines U-Tests von Mann-Whitney untersuchen. Dazu lässt er sich von allen Patienten aufschreiben, wielange sie in der einen Nacht geschlafen haben. Es liegen ihm folgende Werte (mit zugehörigen Rangplätzen) in Std.:Min. vor.

Wir müssen nun den Wert der Test	größe, d.h. die Summe der Rangplatzüberschrei-			
tungen, ermitteln. Dazu betrachten	wir jeden einzelnen Wert aus dem linken Ta-			
bellenteil, also jede einzelne Schlafe	enszeit unter dem Einfluss von Medikament A,			
merken uns ihren Rangplatz, und zö	ihlen, wieviele Werte aus dem rechten Tabellen-			
teil (unter Medikament B) einen gr	ößeren Rangplatz haben.			
Für den ersten Wert	_ mit Rangplatz haben z.B Werte			
$unter\ Medikament\ B\ einen\ größeren$	Rangplatz, für den zweiten Wert			
mit Rangplatz haben	_ Werte unter B einen größeren Rangplatz, usw			
Alle diese Rangplatzüberschreitunge	n aufsummiert ergibt den Wert der Testgröße:			
Wegen	kann bei Anwendung des U-Tests			
von Mann-Whitney auf diese Testsit	uation die Nullhypothesever-			
worfen werden, d.h. die Daten geben keinen Anlass zur Vermutung des Arztes, dass				
die Medikamente	Wirkung haben.			

9.) Wilcoxon-Test (oder auch: Vorzeichen-Rang-Test) (für zwei abhängige Stichproben) Dieser Test eignet sich für mindestens intervallskalierte Beoba

Dieser Test ei	gnet sich für mindestens intervallska	lierte Beobachtungsdaten.	
Gegeben seie	n zwei abhängige Stichproben i.i.d.	Zufallsvariablen X_1, \ldots, X_n	X_n (das
sind die Stich	probenergebnisse) und i.i.d. Zufallsva	ıriablen
Y_1,\ldots,Y_n (da	as sind die Stichprobenergebnisse).	
Dann sind au	ch die Differenzen	für	i.i.d.
Zufallsvariabl	en. (Merkhilfe: Die Differenzen kann	man sich wie die Verände	erungen
von vorher zu	nachher vorstellen.)		
Getestet wird	dann:		
$H_0:$		für alle a	$c \ge 0,$
$i = 1, \ldots, n$, d.h. die Differenzen D_1, \ldots, D_n	(also die "Veränderungen	") sind
symmetrisch	um Null verteilt		
H_1 : Die Diffe	renzen D_1, \ldots, D_n sind nicht symme	trisch um Null verteilt, d.h.	. es gibt
$\sin x \ge 0$ und	ein $i \in \{1,, n\}$ mit		
(Merkhilfe:	H_0 : Keine Veränderung zwischen v	orher und nachher,	
	H_1 : Es hat sich etwas verändert)		
Testgröße:			
wobei	der Rang vom Absolutbetrag der Di	ferenz ist. Aufsu	mmiert
werden nur d	iejenigen Ränge, die zu echt positive	n Differenzen gehören.	

wobei α das Signifikanz
niveau des Tests ist und das $z_{1-\alpha/2}$ —Quantil der Standardnormalverteilung in der z
-Tabelle zu finden ist.

Vorliegen von Bindungen:

Beispiel dazu: Sei n=8 und

Rangplätze zugewiesen.

$$y_1 = 1;$$
 $y_2 = 2;$ $y_3 = 2;$ $y_4 = 3;$ $y_5 = 0;$ $y_6 = 2;$ $y_7 = 3;$ $y_8 = -1$

te wird jedem der Durchschnitt der für diese Werte normalerweise zu vergebenden

$$x_1 = 2;$$
 $x_2 = 0;$ $x_3 = 2;$ $x_4 = 1;$ $x_5 = 0;$ $x_6 = 1;$ $x_7 = 1;$ $x_8 = 3$

Jedoch gehören nur Rangplätze mit Pfeilen zu echt positiven Differenzen (die anderen Rangplätze gehören zu negativen Differenzen oder zu Null-Differenzen).

Die Testgröße ist wie bisher die Summe derjeniger Rangplätze, die zu echt positiven
Differenzen gehören; hier:
Also:
wobei der Rang des Absolutbetrages der Differenz ist.
W + '1
Verteilung der Testgröße: Falls wir annehmen, dass H_0 gilt, und falls $n \geq 20$ (also
bei großen Stichproben), dann ist
näherungsweise mit
und
wobei k = Anzahl der verschiedenen Differenzen-Absolutbeträge \neq 0, die jeweils
mehrfach vorkommen, und zwar mit Häufigkeiten;
t_0 = Häufigkeit der vorkommenden Null-Differenzen
Zu unserem letzten Beispiel:
Hier ist (weil Nulldifferengen verkemmen) und
Hier ist (weil Nulldifferenzen vorkommen) und
(weil verschiedene Absolutbeträge \neq 0 mehrfach vorkommen, nämlich die
mit Häufigkeit und die mit Häufigkeit).
Somit ist

Ablehnungsbereich bei Vorliegen von Bindungen:

Ablehnung von H_0 , falls

wobei α wieder das Signifikanz
niveau des Tests ist und das $z_{1-\alpha/2}$ -Quantil aus der z-Tabelle.

Beispiel 54 (Zum letzten Beispiel)

Als "vorher-nachher-Problem" formuliert:

Ein Arzt gibt 20 Patienten, die unter Schlafstörungen leiden, für eine Nacht Medikament A, und lässt sich von allen Patienten aufschreiben, wie lange sie in der einen Nacht (unter Einwirkung von Medikament A) geschlafen haben.

Zusätzlich lässt er sich von allen Patienten berichten, wie lange sie in der Nacht davor (ohne Medikament A) geschlafen haben. Der Arzt vermutet eine Wirkung von Medikament A, und möchte dies mit einem Wilcoxon-Test untersuchen. Es liegen ihm folgende Werte vor (in Std.: Min.), siehe Tabelle auf der nächsten Seite.

$x_i =$	=	
$y_i = 1$	=	
-		
r. —	_	

x_i	y_i	$d_i = y_i - x_i$	$ d_i $	r_i
3:55	5:02	1:07	1:07	8
4:08	6:27	2:19	2:19	14
2:46	8:24	5:38	5:38	20
8:11	5:03	-3:08	3:08	18
7:23	6:25	-0.58	0.58	7
1:43	2:58	1:15	1:15	10
9:01	6:31	-2.30	2:30	16
5:13	8:37	3:24	3:24	19
5:38	6:15	0:37	0:37	3
7:29	6:45	-0:44	0:44	4
8:33	8:18	-0:15	0:15	1
3:37	6:38	3:01	3:01	17
5:09	6:51	1:42	1:42	12
1:18	2:13	0:55	0:55	6
7:13	6:21	-0:52	0:52	5
2:25	4:38	2:13	2:13	13
9:25	6:59	-2:26	2.26	15
4:53	6:03	1:10	1:10	9
3:59	5:20	1:21	1:21	11
4:15	4:47	0:32	0:32	2

Die Testgröße	ist nun die Sum-
me aller Rangplätze, die zu positiven I	Differenzen gehören,
also:	·
Für den Ablehnungsbereich müssen wir noch	und berechnen (für
n = 20):	
Damit:	·
Aus der z-Tabelle (für $\alpha=0,1$):	
Da	, $kann H_0$ auf diesem (schon recht
großzügigen) Signifikanzniveau	werden,
was bedeutet, dass eine Auswirkung von Med	dikament A auf die Schlafenszeit der
Patienten nachgewiesen werde	$n \ kann.$

7.5 Kolmogorow-Smirnow-Test, Chi-Quadrat-Anpassungstest und Chi-Quadrat-Unabhängigkeitstest

Die Statistischen Tests, welche wir in den Abschnitten 7.2 und 7.3 behandelt haben, benötigen als Voraussetzung, dass die Stichprobendaten einer normalverteilten Grundgesamtheit angehören. In vielen Fällen kann man aus der Erfahrung heraus sagen, dass diese Voraussetzung gegeben ist. In manchen Fällen jedoch bestehen Zweifel, und in diesen Fällen gibt es die Möglichkeit, zuerst einen sog. ______ durchzuführen. Ein ______ oder auch _____ (= _____ _____) dient zur Überprüfung der Nullhypothese, ob das beobachtete Merkmal eine bestimmte Verteilung, z.B. die Normalverteilung, besitzt oder nicht; d.h. ob sich die Stichprobendaten hinreichend gut an eine gewünschte Verteilung "anpassen". Wir werden hier zwei solcher Tests kennenlernen:

10.) Kolmogorow-Smirnow-Test (für eine Stichprobe)

Gegeben sei eine Stichprobe i.i.d. Zufallsvariablen X_1,\ldots,X_n aus einer Grundgesamtheit mit einer _______ stetigen Verteilungsfunktion F. Ferner sei F_0 eine ______ stetige Verteilungsfunktion, z.B. der Normalverteilung $N(\mu;\sigma^2)$ mit bekannten Erwartungswert μ und bekannter Varianz σ^2 .

Testgröße:

Für die Testgröße berechnen wir zuerst die empirische Verteilungsfunktion F_n aus den Stichprobenrealisierungen x_1, \ldots, x_n wie folgt:

mit m(x) gleich der Anzahl der Stichprobenrealisierungen, die x nicht übertreffen.

Beispiel:Gegeben sei eine Stichprobe vom Umfang n=6 wie folgt:

$$x_1 = 2.5;$$
 $x_2 = -1;$ $x_3 = 1;$ $x_4 = 2.5;$ $x_5 = 2;$ $x_6 = 3$

Diese Stichprobe besitzt folgende empirische Verteilungsfunktion:

Sei nun F_0 die Verteilungsfunktion der bekannten N(1.5; 2)-Verteilung. Wir betrachten die Graphen der empirischen Verteilungsfunktion F_6 (= durchgezogene Linie) und der bekannten Verteilungsfunktion F_0 (= gestrichelte Linie):

Die **Testgröße** ist nun der maximale Abstand von bekannter Verteilungsfunktion F_0 und empirischer Verteilungsfunktion F_n . (Dieser wird immer an den Sprungstellen von F_n angenommen. Also in $x_{(i)}, i = 1, ... n$.) In Formeln:

Verteilung der Testgröße:

Falls wir annehmen, dass _____ gilt, dann ist $T(X_1, ..., X_n)$ verteilt gemäß der sog. _____ -Verteilung. (Für n > 40 können die Quantile der asymptotischen Verteilung genommen werden, siehe Tabelle M.) <u>Ablehnungsbereiche:</u> Ablehnung von H_0 , falls

wobei $k_{1-\alpha}$ das $(1-\alpha)$ -Quantil der Kolmogorow-Smirnow-Verteilung ist.

Weitaus häufiger als der Kolmogorow-Smirnow-Test wird der folgende Anpassungstest verwendet:

11.) Chi-Quadrat-Anpassungstest (für eine Stichprobe)

11.) Cm-Quadrat-Anpassungstest (für eine Stichprobe)
Dieser Test eignet sich bereits für diskrete Verteilungen; kann aber auch bei stetigen
Verteilungen angewendet werden.
Gegeben sei eine Stichprobe i.i.d. Zufallsvariablen X_1, \ldots, X_n aus einer Grundge-
samtheit mit einer Verteilungsfunktion F (F
kann stetig oder diskret sein, beides ist möglich).
Ferner sei F_0 eine (diskrete oder stetige) Verteilungsfunktion.
TD 4 "0
Testgröße:
Zuerst wird die reelle Achse in k sich ausschließende Intervalle eingeteilt (wobei
$k \leq n$), und dann wird gezählt, wieviele Stichprobenrealisierungen x_1, \ldots, x_n in
jedes Intervall fallen; diese Anzahlen werden mit n_1, \ldots, n_k bezeichnet.
Sei nun p_i die Wahrscheinlichkeit dafür, dass eine Zufallsvariable Y , welche gemäß
der Verteilungsfunktion F_0 verteilt ist, einen Wert in der <i>i</i> -ten Klasse annimmt, d.h.
Die Testgröße ist:
Dabei kann man auch interpretieren als die erwartete Anzahl von Stich-
probenrealisierungen im Intervall für $i = 1,, k$.

Verteilung der Testgröße:

Falls wir annehmen, dass _____ gilt, dann ist $T(X_1, \ldots, X_n)$ näherungsweise

Ablehnungsbereich:

Ablehnung von _____, falls

wobei $\chi^2_{k-1;1-\alpha}$ das $(1-\alpha$ -Quantil der χ^2 -Verteilung mit k-1 Freiheitsgraden ist und in Tabelle C abgelesen werden kann.

Beispiel 55

Mit Hilfe des χ^2 -Anpassungstests soll untersucht werden, ob ein vorliegender Würfel "fair" oder "verfälscht" ist. Dazu wird der Würfel 100 mal geworfen und die geworfenen Augenzahlen notiert:

Augenzahl	1	2	3	4	5	6
Anzahl der zugehörigen Würfe	20	17	15	19	13	16

Wir haben also k=6 Klassen vorliegen . Wir testen mit folgender Nullhypothese:

Das heißt:

 $(Jede\ Augenzahl\ bei\ einem\ fairen\ \ W\"{u}rfel\ kommt\ mit\ der\ \ Wahrscheinlichkeit\ \tfrac{1}{6}\ vor.)$

Damit ergibt sic	ch als Wert der Testgröße:	
Für	lesen wir in Tabelle C ab:	
d.h		, und
$damit \ kann \ H_0$	verworfen werden, d.h. die Daten spreche	en
	_ gegen einen fairen Würfel!	
<u>Hinweis:</u>		
Im Gegensatz zu	u allen Tests, die wir in 7.2 bis 7.4 vorgestellt haben, steht in	den bei-
den hier vorgeste	ellten Anpassungstests die erwünschte Situation in der	
	, nicht in der	
	D.h. hier ist es günstig, wenn H_0 verworfen	
kann!		

Zuguterletzt wollen wir noch den sog.
behandeln, der die Nullhypothese testet, ob zwei Merkmale in
derselben Grundgesamtheit voneinander sind.
Anwendungen dieses Tests finden sich in vielen Fragestellungen, z.B.:
Beispiel 56
(a) Gibt es einen Zusammenhang zwischen Körpergröße und Körpergewicht gleich-
alter Erwachsener?
(b) Sind Augenfarbe und Haarfarbe voneinander unabhängige Merkmale?
$(c) \ Be einflusst \ das \ Einkommen \ von \ Wahlberechtigten \ ihre \ Wahlentscheidung?$
(d) Ist die Blutgruppenzugehörigkeit geschlechtsabhängig?
12.) <u>Chi-Quadrat-Unabhängigkeitstest</u> (für zwei abhängige Stichproben)
Gegeben seien zwei voneinanderStichproben
X_1, \dots, X_n i.i.d. Zufallsvariablen des Merkmals X und
Y_1, \dots, Y_n i.i.d. Zufallsvariablen des Merkmals Y .

Testgröße:

Beide reellen Achsen, sowohl die x-Achse als auch die y-Achse, werden in sich gegen-				
seitig ausschließende Intervalle eingeteilt, und zwar die x -Achse in Intervalle				
und die y -Achse in Intervalle. Dann wird gezählt, wieviele Stichproben-				
realisierungen x_1, \dots, x_n von Merkmal X in die k Intervalle der x-Achse fallen und				
wieviele Stichproben realisierungen y_1, \dots, y_n von Merkmal Y in die l Intervalle der				
y-Achse fallen. Diese Anzahlen werden in eine Kontingenztafel eingetragen und wie				
folgt bezeichnet:				

Mit diesen Bezeichnungen aus der Kontingenztafel ist die Testgröße:
Dabei kann man interpretieren als die erwartete Häufigkeit in In-
tervall i von Merkmal X und (gleichzeitig) in Intervall j von Merkmal Y (unter
H_0).
Verteilung der Testgröße:
Falls wir annehmen, dass und sind,
dann ist die Testgröße näherungsweiseverteilt.
Ablehnungsbereiche:
Ablehnung von H_0 , falls
wobei α das Signifikanz niveau des Tests ist unddas
der
Anmerkung:
Der χ^2 -Unabhängigkeitstest ist geeignet für Skalenart der Merkmale
X und Y .

Beispiel 57 (Zu Teil (c) des letzten Beispiels)

Es soll untersucht werden, ob ein Zusammenhang zwischen Einkommen und Wählerverhalten besteht. Dazu werden 1000 zufällig ausgewählte Bundesbürger nach ihrem Einkommen (Ausprägungen: hoch, mittel, niedrigi) und der Partei (Ausprägungen: A, B, C, andere) befragt, der sie bei der nächsten Bundestagswahl ihre Stimme geben wollen. Es ergibt sich folgende Kontingenztafel für die absoluten Häufigkeiten:

Für ein Signifikanzniveau von $lpha$	= 0.05 lesen wir in Tabelle C ab:
Wegen	lehnen wir die Nullhypothese
H_0 : "Einkommen und Wahlvert	halten sind unabhängig" ab, d.h. wir haben mit den
χ^2 -Unabhängigkeitstest einen Z	usammenhang zwischen Einkommen und Wahlver
halten nachgewiesen.	

8 Zusammenfassung

Statisti	sche Erhebung	:=	,	
		oder		
Merkm	ale=			
Merkm	alsausprägung	en, Messwerte	, Skalenwerte=	_
Skalena	ırten:			
(1)				
(2) _				
(3) _				
(4)				
Häufigl	xeiten: (k=Zähli	index)		
f(k)=				
%(k)=				
$_{n}(\mathbf{k})=$ _				
(1.)				

graphische Darstellungsmöglichkeiten:
(1)
(2)
(3)
Messreihe:
geordnete Messreihe:
mit
Statistische Kennwerte für Messreihen:
(1) Modalwert:
(2) Median:
(3) Arithmetisches Mittel:
(4) Varianz:
Alternative Berechnungsformel für die Varianz:
(5) Standardabweichung:

zweidimensionale (bivariate) Messreihen:		
(1)		
(2)		
Zufallsexperiment:		
(1) Elementarereignis:		
(2) Ergebnismenge:		
(3) Ereignis:		
(4) Vereinigung zweier Ereignisse:		
(5) Durchschnitt zweier Ereignisse:		
(6) Gegenereignis von A:		
(7) unmögliches Ereignis:		
(8) sicheres Ereignis:		

(9)	A, B disjunkte oder unvereinbare Ereignisse:
(10)	Wahrscheinlichkeit für das Eintreten von A:
Rech	nenregeln für Wahrscheinlichkeiten:
(1)	
(2)	
(3)	
(4)	
(5)	
Lapl	ace-Experiment:
Abzā	ählformel für Laplace-Experimente:

Abzählregeln für Laplace-Experimente:

(1) Für die Anzahl aller möglichen Ausgänge $ \Omega $:
(1.1) einstufiges Laplace-Experiment:
(1.2) mehrstufiges Laplace-Experiment:
(2) Für die Anzahl aller möglichen Reihenfolgen:
(3) Für die Anz. aller Mögl., k Objekte aus n zu ziehen ohne Zurücklegen:
(3.1) mit Reihenfolge:
(3.2) ohne Reihenfolge (d.h. mit einem Griff):
(3.3) ohne Reihenfolge (mit mehreren Griffen nacheinander):
Bedingte Wahrscheinlichkeit:

Zwei Ereignisse A, B sind unabhängig, falls gilt:

T	M 1	l	.1	/ID - 4 - 1	T T 7 - 1	1	1 - 1 - 1	1:4.
1	cormei	LOUL	uer	Totalen	wants	спеш.	иси	ken:

wobei A_1 ,	A_2 die beiden möglichen Ausgänge der 1	. Stufe und B ein Ausgang der
2. Stufe bei	einem zweistufigen Zufallsexperiment sir	nd, bei dem die Wahrscheinlich-
keiten der 2	2. Stufe abhängig sind von den Wahrsche	inlichkeiten der 1. Stufe.
Formel vo	on Bayes:	
Zufallsvar	riable: = Funktion, die jedem	eine
oder einen		zuordnet.
	heisst	von
(1) D: /	7f. ll	
(1) Eine	Zufallsvariable heisst diskret , falls	
(2) Eine	Zufallsvariable heisst stetig , falls	

(1.1) Wahrscheinlichkeitsfunktion für diskrete Zufallsvariablen:

(2.1)	Wahrscheinlichkeitsdichte für stetige Zufallsvariablen:
(3)	Verteilungsfunktion $F(x)$ einer Zufallsvariablen:
(4)	p-Quantil
(5)	Erwartungswert μ einer Zufallsvariablen:
(6)	Varianz σ^2 einer Zufallsvariablen:

(7) **Streuung** σ einer Zufallsvariablen:

(8)	Binomialverteilung:
(9)	Poisson-Verteilung:
(10)	Normalverteilung:
	Der Graph von f heißt
(11)	Standardnormalverteilung:
(12)	Standardisierte Zufallsvariable Z:
(13)	i.i.d.:

(14)	Quantile der _	aus	
(15)	Quantile der _	aus	
(16)	Quantile der _	aus	
(17)	Quantile der _	aus	
Para	ımeterschätzu	ing:	
(1)	Grundgesam	theit:	
(2)	Stichprobe:		
(3)	Parameter w	ie z.B	oder
		sind aus der	Grundge-
	samtheit.		
(4)	Schätzer:		
	häufig verwend	lete Schätzer:	
	(4.1) Stichpro	benmittelwert:	

(4.2) Stichprobenvarianz:
(4.3) Stichprobenstandardabweichung:
Intervallschätzung:
Ein Konfidenzintervall zum Konfidenzniveau p ist
Sei X_1, \ldots, X_n eine Stichprobe i.i.d. $N(\mu, \sigma^2)$ -verteilter Zufallsvariablen.
Dann gibt es 4 Fälle:
Fall 1: gesucht:, bekannt:
Fall 2: gesucht:, unbekannt:

Fall	3:	gesucht:, bekannt:
Fall	4:	gesucht:, unbekannt:
Fall	5:	Seien X_1, \ldots, X_n i.i.d. $B(1, \theta)$ -verteilte Zufallsvariablen.
		Gesucht ist die Erfolgswahrscheinlichkeit θ .

Konfidenzintervallgrenzen ("+"=obere Grenze, "-"=untere Grenze):

Statistische Tests:

Folgende Begriffe müssen verstanden sein: Nullhypothese, Alternativhypothese, einseitiger Test, zweiseitiger Test, Testgröße, Wert der Testgröße, Ablehnungsbereich, α -Fehler, β -Fehler, Signifikanzniveau, Teststärke.

Übersicht Statistische Tests MIT Normalverteilungsannahmen:

Übersicht Statistische Tests OHNE Normalverteilungsannahmen: