Fachbereich Mathematik

Prof. Dr. M. Hieber Robert Haller-Dintelmann Horst Heck

Analysis I für M, LaG/M, Ph

10. Übung mit Lösungshinweisen

Gruppenübungen

(G1)

Untersuchen Sie die folgenden Funktionen auf Differenzierbarkeit. Bestimmen Sie gegebenenfalls die Ableitung.

- (a) Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei definiert durch $f(x) = x^2 e^{\sin x}$.
- (b) Die Funktion $g: \mathbb{R} \to \mathbb{R}$ werde definiert durch

$$g(x) := \begin{cases} x^2 \sin(\frac{1}{x}) & \text{falls } x \neq 0, \\ 0 & \text{falls } x = 0. \end{cases}$$

Ist g' in den Punkten in denen g differenzierbar ist stetig?

LÖSUNG: (a). Nach der Produktregel und der Kettenregel folgt, dass f differenzierbar ist und $f'(x) = 2xe^{\sin x} + x^2\cos(x)e^{\sin x}$ gilt.

(b). Die Differenzierbarkeit für $x \neq 0$ folgt wieder aus Produkt- bzw. Kettenregel. Für $x \neq 0$ gilt außerdem $g'(x) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$.

Da

$$\frac{g(0+h)-g(0)}{h} = h\sin(\frac{1}{h}) \longrightarrow 0 \quad (h \to 0)$$

folgt, dass g auch im Punkt x = 0 differenzierbar ist und g'(0) = 0 gilt.

Die Ableitung g' ist jedoch nicht stetig. Wir wählen $x_n := \frac{1}{2\pi n}$. Dann gilt $\lim x_n = 0$ und

$$g'(x_n) = \frac{1}{\pi n} \sin(2\pi n) - \cos(2\pi n) = -1.$$

Die Ableitung von g kann also nicht stetig sein, da sonst $\lim_{n\to\infty} g'(x_n) = 0$ wäre.

(G 2)

Beweisen Sie mit Hilfe des Mittelwertsatzes, dass für alle $x \in (0, \pi/2)$ gilt

- (a) $x \cos x < 1$;
- (b) $\tan x > x + \frac{x^3}{3}$. Hinweis: Teil (a).

LÖSUNG: (a). Wir wenden den Mittelwertsatz auf die Funktion $k(t) = \sin t$ im Intervall [0, x] an und erhalten ein $\xi \in (0, x)$ mit

$$\frac{\sin x}{x} = \frac{\sin x - \sin 0}{x - 0} = \cos \xi. \tag{1}$$

wegen $x < \frac{\pi}{2}$ ist cos streng monoton fallend auf [0, x]. Also gilt $\cos \xi > \cos x$ und somit

$$x\cos x < x\cos \xi = \sin x < 1.$$

(b). Es seien $x \in (0, \frac{\pi}{2})$ und $f: (0, x) \to \mathbb{R}$ definiert durch $f(t) := \tan t - t - \frac{t^3}{3}$. Der Mittelwertsatz liefert die Existenz einer Zahl $\xi \in (0, x)$, so dass

$$\frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0} = f'(\xi) = \frac{1}{(\cos \xi)^2} - 1 - \xi^2.$$

Aus (1) folgt, dass $\xi \cos \xi < \sin \xi$ gilt. Daraus ergibt sich, da $\xi > 0$ und $\cos \xi > 0$, dass $\xi^2 < (\tan \xi)^2$. Also folgt

$$\frac{f(x)}{x} > \frac{1}{(\cos \xi)^2} - 1 - (\tan \xi)^2 = \frac{1 - (\cos \xi)^2 - (\sin \xi)^2}{(\cos \xi)^2} = 0.$$

Daher gilt auch f(x) > 0, was die Behauptung liefert.

(G3)

Die Funktion f sei differenzierbar in [a, b] und für alle $x \in [a, b]$ gelte

$$|f(x)| + |f'(x)| \neq 0.$$

Beweisen Sie, dass f in [a, b] nur endlich viele Nullstellen hat.

LÖSUNG: Es sei N_f die Menge der Nullstellen von f in [a,b]. Wir nehmen an, N_f sei unendlich. Dann gibt es eine Teilmenge $\{x_n : n \in \mathbb{N}\}$ von N_f mit paarweise verschiedenen Zahlen x_n . Da das Intervall [a,b] kompakt ist, hat die Folge (x_n) eine konvergente Teilfolge (x_{n_k}) , etwa $x_{n_k} \to x_0$. Da die x_n paarweise verschieden sind, kann $x_{n_k} = x_0$ für höchstens ein $k \in \mathbb{N}$ gelten. Aus $f(x_n) = 0$ und der Stetigkeit von f folgt auch $f(x_0) = 0$. Da f differenzierbar ist, folgt

$$f'(x_0) = \lim_{k \to \infty} \frac{f(x_{n_k}) - f(x_0)}{x_{n_k} - x_0} = 0.$$

Das ist aber ein Widerspruch zu $|f(x)| + |f'(x)| \neq 0!$

Hausübungen

(H 1)

Untersuchen Sie die folgenden Funktionen auf Differenzierbarkeit und bestimmen Sie gegebenenfalls die Ableitung.

- (a) $f:(0,\infty)\to\mathbb{R}, f(x)=x^x,$
- (b) $g: \mathbb{R} \to \mathbb{R}$ mit

$$g(x) := \begin{cases} e^{-\frac{1}{x^2}} & \text{falls } x \neq 0, \\ 0 & \text{falls } x = 0. \end{cases}$$

LÖSUNG: (a). Es gilt $x^x = e^{x \ln x}$. Daher ist f auf $(0, \infty)$ differenzierbar und es gilt $f'(x) = (1 + \ln(x))e^{x \ln x} = (1 + \ln(x))x^x$.

(b). Für $x \neq 0$ ist g als Verkettung differenzierbarer Funktionen wieder differenzierbar. Wiederum nach der Kettenregel folgt

$$g'(x) = \frac{1}{r^3} e^{-\frac{1}{x^2}}.$$

Für x = 0 gilt

$$\lim_{h \to 0} \frac{e^{-\frac{1}{h^2}} - 0}{h} = \lim_{h \to 0} \frac{1}{h} e^{-\frac{1}{h^2}} \stackrel{t=h^{-2}}{=} \lim_{t \to \infty} \sqrt{t} e^{-t} \stackrel{Satz4.6}{=} 0.$$

Damit folgt, dass g in 0 differenzierbar ist und g'(0) = 0 gilt.

(H 2)

Zeigen Sie die folgenden Ungleichungen mit Hilfe des Mittelwertsatzes.

(a)
$$|e^x \sin x - e^y \sin y| \le e^{\frac{\pi}{2}} |x - y| \quad \forall x, y \in [0, \frac{\pi}{2}];$$

(b)
$$e^{a}(b-a) < e^{b} - e^{a} < e^{b}(b-a)$$
, für $a < b$;

(c)
$$\sqrt{1+x} < 1 + \frac{x}{2}$$
, für $x > 0$.

LÖSUNG: (a). Wir setzen $f(x) = e^x \sin x$. Dann gilt $f'(x) = e^x (\cos x + \sin x)$. Da $f''(x) = 2e^x \cos x > 0$ für alle $x \in [0, \frac{\pi}{2}]$ gilt, folgt, dass f' auf diesem Intervall monoton wachsend ist. Daher gilt $f'(x) \leq f'(\frac{\pi}{2}) = e^{\frac{\pi}{2}}$. Mit dem Mittelwertsatz folgt nun, dass es zu $x, y \in [0, \frac{\pi}{2}]$ ein $\xi \in (x, y)$ gibt, so dass

$$\frac{|e^x \sin x - e^y \sin y|}{|x - y|} = \frac{|f(x) - f(y)|}{|x - y|} = |f'(\xi)| \le |f'(\frac{\pi}{2})| = e^{\frac{\pi}{2}}$$

gilt. Damit folgt aber die zu zeigende Abschätzung.

(b). Anwendung des Mittelwertsatzes auf die Funktion $h(x) = e^x$ liefert ein $\xi \in (a,b)$ mit

$$\frac{e^a - e^b}{b - a} = e^{\xi}.$$

Mit $e^a < e^{\xi} < e^b$ folgt die Ungleichung.

(c). Wegen des Mittelwertsatzes, angewandt auf die Funktion $g(t) = \sqrt{1+t}$ im Intervall (0,x), gibt es ein $\xi \in (0,x)$ mit

$$\frac{\sqrt{1+x}-1}{x-0} = \frac{1}{2\sqrt{1+\xi}} < \frac{1}{2}.$$

Damit folgt die behauptete Ungleichung.

(H 3)

Sei $D \subset \mathbb{R}$ offen, $f: D \to \mathbb{R}$ stetig in $x_0 \in D$ und auf $D \setminus \{x_0\}$ differenzierbar. Zeigen Sie (mit Hilfe des Mittelwertsatzes), dass f differenzierbar im Punkt x_0 ist und $f'(x_0) = a$ gilt, falls $\lim_{x \to x_0} f'(x) = a$ gilt.

Gilt auch die Aussage

$$\lim_{x\to x_0} f'(x)$$
 existiert nicht $\Rightarrow f$ ist in x_0 nicht differenzierbar?

LÖSUNG: Sei $x_n > x_0$ mit $\lim_{n\to\infty} x_n = x_0$. Wegen des Mittelwertsatzes gibt es zu jedem x_n ein $\xi_n \in (x_0, x_n)$ mit

$$f'(\xi_n) = \frac{f(x_n) - f(x_0)}{x_n - x_0}.$$

Da $0 < |x_0 - \xi_n| = |x_0 - x_n + x_n - \xi_n| \le (x_n - x_0) + (\xi_n - x_0) \le 2(x_n - x_0)$. Daher konvergiert die Folge (ξ_n) gegen x_0 und es folgt

$$a = \lim_{n \to \infty} f'(\xi_n) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}.$$

Analog gibt es, falls $x_n < x_0$ und $\lim x_n = x_0$, Zahlen $\zeta_n \in (x_n, x_0)$ mit $\lim \zeta_n = x_0$ und

$$f'(\zeta_n) = \frac{f(x_n) - f(x_0)}{x_n - x_0}.$$

Also gilt auch

$$a = \lim_{n \to \infty} f'(\zeta_n) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}.$$

Damit folgt nun insgesamt, dass f in x_0 differenzierbar ist und $f'(x_0) = a$ gilt.

Die Aussage

$$\lim_{x\to x_0} f'(x) \text{ existient nicht } \Rightarrow f \text{ ist in } x_0 \text{ nicht differenzierbar?}$$

gilt nicht! Beispiel:

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & : & x \neq 0, \\ 0 & : & x = 0 \end{cases}$$

Nach der Gruppenübung gilt ist diese Funktion in $x_0 = 0$ differenzierbar. Jedoch existiert $\lim_{x\to 0} f'(x)$ nicht.

Mit der Folge x_n aus der Gruppenübung gilt $\lim_{n\to\infty} f'(x_n) = -1$. Setzen wir dagegen $y_n := \frac{2}{\pi(2n+1)}$, dann gilt $\lim_{n\to\infty} f'(y_n) = 0$. Also existiert $\lim_{x\to 0} f'(x)$ nicht.