WS 2007/08

21.11.2007

Analysis I für M, LaG/M, Ph

6. Tutorium mit Lösungshinweisen

(T 1)

Entscheiden Sie, welche der folgenden Reihen konvergieren. Welche der Reihen ist absolut konvergent?

(a)
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n},$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n+1}{n(n+1)}$$
,

(c)
$$\sum_{n=1}^{\infty} \frac{2n-1}{(\sqrt{2})^n}$$
.

LÖSUNG: (a) Für $a_n := 3^n n!/(n^n)$ erhalten wir

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{3^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{3^n n!} = 3 \left(\frac{n}{n+1} \right)^n = \frac{3}{\left(\frac{n+1}{n} \right)^n} = \frac{3}{(1+\frac{1}{n})^n} =: b_n.$$

Es gilt $\lim_{n\to\infty} b_n = 3/e > 1$ und daher gibt es ein $N_0 \in \mathbb{N}$, so dass $b_n \ge 1$ für alle $n \ge N_0$. Das Quotientenkriterium liefert nun, dass die Reihe divergiert.

(b) Für $a_n := \frac{2n+1}{n(n+1)}$ erhalten wir

$$a_n - a_{n+1} = \frac{(2n+1)(n+2) - (2n+3)n}{n(n+1)(n+2)} = \frac{2n+2}{n(n+1)(n+2)} \ge 0.$$

Also ist $(a_n)_{n\geq 1}$ monoton fallend. Aus

$$0 \le a_n = \frac{2n+1}{n(n+1)} \le \frac{3n}{n \cdot n} = \frac{3}{n},$$

folgt, dass $(a_n)_{n\geq 1}$ gegen 0 konvergiert. Damit erhalten wir die Konvergenz der Reihe aus dem Leibniz Kriterium. Wegen

$$|a_n| = \frac{2n+1}{n(n+1)} \ge \frac{n+1}{(n+1)^2} = \frac{1}{n+1},$$

divergiert die Reihe $\sum_{n=1}^{\infty} |a_n|$. Daher ist die Reihe nicht absolut konvergent.

(c) Es sei $a_n := \frac{2n-1}{(\sqrt{2})^n}$ für $n \in \mathbb{N}$. Dann gilt

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{2n+1}{(\sqrt{2})^{n+1}} \cdot \frac{(\sqrt{2})^n}{2n-1} = \frac{2n+1}{2n-1} \cdot \frac{1}{\sqrt{2}} =: b_n.$$

Also erhalten wir $\lim_{n\to\infty} b_n = 1/\sqrt{2} < 1$ und daher gibt es ein $N_0 \in \mathbb{N}$, so dass

$$b_n - \frac{1}{\sqrt{2}} \le \frac{1}{2} \left(1 - \frac{1}{\sqrt{2}} \right).$$

Damit folgt nun

$$b_n \le \frac{1}{2} \left(1 + \frac{1}{\sqrt{2}} \right) =: q < 1,$$

und mit dem Quotientenkriterium folgt die Konvergenz.

(T 2)

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge positiver reeller Zahlen. Weiter sei die Reihe $\sum_{n=1}^{\infty} a_n$ konvergent. Folgt daraus, dass auch die Reihen

$$\sum_{n=1}^{\infty} a_n^2 \qquad \text{und} \qquad \sum_{n=1}^{\infty} \frac{1}{a_n}$$

konvergieren?

LÖSUNG: Da $\sum_{n=1}^{\infty} a_n$ konvergiert, folgt, dass $(a_n)_{n \in \mathbb{N}}$ eine Nullfolge ist. Also existiert ein $N \in \mathbb{N}$, so dass $a_n < 1$ für alle $n \ge N$. Daher gilt $0 < a_n^2 < a_n$ für alle $n \ge N$ und damit dominiert $\sum_{n=N}^{\infty} a_n$ die Reihe $\sum_{n=N}^{\infty} a_n^2$. Da die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert, folgt, dass auch $\sum_{n=1}^{\infty} a_n^2$ konvergiert.

Weil $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge ist, folgt, dass $(1/a_n)$ unbeschränkt ist. Insbesondere ist $(1/a_n)_{n\in\mathbb{N}}$ keine Nullfolge. Daher kann $\sum_{n=1}^{\infty} \frac{1}{a_n}$ nicht konvergieren.

(T 3)

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge positiver reeller Zahlen. Wir definieren

$$d_n := n \left(1 - \frac{a_{n+1}}{a_n} \right).$$

Beweisen Sie:

(a) Raabes Kriterium: Existieren $N_0 \in \mathbb{N}$ und $\beta > 1$, so dass $d_n \geq \beta$ für alle $n \geq N_0$, dann konvergiert $\sum_{n=1}^{\infty} a_n$.

Hinweis: Zeigen Sie zunächst, dass

$$(\beta - 1)a_n \leq (n - 1)a_n - na_{n+1}$$
, für $n \geq N_0$

gilt.

(b) Die Voraussetzung des Quotientenkriteriums impliziert die Voraussetzung von Raabes Kriterium. Mit anderen Worten: Liefert die Anwendung des Quotientenkriteriums die Konvergenz der Reihe $\sum_{n=1}^{\infty} a_n$, so lässt sich auch aus Raabes Kriterium die Konvergenz folgern.

LÖSUNG: (a) Für $n \ge N_0$ gilt

$$(\beta - 1)a_n \le (d_n - 1)a_n = \left(n\left(1 - \frac{a_{n+1}}{a_n}\right) - 1\right)a_n = (n-1)a_n - na_{n+1},$$

woraus folgt, dass für $m>N_0$

$$(\beta - 1) \sum_{n=N_0}^{m} a_n \le \sum_{n=N_0}^{m} ((n-1)a_n - na_{n+1}) = (N_0 - 1)a_{N_0} - ma_{m+1} \le (N_0 - 1)a_{N_0}$$

gilt Also ist $\sum_{n=1}^{\infty} a_n$ beschränkt und damit konvergent, da aus der Positivität der Summanden die Monotonie der Partialsummen folgt.

(b) Wir nehmen an, dass $q\in\mathbb{R}$ mit $0\leq q<1$ und

$$\frac{a_{n+1}}{a_n} \le q$$

für alle $n \geq n_0$ gilt. Dann folgt

$$d_n \ge n(1-q)$$

für $n \ge n_0$. Daher existiert eine natürliche Zahl $N_0 \ge n_0$ mit $d_n \ge 2$ für alle $n \ge N_0$. Also können wir für Raabes Kriterium $\beta=2$ wählen.