Fachbereich Mathematik

Prof. Dr. M. Hieber Robert Haller-Dintelmann Horst Heck

WS 2007/08

31.10.2007

Analysis I für M, LaG/M, Ph

3. Tutorium mit Lösungshinweisen

(T 1)

Bestimmen Sie alle komplexen Zahlen mit der Eigenschaft $z^3=1$, und skizzieren Sie diese in der Gaußschen Zahlenebene

LÖSUNG: Wir bestimmen $z \in \mathbb{C}$ mit $z^3 - 1 = 0$.

Eine Lösung ist offensichtlich z = 1. Weiter gilt

$$\frac{z^3 - 1}{z - 1} = z^2 + z + 1 = 0$$

$$\Leftrightarrow z = \frac{-1 \pm \sqrt{1 - 4}}{2} = -\frac{1}{2} \pm i\sqrt{\frac{3}{4}}$$

$$\Rightarrow z_1 = 1, z_2 = -\frac{1}{2} + i\sqrt{\frac{3}{4}}, z_3 = -\frac{1}{2} - i\sqrt{\frac{3}{4}}$$

(T 2)

Sei $\mathbb{N} := \mathbb{N}_0 \setminus \{0\}$. Untersuchen Sie, ob die folgenden Mengen reeller Zahlen beschränkt sind, und bestimmen Sie gegebenenfalls Supremum, Infimum, Maximum und Minimum.

(a)
$$A := \{2^m + n! : m, n \in \mathbb{N}\}$$

(b)
$$B := \left\{ \frac{1}{n+1} + \frac{1 + (-1)^n}{2n} : n \in \mathbb{N} \right\}$$

(c)
$$C := \left\{ \frac{|x|}{|x|+1} : x \in \mathbb{R} \right\}$$

LÖSUNG: Zur Menge A:

Für $n, m \in \mathbb{N}$ gilt $3 \le 2^m + n!$ und $3 = 2^m + n!$ gilt für n = m = 1. Damit gilt inf $A = \min A = 3$.

Für beliebiges M>0 existiert ein $m\in\mathbb{N}$ mit $M<2^m$. Damit ist A nicht beschränkt und demnach gibt es weder ein Supremum noch ein Maximum.

Zur Menge B:

Es gilt

$$\frac{1}{n+1} + \frac{1 + (-1)^n}{2n} > 0,\tag{1}$$

da der erste Summand > 0 und der Zweite ≥ 0 ist. Also ist B nach unten beschränkt.

Wir zeigen inf B=0. Hierzu sei $\varepsilon>0$. Es gilt

$$\frac{1}{n+1} + \frac{1 + (-1)^n}{2n} \le \frac{1}{n} + \frac{2}{2n} = \frac{2}{n} < \varepsilon$$

für $n > \frac{2}{\varepsilon}$. Damit folgt inf B = 0.

Wir setzen $a_n := \frac{1}{n+1} + \frac{1+(-1)^n}{2n}$, für $n \in \mathbb{N}$. Dann berechnet man $a_1 = \frac{1}{2}$, $a_2 = \frac{5}{6}$, $a_3 = \frac{1}{4}$. Für $n \geq 4$ gilt

$$a_n = \frac{1}{n+1} + \frac{1+(-1)^n}{2n} \le \frac{1}{5} + \frac{2}{8} = \frac{9}{20} < \frac{1}{2}.$$

Damit folgt nun $a_2 = \frac{5}{6} = \max B = \sup B$.

Zur Menge C:

 $\mathrm{Da}\ \tfrac{|x|}{|x|+1}\geq 0\ \mathrm{für\ alle}\ x\in\mathbb{R}\ \mathrm{und}\ \tfrac{|0|}{|0|+1}=0\ \mathrm{gilt,\ folgt,\ dass\ inf}\ C=\min C=0.$

Weiter gilt $\frac{|x|}{|x|+1} < 1$ für $x \in \mathbb{R}$. Wir zeigen, dass sup C = 1 gilt. Es sei $\varepsilon > 0$. Wir bestimmen ein $x \in \mathbb{R}$ mit $\frac{|x|}{|x|+1} > 1 - \varepsilon$. Dies liefert die folgende Äquivalenzumformung

$$\frac{|x|}{|x|+1} > 1 - \varepsilon$$

$$\Leftrightarrow |x| > |x| + 1 - \varepsilon(|x|+1)$$

$$\Leftrightarrow |x| > \frac{1-\varepsilon}{\varepsilon}$$

Ein $x \in \mathbb{R}$ mit dieser Eigenschaft existiert offensichtlich. (Etwa $x = \frac{1-\varepsilon}{\varepsilon} + 1$.)

Da $\frac{|x|}{|x|+1} = 1$ für kein $x \in \mathbb{R}$ gilt, existiert das Maximum von C nicht.

(T 3)

Es seien $M_1, M_2 \subset \mathbb{R}$ nichtleere, beschränkte Mengen. Wir definieren

$$M_1 \cdot M_2 := \{x_1 \cdot x_2 : x_1 \in M_1, x_2 \in M_2\}.$$

Zeigen Sie: Ist $x_1 \geq 0$ für alle $x_1 \in M_1$ und $x_2 \geq 0$ für alle $x_2 \in M_2$, so gilt

$$\inf M_1 \cdot \inf M_2 \leq \inf (M_1 \cdot M_2) \leq \inf M_1 \cdot \sup M_2 \leq \sup (M_1 \cdot M_2) \leq \sup M_1 \cdot \sup M_2$$

LÖSUNG: Ist sup $M_1 = 0$ oder sup $M_2 = 0$, so gilt, da $M_2 = \{0\}$, $0 = \inf(M_1 \cdot M_2) = \sup(M_1 \cdot M_2)$ und die Behauptung folgt. Es sei also sup $M_1 > 0$ sowie sup $M_2 > 0$. Ist inf $M_1 = 0$, so ist auch $\inf(M_1 \cdot M_2) = 0$. Um dies zu zeigen, wählen wir $\delta \in M_1$ mit $\delta < \varepsilon / \sup M_2$. Ein solches δ existiert wegen inf $M_1 = 0$. Damit folgt für $\varepsilon > 0$ die Ungleichung $\delta \cdot x_2 \leq \delta \cdot \sup M_2 < \varepsilon$ für alle $x_2 \in M_2$.

Es sei nun inf $M_1 > 0$ und im Folgenden seien $x_1 \in M_1$ und $x_2 \in M_2$ gegeben. Dann folgt, dass inf $M_1 \cdot \inf M_2 \leq x_1 x_2$ gilt. Damit folgt inf $M_1 \cdot \inf M_2 \leq \inf (M_1 \cdot M_2)$.

Weiter gilt $x_1x_2 \leq x_1 \sup M_2 \Rightarrow \inf(M_1 \cdot M_2) \leq x_1 \sup M_2 \Rightarrow \inf(M_1 \cdot M_2)(\sup M_2)^{-1} \leq x_1$ und damit folgt $\inf(M_1 \cdot M_2)(\sup M_2)^{-1} \leq \inf(M_1, \operatorname{also}\inf(M_1 \cdot M_2) \leq \sup M_2 \cdot \inf M_1$.

Die dritte Ungleichung folgt analog aus inf $M_1 \cdot x_2 \leq x_1 x_2 \Rightarrow \inf M_1 \cdot x_2 \leq \sup(M_1 \cdot M_2) \Rightarrow x_2 \leq (\inf M_1)^{-1} \cdot \sup(M_1 \cdot M_2) \Rightarrow \sup M_2 \leq (\inf M_1)^{-1} \cdot \sup(M_1 \cdot M_2).$

Die letzte Ungleichung folgt wegen $x_1x_2 \leq \sup M_1 \cdot \sup M_2$.