

03.09.-14.09.2007 03.09.2007

1. Übungsblatt zur "Repetitorium zur Linearen Algebra"

Gruppenübung

Aufgabe G1 (Folgerungen aus den Vektorraumaxiomen)

Sei V ein \mathbb{K} -Vektorraum. Zeigen Sie nur mit Hilfe der Vektorraumaxiome, dass dann folgende Aussagen gelten:

(V9) Für alle $u, v, w \in V$ gilt:

$$u + w = v + w \implies u = w$$
.

(V10) Für alle $v \in V$ ist

$$0v = 0$$

und für alle $\lambda \in \mathbb{K}$ ist

$$\lambda 0 = 0.$$

Machen Sie sich hierbei klar, was das jeweilige Symbol 0 für eine Bedeutung hat.

(V11) Für alle $v \in V$ und alle $\lambda \in \mathbb{K}$ gilt:

$$\lambda v = 0 \implies \lambda = 0 \text{ oder } v = 0.$$

Aufgabe G2 (Der Vektorraum der $m \times n$ Matrizen)

Sei $\mathcal{M}(m \times n, \mathbb{K})$ die Menge aller $m \times n$ Matrizen über dem Körper \mathbb{K} . Die Addition und skalare Multiplikation sind wie in 1.1.2 definiert. Zeigen Sie, dass $\mathcal{M}(m \times n, \mathbb{K})$ mit dieser Addition und skalaren Multiplikation einen Vektorraum über \mathbb{K} bildet.

Aufgabe G3 (Polynome als Vektorraum)

Sei $\mathcal{P}(\mathbb{R})$ die Menge aller Polynome mit Koeffizienten aus \mathbb{R} und $\mathcal{P}_n(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$ diejenigen mit Höchstgrad n.

Zeigen Sie, dass die Mengen $\mathcal{P}(\mathbb{R})$ und $\mathcal{P}_n(\mathbb{R})$ einen Untervektorraum des \mathbb{R} -Vektorraums $\mathcal{F}(\mathbb{R}, \mathbb{R})$ aller Funktionen von \mathbb{R} nach \mathbb{R} ist.

Aufgabe G4 (Proposition 2.2.5)

Sei V ein \mathbb{K} -Vektorraum und $U_1, \ldots, U_n \subset V$ Untervektorräume. Dann ist die Summe $U_1 + \ldots + U_n$ ebenfalls ein Untervektorraum von V.