TU Darmstadt Fachbereich Mathematik Jakob Creutzig

SS 2007 18.05.07

5. Aufgabenblatt zur Vorlesung "Stochastische Analysis"

(!)Aufgabe 1:

- (a) Formulieren und beweisen Sie Analoga der Sätze I.2.9 und I.2.11 für Martingale im zeitstetigen Fall.
- (b) Sei $(X_t, \mathfrak{F}_t)_{t \in I}$ ein Martingal mit rechtsseitig stetigen Pfaden und sei T eine Stoppzeit. Zeigen Sie, daß der gestoppte Prozeß $X^T = (X_{T \wedge t}, \mathfrak{F}_t)_{t \in I}$ wieder ein Martingal ist. (*Hinweis:* Zeigen Sie zunächst, daß $(X_{t \wedge T}, \mathfrak{F}_{t \wedge T})$ ein Martingal ist, betrachten Sie dann $X_T \mathbb{1}_{T \leq s}$ und $X_T \mathbb{1}_{T > s}$ separat.)

Aufgabe 2:

Es sei $B = (B_t)_{t \ge 0}$ eine Brownsche Bewegung, und setze, für a > 0,

$$T_a := \inf\{t > 0 : B_t = a\} = \inf\{t > 0 : B_t \ge a\}.$$

- (a) Zeigen Sie, daß $T_a < \infty$ f.s.. (*Hinweis:* Man zeige $\overline{\lim}_n B_n = \infty$; das geht z.B. mit Kolmogorovs 0–1–Gesetz.)
- (b) Begründen Sie das zweite Gleichheitszeichen.
- (c) Zeigen Sie, daß $\mathbb{E}(B_{T_a}) = a$; widerspricht dies dem Optional Sampling Theorem?
- (d) Zeigen Sie, daß für festes $s \ge 0$ der Prozeß $M_t := \exp(sB_t s^2t/2)$ ein Martingal ist mit $0 \le M_{t \wedge T_a} \le e^{sa}$.

(e) Zeigen Sie, daß für den bei T_n gestoppten Prozeß M^{T_n} und T_n die Voraussetzungen des (in Aufgabe 1 (a) aufgestellten) Optional Sampling Theorems erfüllt sind. Folgern Sie, daß

$$\mathbb{E}\left[\exp(-\lambda T_a)\right] = \exp(-a\sqrt{2\lambda}), \qquad \lambda \ge 0.$$

(Dies ist die LaPlace-Transformierte von T_a , die – analog zur charakteristischen Funktion – die Verteilung von T_a eindeutig festlegt. Insbesondere hat T_a eine Dichte, die per inverser LaPlace-Transformation bestimmt werden kann.)

(*)Aufgabe 3:

Es sei M ein positives stetiges Martingal auf $[0, \infty[$, sodaß

$$\forall \omega \in \Omega$$
 $\lim_{t \to \infty} M_t(\omega) = 0$.

Sei $M^*(\omega) := \sup_t M_t(\omega)$.

- (a) Zeigen Sie, daß M^* eine Zufallsgröße ist.
- (b) Weisen Sie nach, daß für x > 0 gilt:

$$P(M^* \ge x \,|\, \mathfrak{F}_0) = 1 \wedge (M_0/x)$$
.

(c) Verallgemeinern Sie (b) zu folgendem: Für jede positive \mathfrak{F}_0 -meßbare Zufallsgröße X ist

$$P(M^* > X \mid \mathfrak{F}_0) = 1 \wedge (M_0/X)$$
.

(d) Folgern Sie aus (c), daß $M^* \stackrel{d}{=} M_0/U$ mit U einer von M_0 unabhängigen, auf [0,1] gleichverteilten Zufallsvariablen.