TU Darmstadt Fachbereich Mathematik Jakob Creutzig

SS 2007 18.05.07

5. Aufgabenblatt zur Vorlesung "Stochastische Analysis"

(!)Aufgabe 1:

(a) Formulieren und beweisen Sie Analoga der Sätze I.2.9 und I.2.11 für Martingale im zeitstetigen Fall.

Loesungsvorschlag: Satz I.2.9:

Sei $(X_t, F_t)_{t \geq 0}$ ein rechtsstetiges Martingal, und T eine f.s. endliche Stopzeit mit

$$\lim_{N \to \infty} \int_{\{T > N\}} |X_N| d\mathbb{P} = 0 .$$

Dann gilt

$$\mathbb{E} X_T = \mathbb{E} X_0 .$$

Zum Beweis: Mit $T_N = T \wedge N$ hat man nach Satz I.2.14 $\mathbb{E} X_{T_N} = \mathbb{E} X_0$; weiter gilt

$$\int |X_{T_N} - X_T| \le \int_{\{T > N\}} |X_{T_N}| + |X_T| \to 0 ,$$

und also $\mathbb{E} X_T = \lim_N \mathbb{E} X_{T_N} = \mathbb{E} X_0$.

Satz I.2.11 für den Martingalfall:

Sei $(X_t, F_t)_{t\geq 0}$ ein rechtsstetiges Martingal, und $S\leq T$ beschränkte Stopzeiten; dann gilt

$$\mathbb{E}\left(X_T \mid \mathfrak{F}_S\right) = X_S .$$

Zum Beweis: Sei $A \in \mathfrak{F}_S$, bilde $R = \mathbb{1}_A T + \mathbb{1}_{A^C} S$, dann ist R beschränkte Stopzeit, und nach Satz I.2.14 hat man

$$\mathbb{E} \, \mathbb{1}_A X_T + \mathbb{E} \, \mathbb{1}_{A^c} X_S = \mathbb{E} \, X_R = \mathbb{E} \, X_S = \mathbb{E} \, \mathbb{1}_A X_S + \mathbb{E} \, \mathbb{1}_{A^c} X_S \ .$$

(b) Sei $(X_t, \mathfrak{F}_t)_{t \in I}$ ein Martingal mit rechtsseitig stetigen Pfaden und sei T eine Stoppzeit. Zeigen Sie, daß der gestoppte Prozeß $X^T = (X_{T \wedge t}, \mathfrak{F}_t)_{t \in I}$ wieder ein Martingal ist. (*Hinweis:* Zeigen Sie zunächst, daß $(X_{t \wedge T}, \mathfrak{F}_{t \wedge T})$ ein Martingal ist, betrachten Sie dann $X_T \mathbb{1}_{T \leq s}$ und $X_T \mathbb{1}_{T > s}$ separat.)

Aufgabe 2:

Es sei $B = (B_t)_{t \ge 0}$ eine Brownsche Bewegung, und setze, für a > 0,

$$T_a := \inf\{t > 0 : B_t = a\} = \inf\{t > 0 : B_t \ge a\}.$$

- (a) Zeigen Sie, daß $T_a < \infty$ f.s.. (*Hinweis:* Man zeige $\overline{\lim}_n B_n = \infty$; das geht z.B. mit Kolmogorovs 0–1–Gesetz.) **Loesungsvorschlag:** Wenn $\overline{\lim}_n B_n = \infty$, so folgt sicher $T_a < \infty$. Weiter ist das Ereignis $\overline{\lim}_n B_n$ terminal bezüglich der σ -Algebren $\mathfrak{A}_n := \sigma(B_{n+1} B_n)$; da diese unabhängig sind, folgt aus Kolmogorovs 0–1–Gesetz, daß $\mathbb{P}(\overline{\lim}_n B_n = \infty) \in \{0,1\}$. Weiter folgt aus der Symmetrie (d.h., -B ist auch eine Brownsche Bewegung), daß $\mathbb{P}(\overline{\lim}_n B_n = \infty) = \mathbb{P}(\underline{\lim}_n B_n = -\infty)$. Wären nun beide W.keiten 0, so wäre die Folge B_n f.s. beschränkt, und $1/\sqrt{n}B_n \to 0$ f.s.. Aber das ist absurd, denn $1/\sqrt{n}B_n$ ist eine Folge von Normalverteilungen.
- (b) Begründen Sie das zweite Gleichheitszeichen. **Loesungsvorschlag:** *B* ist stetig.
- (c) Zeigen Sie, daß $\mathbb{E}(B_{T_a}) = a$; widerspricht dies dem Optional Sampling Theorem? **Loesungsvorschlag:** Trivial und nein: Es wird wohl $\int_{T_a>t} |B_t| \neq 0$ gelten.
- (d) Zeigen Sie, daß für festes $s \ge 0$ der Prozeß $M_t := \exp(sB_t s^2t/2)$ ein Martingal ist mit $0 \le M_{t \wedge T_a} \le e^{sa}$. Loesungsvorschlag: Die letztere Ungleichung folgt unmittelbar durch Fallunterscheidung, die Martingaleigenschaft ist völlig analog zu Aufgabe 4.3.

(e) Zeigen Sie, daß für den bei T_n gestoppten Prozeß M^{T_n} und T_n die Voraussetzungen des (in Aufgabe 1 (a) aufgestellten) Optional Sampling Theorems erfüllt sind. Folgern Sie, daß

$$\mathbb{E}\left[\exp(-\lambda T_a)\right] = \exp(-a\sqrt{2\lambda}), \qquad \lambda \ge 0.$$

(Dies ist die LaPlace-Transformierte von T_a , die – analog zur charakteristischen Funktion – die Verteilung von T_a eindeutig festlegt. Insbesondere hat T_a eine Dichte, die per inverser LaPlace-Transformation bestimmt werden kann.) **Loesungsvorschlag:** T_a ist f.s. endlich, und

$$\int_{T_a>N} |M_{t\wedge T_a}| d\mathbb{P} \le \int_{T_a>N} e^{sa} d\mathbb{P} \to 0.$$

Also folgt

$$1 = M_0 = \mathbb{E}(M_{T_a}^{T_a}) = \mathbb{E}(M_{T_a}) = \mathbb{E}e^{sa-s^2/2T_a}$$
.

Umstelle und Einsetzen von $\lambda = s^2/2$ liefert

$$\mathbb{E} e^{-\lambda T_a} = e^{-\sqrt{2\lambda}a} .$$

(*)Aufgabe 3:

Es sei M ein positives stetiges Martingal auf $[0, \infty[$, sodaß

$$\forall \omega \in \Omega$$
 $\lim_{t \to \infty} M_t(\omega) = 0$.

Sei $M^*(\omega) := \sup_t M_t(\omega)$.

(a) Zeigen Sie, daß M^* eine Zufallsgröße ist.

Lösungsvorschlag:

$$M^* = \sup_{t > 0, t \in \mathbb{O}} M_t$$

wegen der Stetigkeit von M.

(b) Weisen Sie nach, daß für x > 0 gilt:

$$P(M^* \ge x \,|\, \mathfrak{F}_0) = 1 \wedge (M_0/x)$$
.

(c) Verallgemeinern Sie (b) zu folgendem: Für jede positive \mathfrak{F}_0 -meßbare Zufallsgröße X ist

$$P(M^* \ge X \mid \mathfrak{F}_0) = 1 \wedge (M_0/X)$$
.

Lösungsvorschlag: Wir beweisen gleich (c) und definieren

$$T_X := \inf\{t > 0 \mid M_t > X\} = \inf\{t > 0 \mid M_t / X > 1\}$$
.

Da X \mathfrak{F}_0 -meßbar, ist dies eine Stopzeit und M_t/X ein \mathfrak{F} -Martingal. Wir setzen $M_{\infty}=0$ in Übereinstimmung mit der Voraussetzung $M_t(\omega)\to 0$ für alle ω . Dann ist

$$\mathbb{1}_{\{M^*>X\}} = \mathbb{1}_{\{M_0>X\}} + \mathbb{1}_{\{M_0$$

wie man leicht nachrechnet. Wäre T_X eine beschränkte Stopzeit, so würde nun mit dem optional sampling theorem

$$\mathbb{E}\left(M_{T_X}/X \mid \mathfrak{F}_0\right) = M_0/X \tag{1}$$

folgen, und damit rechnet man sofort nach, daß

$$\mathbb{P}(\mathbb{1}_{\{M^* > X\}} \mid \mathfrak{F}_0) = \mathbb{E}\left[\mathbb{1}_{\{M_0 > X\}} + \mathbb{1}_{\{M_0 < X\}} \cdot M_0 / X \mid \mathfrak{F}_0\right] = 1 \wedge (M_0 / X).$$

Dummerweise dürfte T_X eher unbeschränkt sein. Daher definieren wir $T_X^N:=T_X\wedge N;\; T_X^N$ ist eine beschränkte Stopzeit. Wir haben wegen $M_t\to 0,\; \mathrm{daf}\; M_{T_X^N}\to M_{T_X}$ fast sicher; da $|M_{T_X^N}|+|M_{T_X}|\le 2\max\{M_0,X\},\; \mathrm{folgt}\; \mathrm{mit}\; \mathrm{Lebesgue}\; \mathrm{sogar}$

$$\mathbb{E}\left|M_{T_{\mathbf{X}}^N}-M_{T_{\mathbf{X}}}\right|\to 0 ,$$

d.h. $M_{T_X^N} \to M_{T_X}$ in L_1 . Nun sind bedingte Erwartungswerte stetige Abblidungen von L_1 nach L_1 (z.B. Prob.Th.06/07, Lemma V.I.1) und also folgt $\mathbb{E}\left[M_{T_X^N} \mid \mathfrak{F}_0\right] \to \mathbb{E}\left[M_{T_X} \mid \mathfrak{F}_0\right]$ in L_1 . Damit existiert eine f.s. konvergente Teilfolge,

$$\mathbb{E}\left(M_{T^X} \mid \mathfrak{F}_0\right) = \lim_{m \to \infty} \mathbb{E}\left(M_{T^X_{N_m}} \mid \mathfrak{F}_0\right) = M_0 ;$$

weil X \mathfrak{F}_0 -meßbar ist, ist $\mathbb{E}(M_{T^X}/X \mid \mathfrak{F}_0) = M_0/X$. Nun haben wir glücklich (1) gezeigt, und aus der dort folgenden Rechnung folgt die Behauptung.

(d) Folgern Sie aus (c), daß $M^* \stackrel{d}{=} M_0/U$ mit U einer von M_0 unabhängigen, auf [0,1] gleichverteilten Zufallsvariablen.

Lösungsvorschlag: Wir setzen $X = \lambda M_0$ und erhalten

$$\mathbb{P}(M^*/M_0 \ge \lambda \,|\, \mathfrak{F}_0) = 1 \wedge (1/\lambda) \;.$$

Wir bilden Erwartungswerte und erhalten

$$\mathbb{P}(M^*/M_0 \ge \lambda) = 1 \wedge (1/\lambda) .$$

Damit ist $M^*/M_0 \stackrel{d}{=} 1/U$ mit U gleichverteilt auf [0,1]. Wir wählen U unabhängig von M^*, M_0 ; nun behaupten wir, daß sogar \mathfrak{F}_0 und M^*/M_0 unabhängig sind. Sobald wir das gezeigt haben, folgt die Behauptung¹ Sei hierzu $A \in \mathfrak{F}_0$, dann gilt

$$\mathbb{P}(A \cap \{M^*/M_0 \ge \lambda\}) = \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_A \cdot \mathbb{1}_{M^*/M_0 \ge \lambda} \mid \mathfrak{F}_0\right]\right] \\
= \mathbb{E}\left[\mathbb{1}_A \cdot \mathbb{P}(M^*/M_0 \ge \lambda \mid \mathfrak{F}_0)\right] \\
= \mathbb{E}\left[\mathbb{1}_A \cdot (1 \wedge (1/\lambda))\right] \\
= \mathbb{P}(A) \cdot (1 \wedge 1/\lambda) \\
= \mathbb{P}(A) \cdot \mathbb{P}(M^*/M_0 \ge \lambda) .$$

¹Allgemein gilt: Sind ξ, η, γ unabhängige Zufallsvariablen mit $\xi \stackrel{d}{=} \eta$, so folgt $\xi \cdot \gamma \stackrel{d}{=} \eta \cdot \gamma$. Anwendung auf M^*/M_0 , 1/U und M_0 .