TU Darmstadt Fachbereich Mathematik Jakob Creutzig

SS 2007 11.05.07

4. Aufgabenblatt zur Vorlesung "Stochastische Analysis"

Aufgabe 1: Es sei $\mathfrak{F} = (\mathfrak{F}_t)_{t\geq 0}$ eine Filtration über $(\Omega, \mathfrak{A}, \mathbb{P})$ und ξ eine Zufallsgröße von $(\Omega, \mathfrak{A}, \mathbb{P})$ nach \mathbb{R} . Zeigen Sie, daß der Prozeß

$$X_t := \mathbb{E}\left(\xi \mid \mathfrak{F}_t\right)$$

ein F-Martingal ist.

Aufgabe 2: Betrachten Sie einen Poisson-Prozeß $(Z_t)_{t\in I}$ mit Intensität $\lambda > 0$.

- (a) Sei $\mu > 0$; ist der Prozeß $Z_t \mu t$ ein Sub-/Super/Martingal?
- (b) Zeigen Sie, daß mit $M_t = Z_t \lambda t$ der Prozeß $M_t^2 \lambda t$ ein Martingal ist.
- (!) Aufgabe 3: Es sei $B = (B_t)_{t\geq 0}$ eine Brownsche Bewegung mit kanonischer Filtration \mathfrak{F} . Bestimmen Sie (deterministische) Funktionen $\phi(t)$ und $\psi(t)$, sodaß die Prozesse $B_t^2 \phi(t)$ und $\exp(B_t \psi(t))$ \mathfrak{F} -Martingale sind. Hinweis: Berechnen Sie zunächst mit Hilfe der Zerlegung $B_t = (B_t - B_s) + B_s$ die bedingten Erwartungswerte von B_t^2 bzw. $\exp(B_t)$ bezüglich \mathfrak{F}_s .
- (*) Aufgabe 4: Sei $X = (X_t)_{t \in [0,\infty[}$ ein Poisson-Prozeß mit Intensität $\lambda > 0$. Zeigen Sie, daß fast sicher

$$\lim_{t \to \infty} \frac{X_t}{t} = \lambda$$

gilt. Hinweis: Betrachten Sie zunächst $(X_n)_{n\in\mathbb{N}}$.