3. Aufgabenblatt zur Vorlesung "Stochastische Analysis"

Aufgabe 1: Gegeben sei eine Filtration \mathfrak{F} auf Ω . Zeigen Sie: Eine Abbildung $T:\Omega\to [0,\infty]$ ist eine Stopzeit zu \mathfrak{F} genau dann, wenn

$$X_t(\omega) := \mathbb{1}_{T(\omega \le t)} = \begin{cases} 0 & t < T(\omega), \\ 1 & t \ge T(\omega), \end{cases}$$

ein \mathfrak{F} -adaptierter Prozeß ist. Folgern Sie, daß jede Stopzeit als Debútzeit eines passenden \mathfrak{F} -adaptierten Prozesses in die Menge $\Gamma = \{1\}$ geschrieben werden kann.

Lösungsvorschlag: Offenbar ist

$$\sigma(X_t) = \{\{\omega : T(\omega) \le t\}, \{\omega : T(\omega) > t\}, \emptyset, \Omega\}.$$

Daher ist $\sigma(X_t) \subseteq \mathfrak{F}_t \Leftrightarrow \{T \leq t\} \in \mathfrak{F}_t$, und daraus folgt die erste Behauptung. Und natürlich ist $T = H_{\Gamma}$ für den Prozeß X, was die zweite Behauptung liefert.

Aufgabe 4: Betrachten Sie zwei Stoppzeiten S und T auf einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ mit Filtration $(\mathfrak{F}_t)_{t \in I}$.

(a) Zeigen Sie

$$\mathfrak{F}_S \subset \mathfrak{F}_T$$

falls $S(\omega) \leq T(\omega)$ für alle $\omega \in \Omega$ gilt.

Lösungsvorschlag: Wegen der Voraussetzung ist $\{T \leq t\} = \{S \leq t\} \cap \{T \leq t\}$. Ist also $A \in \mathfrak{A}$, sodaß für alle $t \geq 0$ gilt: $A \cap \{S \leq t\} \in \mathfrak{F}_t$, so folgt

$$A \cap \{T \le t\} = \underbrace{A \cap \{S \le t\}}_{\in \mathfrak{F}_t} \cup \underbrace{T \le t}_{\in \mathfrak{F}_t} \in \mathfrak{F}_t .$$

(b) Zeigen Sie, daß $S \wedge T = \min\{S, T\}$ eine Stoppzeit ist und

$$\mathfrak{F}_{S\wedge T}=\mathfrak{F}_S\cap\mathfrak{F}_T$$

gilt.

Lösungsvorschlag: Offenbar ist mit $\{T \leq t\}$ und $\{S \leq t\}$ auch deren Vereinigung in \mathfrak{F}_t ; dies ist aber gerade die Menge $\{S \wedge T \leq t\}$. Genauso sieht man sofort, daß

$$A \cap \{T \land S \le t\} = (A \cap \{T \le t\}) \cap (A \cap \{S \le t\}),$$

und daraus folgt leicht, daß $\mathfrak{F}_T \cap \mathfrak{F}_S \subseteq \mathfrak{F}_{T \wedge S}$. Für die umgekehrte Richtung bemerken wir, daß $\{T > t\} \in \mathfrak{F}_t$; ist daher $A \cap \{T \wedge S \leq t\} \in \mathfrak{F}_t$, so auch

$$A \cap \{T \land S \le t\} \cap \{T > t\} = A \cap \{S \le t\} ,$$

und analog für T.

(*) Aufgabe 3: Zeigen Sie, daß die kanonische Filtration des Poisson-Prozesses rechtsstetig ist.

Lösungsvorschlag:

Sei Z ein Poissonprozeß. Da Z rechtsstetige Pfade hat, und nur diskrete Werte annimmt, sind die Pfade stückweise konstant; genauer gilt für jedes feste $t \geq 0$, daß

$$\bigwedge_{\omega \in \Omega} \bigvee_{n(\omega) \in \mathbb{N}} \bigwedge_{s \in [t, t+1/n(\omega)]} X_s(\omega) = X_t(\omega) .$$

(Das hat nichts mit Stochastik zu tun, sondern gilt für jede rechtsstetige Sprungfunktion.) Bilde nun

$$\Omega_n := \left\{ \omega : n(\omega) \le n \right\},\,$$

dann gilt offenbar $\Omega_n \nearrow \Omega$. Es sei nun $A \in \bigcap_m \mathfrak{F}^Z_{t+1/m}$; es ist zu zeigen, daß $A \in \mathfrak{F}^Z_t$. Die Eigenschaft $A \in \mathfrak{F}^Z_{t+1/m}$ impliziert, daß ein $B_m \in \mathfrak{B}(\mathbb{R})^{[0,t+1/m]}$ existiert, sodaß

$$A = \left\{ \omega : (Z_s(\omega))_{s \le t+1/m} \in B_m \right\}.$$

Es gilt sogar¹

$$\omega \in A \iff \bigvee_{m \in \mathbb{N}} (Z_s(\omega))_{s \le t+1/m} \in B_m$$

$$\Leftrightarrow \bigwedge_{m \in \mathbb{N}} (Z_s(\omega))_{s \le t+1/m} \in B_m$$

$$\Leftrightarrow (Z_s(\omega))_{s \le t+1/m} \in B_m \text{ u.o. };$$

wobei 'u.o.' für 'unendlich oft' steht. Sei nun $n \in \mathbb{N}$ fest, dann folgt

$$\Omega_n \cap A = \left\{ \left(\bigwedge_{s \in [t, t+1/n]} Z_s = Z_t \right) \text{ und } (Z_s)_{s \le t+1/m} \in B_m \text{ u.o.} \right\}
= \left\{ \left(\bigwedge_{s \in [t, t+1/n]} Z_s = Z_t \right) \text{ und } (Z_{s \land t})_{s \le t+1/m} \in B_m \text{ u.o.} \right\}
= \Omega_n \cap \left\{ (Z_s^t)_{s \le t+1/m} \in B_m \text{ u.o.} \right\},$$

wobei Z^t den bei t gestoppten Prozeß bezeichnet. Folglich ist

$$A = \bigcup_{n} (\Omega_n \cap A)$$

$$= \bigcup_{n} (\Omega_n \cap \{(Z_s^t)_{s \le t+1/m} \in B_m\})$$

$$= \{(Z_s^t)_{s \le t+1/m} \in B_m \text{ u.o.}\} \cap \bigcup_{n} \Omega_n$$

$$= \{(Z_s^t)_{s \le t+1/m} \in B_m \text{ u.o.}\}.$$

Die letztere Menge hängt nur von den Pfaden von Z^t ab, und da Z^t \mathfrak{F}_t^{Z-} meßbar ist (Prop. 1.5.5(ii) Skript, p.18), liegt diese Menge in \mathfrak{F}_t^{Z} , folglich auch A.

¹Merkwürdiger Trick, aber es klappt so.