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II. The exponential function

In this chapter we study one of the central tools in Lie theory: the matrix
exponential function. This function has various applications in the structure
theory of subgroups of matrix groups. First of all it is naturally linked to the
one-parameter subgroups and it turns out that the local structure of a closed
subgroup G C GL, (K) is determined by its one-parameter subgroups. Moreover,
it helps us to understand the global topology of various groups of matrices by
refining the polar decomposition.

I1.1. Smooth functions defined by power series

First we put the structure that we have on the space M, (K) of (n x n)-
matrices into a slightly more general context.

Definition IT.1.1.  (a) A vector space A together with a bilinear map Ax A —
A, (z,y) — z -y (called multiplication) is called an (associative) algebra if the
multiplication is associative in the sense that

(x-y)-z=x-(y-2) for =z,y,z€ A

We write zy := x -y for the product of x and y in A.

The algebra A is called unital if it contains an element 1 satisfying la =
al = a for each a € A.

(b) A norm | - || on an algebra A is called submultiplicative if
llabl| < ||al] - ||b|| for all a,be€ A.

Then the pair (A, ||-||) is called a normed algebra. If, in addition, A is a complete
normed space, then it is said to be a Banach algebra. ]

Remark I1.1.2. Any finite-dimensional normed space is complete, so that each
finite-dimensional normed algebra is a Banach algebra. ]

Example I1.1.3. Endowing M, (K) with the operator norm with respect to
the euclidean norm on K" defines on M,,(K) the structure of a unital Banach
algebra. [ ]
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Lemma I1.1.4. If A is a unital Banach algebra, then we endow the vector
space TA := A® A with the norm

1(a, 0)| == [lall + l|o]
and the multiplication
(a,b)(a’, V") := (ad’,ab + a'b).

Then T'A is a unital Banach algebra.
Writing € := (0,1), then each element of TA can be written in a unique
fashion as (a,b) = a + be and the multiplication satisfies

(a+be)(a' +be') = aa’ + (ab' + a'b)e.

In particular, €2 = 0.

Proof. That T'A is a unital algebra is a trivial verification. That the norm is
submultiplicative follows from

I(a, b)(a’,0)I| = llaa’|| + [lab" + a'b]l < llall - [la"[| + [lall - 6" + {la"[ - l|bl]
< (lall + Mo Uall + 161 = [I(a, b)] - [I(a”, &)

This proves that (T'A,||-||) is a unital Banach algebra, the unit being 1 = (1,0).
The completeness of T'A follows easily from the completeness of A (Exercise).m

Lemma I1.1.5. Let (¢,)nen be a sequence in K and r > 0 with

o0
Z\cnlr” < o0.
n=0

Further let A be a finite-dimensional unital Banach algebra. Then
f:B-(0):={zx € A:|z|]|<r}— A, z~— icnm”
n=0
defines a smooth function. Its derivative is given by
4f(x) = 3" eadpa(a),
n=0

where p,(x) = x™ is the nth power map whose derivative is given by
dpp(x)y = 2" Ly + 2" Pyr + .. 4 oy F oyl

For ||z|| <7 and y € Mu(K) with zy = yx we obtain in particular

oo

dpp(x)y = nz™ "ty  and df(z)y = Z conz™ly.

n=1
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Proof. We observe that the series defining f(x) converges for ||z|| < r by the
Comparison Test (for series in Banach spaces). We shall prove by induction over

k € N that all such functions f are C*-functions.
Step 1: First we show that f is a C!'-function. We define «a,,: A — A by

an(h) =2 "h+ 2" 2hx + ...+ zha""? 4+ ha" L.
Then «,, is a continuous linear map with ||a,|| < n||z|[*~!. Furthermore

pu(x+h)=(z+h)" =2" + a,(h) + r,(h),

where
n— n n— n
Iratill < (5 )d2al=+ () IBI 112 4.+ o]
=5 () waeel—.
k>2
In particular limj,_.g ”Tﬁ}gﬁ)” = 0, and therefore p,, is differentiable in = with
dpn(x) = ay, . The series
B(h) == cnan(h)
n=0

converges absolutely in End(A) by the Ratio Test since ||z|| < r:

Zlcnlllanll <Z|cn| Al < oo

We thus obtain a linear map ((z) € End(A) for each x with ||z| <.
Now let h satisfy ||x|| + ||h| <7, ie., ||h]| <7r—|z|. Then

oo

f(x+h) = f(z) + B(x)(h) +r(h), r(h):= Y caral(h),

n=2

where

ROIED SUATHCIED i Z () e
<3 (St (el )l < oc

k=2 n=k

follows from ||z|| 4 ||h|| < r because

n n—
22|cn|(k)uxu I = 3 el A < 3 el < o

k n>k
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Therefore the continuity of real-valued functions represented by a power series
yields

00
=2

- N
ty —;<;rcn|(k)|rxu Hort =,

This proves that f is a C!-function with the required derivative.

Step 2: To complete our proof by induction, we now show that if all
functions f as above are C*, then they are also C**1. In view of Step 1, this
implies that they are smooth.

To set up the induction, we consider the Banach algebra T'A from
Lemma II.1.4 and apply Step 1 to this algebra to obtain a smooth function

F:{x+ech € TA: ||z||+||h|| = ||z+eh| < r} — TA, F(z+eh)= Z cn-(z+eh)"”,
n=0

We further note that

(x+¢eh)" =2" +dp,(z)h-c.
This implies the formula

F(x+¢eh) = f(z) + edf(x)h,

i.e., that the extension F' of f to T'A describes the first order Taylor expansion
of f in each point 2 € A. Our induction hypothesis implies that F is a C*-
function.

Let zo € A with ||zo|| < r and pick a basis h1,...,hq of A with |h;|| <
r—||zo||. Then all functions x + df(x)h; are defined and C* on a neighborhood
of xg, and this implies that the function

B,(0) - Hom(A,A), xw— df(z)

is C*. This in turn implies that f is Ck*+1. n

The following proposition shows in particular that inserting elements of a
Banach algebra in power series is compatible with composition.

Proposition I1.1.6.  (a) On the set Pr of power series of the form

and converging on the open disc Bg(0) := {z € K:|z| < R}, we define for r < R:

oo

£l == Z |an|r™.

n=0
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Then || - || is a norm with the following properties:
W M-l ds submaultiplicative: |[fgll» < [ fll-llgll--
(2) The polynomials fn(z) := ij:o anz" satisfy ||f — fnllr — 0.
(3) If Ae M,(K) satisfies |A|| < R, then f(A):=>""" a, A" converges. We
further have
LF A< fll- for Al <r <R

and for f,g € Pr we have
(f - 9)(A) = F(A)g(A).

(b) If g € Ps with ||g||s < R for all s < S and f € Pgr, then fog € Ps
defines an analytic function on the open disc of radius S, and for A € M, (K)
with ||Al| < S we have ||g(A)| < R and the Composition Formula

(1.1) f(g(A)) = (f e g)(A).

Proof. (1) First we note that Pg is the set of all power series f(z) =
oo ganz™ for which ||f]|, < oo holds for all » < R. We leave the easy
argument that || - ||, is a norm to the reader. If | f],,|lgll- < oo holds for
g(z) = > 0" o bp2™, then the Cauchy Product Formula implies that

1£gl = 3 |2 anbuci|r < 307 laud bas v = (1 ligl-

(2) follows immediately from | f — fn|lr = > < lan|r™ — 0.

(3) The relation |[f(A)|| < ||f|l- follows from |a,A™| < |ay|r™ and the
Comparison Test for absolutely convergent series in a Banach space. The relation
(f-9)(A) = f(A)g(A) follows from the Cauchy Product Formula (Exercise I1.1.3)
because the series f(A) and g(A) converge absolutely.

(b) We may w.l.o.g. assume that K = C because everything on the case
K =R can be obtained by restriction. Our assumption implies that g(Bg(0)) C
Br(0), so that fog defines a holomorphic function on the open disc Bg(0). For
s < S and ||g||s <7 < R we then derive

o0 o0
If o glls <> llang™ls < D lanlliglly < I1£1l--

For s := ||A]| we obtain [|g(A)| < |lg|ls < R, so that f(g(A)) is defined.
For s <r < R we then have

1/(g(A)) = fn(g(ADI < [If = Fnllr — 0.

Likewise

1(f o g)(A) = (fn o g)(AN < [(fog) = (fnoglls < If = fnllr — 0,

and we get
(fog)(A) =

because the Composition Formula trivially holds if f is a polynomial. [ ]

m (fyog)(4)= lim fn(g(4)) = flg(4))

li
N—o0
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Exercises for Section I1.1

Exercise II.1.1. Let Xi,...,X, be finite-dimensional normed spaces and

B: X1 x...x X, =Y an n-linear map.

(a) Show that 3 is continuous. Hint: Choose a basis in each space X; and
expand [ accordingly.

(b) Show that there exists a constant C' > 0 with

18(xz1,...,x0)|| < Cllza|| -+ ||zn]]  for z; € X. u

Exercise II.1.2. Let Y be a Banach space and a,, ,,, n,m € N, elements in
Y with
Z ||an,m|| ‘= SUPpneN Z Han,mH < 00.
n,m nm<N
(a) Show that
o0 o0 o0 oo
A=) ) nm =2 ) anm
n=1m=1 m=1n=1

and that both iterated sums exist.
(b) Show that for each sequence (S, )nen of finite subsets S, CN x N, n € N,
with S,, € S,41 and |J,, S = N x N we have

A = lim 5 aj k- n
neN
(4,k)ESR

Exercise I1.1.3. (Cauchy Product Formula) Let XY, Z be Banach space and

B:X xY — Z a continuous bilinear map. Suppose that z := ZZO:O T, 1S
absolutely convergent in X and that y := > 7y, is absolutely convergent
in Y. Then -
ﬁ(x,y) = Z Zﬁ(xknyn—k)'
n=0 k=0
Hint: Use Exercises I1.1.1(b) and II.1.2(b). n

I1.2. Elementary properties of the exponential function

After the preparations of the preceding section, it is now easy to see that the
matrix exponential function defines a smooth map on M, (K). In this section
we describe some elementary properties of this function. As group theoretic
consequences for GL,(K), we show that it has no small subgroups and that all
one-parameter groups are smooth and given by the exponential function.
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For z € M, (K) we define

oo

1
(2.1) e’ = —ax".
= n!

The absolute convergence of the series on the right follows directly from the
estimate

<1 <1
Z EHZL‘”H < Z allﬁfll” = ell
n=0 n=0

and the Comparison Test for absolute convergence of a series in a Banach space.
We define the exponential function of M, (K) by

exp: M, (K) — M, (K), exp(x):=e".

Proposition II.2.1. The exponential function exp: My(K) — My(K) is
smooth. For xy = yx we have

(22) dexp(z)y = exp(r)y = yexp(z)
and in particular
deXp(O) = ldMn(K) .
Proof. To verify the formula for the differential, we note that for xy = yx,
Lemma II.1.5 implies that

dexp(z)y = )

1 =1
ﬁn:ﬁ”_ly = Z mx"y = exp(x)y.
1 n=0

For x = 0, the relation exp(0) = 1 now implies in particular that dexp(0)y = y.
n

Lemma I1.2.2. Let z,y € M,(K).
(i) If zy = yx, then exp(x +y) = expxrexpy.
(i) exp(M,(K)) C GL,(K), exp(0) =1, and (expx)~! = exp(—z).
(ili) For g € GL,(K) we have geg~' = e9%9 "
Proof. (i) Using the general form of the Cauchy-Product Formula (Exer-
cise I1.1.3), we obtain

k=0 k=0 £=0

oo k xg yk_g 0o P 00 yz
:Zzﬁ(k—e)! - (ZF)(ZE>

k=0 ¢=0 p=0 £=0

(ii) From (i) we derive in particular expzexp(—x) = exp0 = 1, which
implies (ii).

1 n

(iii) is a consequence of gz"g~! = (gwxg~!)" and the continuity of the
conjugation map c,(z) := gzg~! on M, (K). n
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Remark I1.2.3. (a) For n = 1, the exponential function
exp: M1 (R) 2R — R* 2 GL;(R), z— €

is injective, but this is not the case for n > 1. In fact,
oxc 0 27\ _ 1
Plor 0 -

oxc 0 —t\ [cost —sint teR
Plt 0 )7 \sint cost ) '

This example is nothing but the real picture of the relation e?™* = 1. ]

follows from

Proposition I1.2.4.  There exists an open neighborhood U of 0 in M, (K)
such that the map

exp|y: U — GL,,(K)
is a diffeomorphism onto an open neighborhood of 1 in GL, (K).
Proof. We have already seen that exp is a smooth map, and that dexp(0) =
idys, (k) - Therefore the assertion follows from the Inverse Function Theorem. m

If U is as in Proposition 11.2.4, we define
logy: = (exply) "V — U C M, (K).

We shall see below why this function deserves to be called a logarithm function.
The following corollary means that the group GL,(K) contains no sub-
groups that are small in the sense that they lie arbitrarily close to the identity.

| NO SMALL SUBGROUP THEOREM |

Theorem I1.2.5.  There exists an open neighborhood V' of 1 in GL,,(K) such
that {1} is the only subgroup of GL,(K) contained in V .

Proof. Let U be as in Proposition 11.2.4 and assume furthermore that U is
convex and bounded. We set U; := %U. Let G CV := expU; be a subgroup
of GL,(K) and g € G. Then we write g = expz with z € U; and assume that
x # 0. Let k € N be maximal with kx € U; (the existence of k follows from
the boundedness of U). Then

gl‘“+1 =explk+1)zeGCV

implies the existence of y € U; with exp(k + 1)z = expy. Since (k+ 1)z €
2U; = U follows from %x € [0,k]x C Uy, and exp |y is injective, we obtain
(k+1)x =y € Uy, contradicting the maximality of k. Therefore g = 1. u

A one-parameter (sub)group of a group G is a group homomorphism
v:(R,4+) — G. The following result describes all differentiable one-parameter
subgroups of GL,,(K).
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| ONE-PARAMETER GROUP THEOREM

Theorem 11.2.6.  For each x € My(K) the map
7 (R, +) — GL4(K), ¢+ exp(tx)
18 a smooth group homomorphism solving the initial value problem
v(0)=1 and ~'(t)=~t)z forteR.

Conversely, every continuous one-parameter group v:R — GL4(K) is of
this form.

Proof. In view of Lemma II1.2.2(i) and the differentiability of exp, we have

(Y(BY(R) = (1)) = A(t) lim ~ (" — 1) = (t)z.

1 :
lim — (y(t+h) = y(1)) = lim o b

1
h—0 h—0 h

Hence ~ is differentiable with

From that it immediately follows that ~ is smooth with ~(™(t) = z"(t) for
each n € N.

Although we won’t need it for the completeness of the proof, we first show
that each one-parameter group v:R — GL4(K) which is differentiable in 0 has
the required form. For x :=~/(0), the calculation

3 (0) = tim WEDZAO iy 70O )3000) 11

implies that v is differentiable and solves the initial value problem

Therefore the Uniqueness Theorem for Linear Differential Equations implies that
v(t) = exptzx for all t € R.

It remains to show that each continuous one-parameter group v of GL4(K)
is differentiable in 0. As in the proof of Theorem II.2.5, let U be a convex
symmetric (i.e., U = —U) 0-neighborhood in M (K) as in Proposition 11.2.4
and U; = %U . Since 7 is continuous in 0, there exists an € > 0 such that
v([—¢,¢]) C exp(Uy). Then «a(t) := (exp|y) " (y(t)) defines a continuous curve
a:[—e,e] — Uy with exp(a(t)) = y(t) for |t| <e. For any such ¢ we then have

t

exp (20(3)) = expla(3))” = 7

; ? = (1) = expla(?)),

so that the injectitivy of exp on U yields
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Inductively, we thus obtain
(2.3) a(—=) = —a(t) for |t|<ekeN.
In particular, we obtain

1 €
a(t) € 2—kU1 for || < o

For n € Z with |n| < 2* and [t| < & we now have |nt| < e, na(t) € 54Uy C Uy,
and

exp(na(t)) = ()" = y(nt) = exp(a(nt)).

Therefore the injectivity of exp on U; yields
3
(2.4) a(nt) =naft) for n <28 |t < ok
Combining (2.3) and (2.4), leads to
a(t) = —a(t) for |t|<ekeN,n| <2k

Since the set of all numbers g—,f, n € Z, |n| < 2%, is dense in the interval [—t,1],
the continuity of « implies that

at) = Eoz(s) for |t| <e.

In particular, a is smooth and of the form «(t) = tx for some x € My(K).
Hence v(t) = exp(tx) for |t| < e, but then v(nt) = exp(ntx) for n € N leads to
~(t) = exp(tx) for each t € R. [

Exercises for Section I1.2

Exercise 11.2.1. Let D € M, (K) be a diagonal matrix. Calculate its operator
norm. n

Exercise I1.2.2. If A is a Banach algebra with unit element 1 and g € A
satisfies ||g — 1|| < 1, then g is invertible, i.e., there exists an element h € A
o0

with hg = gh = 1. Hint: For = := 1 — g the Neumann series y := >~ a"
converges. Show that y is an inverse of g. ]
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Exercise I1.2.3. (a) Calculate eV for ¢t € K and the matrix

01 0 ... 0
.0 1 0 -

N=|- ek
0o ... 0

(b) If A is a block diagonal matrix diag(Ay,...,A), then e? is the block
diagonal matrix diag(e?:,...,ed*).

(c) Calculate e for a matrix A € M, (C) given in Jordan Normal Form. Hint:
Use (a) and (b). u

Exercise I1.2.4. Recall that a matrix z is said to be nilpotent if 2% for some
d € N and y is called unipotent if y — 1 is nilpotent.
Let a,b € M, (K) be commuting matrices.

(a) If a and b are nilpotent, then a + b is nilpotent.
(b) If @ and b are diagonalizable, then a + b and ab are diagonalizable.

(c) If a and b are unipotent, then ab is unipotent. u

Exercise I1.2.5. (Jordan decomposition)

(a) (Additive Jordan decomposition) Show that each complex matrix X €
M,,(C) can be written in a unique fashion as

X=X,+X, with [X,,X,]=0,

where X, is nilpotent and X diagonalizable. Hint: Existence (Jordan normal
form), Uniqueness (what can you say about nilpotent diagonalizable matrices?).
(b) (Multiplicative Jordan decomposition) Show that each invertible complex
matrix g € GL,(C) can be written in a unique fashion as

9 = gsGu, with 9sGu = Guls,

where g, is unipotent and g, diagonalizable. Hint: Existence: Put g, :=
1497 9n.

(c) If X = X, + X, is the additive Jordan decomposition, then eX = eXseXn is
the multiplicative Jordan decomposition of e .

(d) A € M,(C) commutes with a diagonalizable matrix D if and only if A
preserves all eigenspaces of D.

(e) A € M,(C) commutes with X if and only if it commutes with X, and
X, . Hint: If A commutes with X , it preserves the generalized eigenspaces of X
(verify this!), and this implies that it commutes with X, which is diagonalizable
and whose eigenspaces are the generalized eigenspaces of X . [ ]
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Exercise I1.2.6. Let A € M,,(C). Show that the set
R = (et e R}

is bounded in M, (C) if and only if A is diagonalizable with purely imaginary
eigenvalues. Hint: Choose a matrix g € GL,(C) for which A’ := gAg™! is in
Jordan normal form A" = D+ N (D diagonal and N strictly upper triangular).
Then show that the boundedness of ¢®4 implies N = 0 and the boundedness of
the subset e®P . ]

Exercise I1.2.7. Show that:

(a) exp(M,(R)) is contained in the identity component GL,(R) of GL,(R). In
particular the exponential function of GL,(R) is not surjective because GL,,(R)
is not connected.

(b) The exponential function
exp : Ma(R) — GL2(R) 4+

is not surjective. Hint: Use the Jordan normal form to derive some information
on the eigenvalues of matrices of the form e® which is not satisfied by all elements
of GL3(R)4. (Either the spectrum is contained in the positive axis or its consists

of two mutually conjugate complex numbers). The matrix g := <_01 _02) is

not contained in the image of exp.

(c) Give also a direct argument why ¢ is not of the form eX . Hint: eX commutes
with X . -

Exercise I1.2.8. Let V C M, (C) be a commutative subspace, i.e., an abelian
Lie subalgebra. Then A :=e" is an abelian subgroup of GL,(C) and

exp: (V,+) — (4,)

is a group homomorphism whose kernel consists of diagonalizable elements whose
eigenvalues are contained in 27iZ. Hint: Lemma II.2.1, Exercise I1.2.6. [ ]

Exercise I1.2.9. For X,Y € M, (C) the following are equivalent:
(1) eX =eY.

(2) X, =Y, holds for the nilpotent Jordan components and eXs = e¥s | |

Exercise I1.2.10. For A € M,(C) we have e = 1 if and only if A is
diagonalizable with all eigenvalues contained in 27iZ. Hint: Exercise 11.2.9. =
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I1.3. The logarithm function

In this section we apply the tools from Section II.1 to the logarithm series.
Since this series has the radius of convergence 1, it defines a smooth function
B:1(1) - M,(K), and we shall see that it provides a smooth inverse of the
exponential function.

Lemma II.3.1. The series
log(1+z) := i k+1 il
k=1
converges for x € My(K) with ||z|| <1 and defines a smooth function
log: By (1) — My(K).
For ||z]| <1 and y € Mg(K) with xy = yx we have

(dlog)(1 +2)y = (1 +2) .

Proof. The convergence follows from

Z k“ =log(1+4+7r) < o0

k=1

for r < 1, so that the smoothness follows from Lemma I1.1.5.

If z and y commute, then the formula for the derivative in Lemma II.1.5
leads to

oo
(dlog)(1 + z).y Z DFgh—ly = (14 2)7 1y
k=1
(here we used the Neumann series; cf. Exercise 11.2.2). |

Proposition I1.3.2.  (a) For z € M4(K) with ||z| < log2 we have
log(exp x) = =.

(b) For g € GL4(K) with ||g — 1| <1 we have exp(logg) =g.
Proof. (a) We apply Proposition I1.1.6 with exp € Ps, S = log2, R =
e°82 =2 and ||exp|s < e® <e® =2 for s < S. We thus obtain log(expz) = x
for ||z| <log2.

(b) Next we apply Proposition I1.1.6 with f = exp, S = 1 and g(z) =
log(1 + z) to obtain exp(logg) = g. u
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The exponential function on nilpotent matrices
Proposition 11.3.3.  Let
U :={g € GL4(K): (g — 1) = 0}
be the set of unipotent matrices and
N :={z € My(K): 2% = 0}
the set of nilpotent matrices. Then U =1+ N and
expy :=exp|y: N = U

18 a homeomorphism whose inverse is given by

d—1

logU g — Z k+1 k—l—l
k:l

Proof. First we observe that for £ € N we have
d 1
T_1= ith E —
e ra wi a: 2 n

In view of xa = ax, this leads to (e*—1)¢ = 2% = 0. Therefore exp(N) C U.
Similarly we obtain for g € U that

d 1)k—1
log(9) = (9~ 1) S (- OV

For x € N the curve
F:R — My(K), t+— logy expy(tz)

is a polynomial function and Proposition I1.3.2 implies that F(t) = tx for
|tz|| < log2. This imples that F(t) = tz for each ¢ € R and hence that
log expy(z) = F(1) = x.

Likewise we see that for g =14 x € U the curve

G:R — My(K), t— expylogy(1+tx)

is polynomial with G(t) = 1 + tz for |[tz|| < 1. Therefore expy log;(g) =
F(1) =1+ x = g. This proves that the functions expy and log; are inverse to
each other. ]
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Corollary I1.3.4. Let X € End(V) be a nilpotent endomorphism of the K-
vector space V. and v € V. Then the following are equivalent:
(1) Xwv=0.
2) eXv=uv.
Proof. Clearly X.v =0 implies eX.v =), %X”.U =w.
X

If, conversely, e*.v = v, then

2 e (¥ 1)
X.v=log(eX)w = Z(_l)kHT-U =0. u
k=1

The exponential function on hermitian matrices

For the following proof we recall that for a hermitian d x d-matrix A we
have

|Al| = max{|A|: det(A — A1) = 0}
(Exercise 11.3.1).

Proposition I1.3.5.  The restriction
eXpp := eXP |Herm, (k): Hermg(K) — Pdg(K)

is a diffeomorphism onto the open subset Pd4(K) of Hermg(K).

Proof. For z* = z we have (e*)* = ¢® , which implies that exp z is hermitian
if x is hermitian. Moreover, if Ai,...,\, are the real eigenvalues of x, then
e, ..., e’ are the eigenvalues of . Therefore e® is positive definite for each

hermitian matrix x.

If, conversely, g € Pdy(K), then let vy,...,v, be an orthonormal basis of
eigenvectors for g with g.v; = Ajv;. Then A\; > 0 for each j, and we define
logr(9) € Hermg(K) by logg(g).v; := (logAj)v;, j = 1,...,n. From this
construction of the logarithm function it is clear that

logy oexpp = idperm,x) and  exppology = idpq, k) -
For two real numbers z,y > 0 we have
log(zy) = log = + log y.
From this we obtain for A > 0 the relation
(3.1) logy (Ag) = (logA) - 1 4 log(9)

by following what happens on each eigenspace of g.
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The relation

(z— D
(-1

M8

log(z) =

>
I
—_

for x € R with |z — 1| < 1 implies that for ||g — 1|| < 1 we have

presle =1

Mg

log (g
k:l

This proves that logy is smooth in By (1) N Hermg(K), hence in a neighborhood
of go if ||go —1|| < 1 (Lemma II.3.1), which means that for each eigenvalue p of
go we have |p — 1| < 1 (Exercise 11.2.1). If this condition is not satisfied, then
we choose A > 0 such that ||[Ag|]| < 2. Then |[Ag — 1|| < 1, and we obtain with
(3.1) the formula

(Ag—1
logy(g) = —(log A\)1 +log g (Ag) = —(log A)1 + Z k“g—).
Therefore logy; is smooth on the whole open cone Pd;(K), so that log, = eXpIZ1
implies that expp is a diffeomorphism. [ ]

Corollary 11.3.6.  The group GL4(K) is homeomorphic to

d(d+1) forK=R

Ug(K) x Réimz(Herma(K) th  dimpg(Hermg(K)) = { .
a(K) v ime (Herma (K)) = d? forK=C
n

Exercises for Section I1.3.

Exercise I1.3.1. Show that for a hermitian matrix A € Herm,,(K) and the
euclidian norm || - || on K" we have

I|A|| := sup{||Az||: ||| <1} = max{|A|: der(A — A1) = 0}.

Hint: Write z € K" as a sum = = }_ x;, where Az; = Ajz; and calculate
|Az||* in these term. u

Exercise I1.3.2. The exponential function
exp : M, (C) — GL,(C)
is surjective. Hint: Use the multiplicative Jordan decomposition: Each g €

GL,,(C) can be written in a unique way as g = du with d diagonalizable and u
unipotent with du = ud; see also Proposition II.3.3. [ ]
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I1.4. The Baker—Campbell-Hausdorff-Dynkin Formula

In this section we derive a formula which expresses the product
exprexpy of two sufficiently small matrices x,y as the exponential image
exp(z+y) of an element x*y which can be described in terms of Lie brackets. The
(local) multiplication * is called the Baker—Campbell-Hausdorff Multiplication
and the explicit series describing this product the Dynkin series.

The discussion of x*y requires some preparation. We start with the adjoint
representation of GL,,(K). This is the group homomorphism

Ad: GL, (K) — Aut(M, (K)), Ad(g)z = gzg ™"

Y

where Aut(M,,(K)) is the group of algebra automorphisms of M, (K). For
x € M, (K) we further define a linear map

ad(z): M (K) — My (K), adz(y) := [2,y].
Lemma I1.4.1. For each z € M, (K) we have

Ad(expz) = exp(ad z).

Proof. We define the linear maps
L,:M,(K) — M,(K), y~— xy

and
R.: M, (K) — M,(K), y— yz.
Then L,R, = R,L, and adx = L, — R, . Therefore Lemma I1.2.2(ii) leads to

Ad(expa)y = e®ye ™ = eleeRoy = elo—Roy — gaday, .

| THE DIFFERENTIAL OF THE EXPONENTIAL FUNCTION |

Proposition I1.4.2. Let x € M,(K) and Aexpz(y) := (expx)y the left
multiplication by expx. Then

1— —adz
dexp(x) = Aexpaz © ¢ : M, (K) — M, (K),

ad x

where the fraction on the right means ®(adx) for the entire function

—e % o e k—1
<I>(z)::1 :Z—( .
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The series ®(x) converges for each x € M, (K).
Proof. First let a: [0, 1] — M, (K) be a smooth curve. Then

1(t,5) = exp(~sa (1)) - exp(sa(t)

defines a map [0,1]?> — M, (K) which is C! in each argument. We calculate

D3 1,1 = expl—sa(t) - (<a(t) % exp(sat)
+ exp(—sa(t)) - %(a(t) exp(sa(t)))

= exp(~sa(t))- <—a<t>>% exp(sat)

+ exp(—sa t)exp(sa(t)) + Oé(t)% eXP(SOC(t)))
= Ad(exp(—s <t>>>o/<t> = ems2dea/(1).

Integration over [0, 1] with respect to s now leads to
1 1

v(t, 1) = ~(t,0) +/ es2de®y/(t) ds = / e~* 2o/ (t) ds.
0 0

Next we note that for z € M, (K) we have

/ sadwds—/ ada: kds— —adz) / —ds
0 0
—adz)*
= Z it 1) d(adx).
We thus obtain for «a(t) = = + ty the relation

1
7(0,1) = exp(—x)dexp(x)y = / e 5%y ds = d(ad z)y. m
0

Lemma 11.4.3. For

(z=1)F  for|z—1] < 1
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we have
U(e*)P(z) =1 for ze€C,|z] <log2.

Proof. If |z| <log2, then |e* — 1| < 1 and we obtain from log(e*) = z:
ez 1—e~

U(e*)P(z) = 1 L. u

In view of the Composition Formula (1.1) (Proposition I1.1.6), the same
identity as in Lemma I1.4.3 holds if we insert linear maps L € End(M,,(K)) with
|L|| <log?2 into the power series ® and V:

W(exp L)O(L) = (W o exp)(L)B(L) = (W o exp) - B)(L) = idy, s

Here we use that ||L|| < log2 implies that all expressions are defined and in
particular that || exp L — 1|| < 1, as a consequence of the estimate

(4.1) lexpL — 1| < elfll -1,

The derivation of the BCH formula follows a similar scheme as the proof of
Proposition 11.4.2. Here we consider z,y € V, := B(0,logv/2). For ||z, ||ly|| < r
the estimate (4.1) leads to

lexpzexpy — 1| = [[(expz — 1)(expy — 1) + (expy — 1) + (expz — 1)
<|lexpz — 1| - [expy — 1| + [[expy — 1|| + [|expz — 1|
<(e"—=1)2+2(" —1)=¢e* —1.

For r < log V2 = %log2 and [t| <1 we obtain in particular
|expzexpty —1|| < el°82 —1 =1.

Therefore expzexpty lies for |t| < 1 in the domain of the logarithm function
(Lemma I1.3.1). We therefore define for ¢ € [—1,1]:

F(t) = log(exp z exp ty).

To estimate the norm of F'(t), we note that for g := expzexpty, [t/ <1, and
||l lyll < r we have

- g— 1 K r r
hoggll <3 18— tog(1-lg-1]) < ~ log(1—(e*~1)) = ~log(2—¢*).
k=1

For r := 1log(2 — */75) < 10%2 = log v/2 this leads for ||z, ||ly|| < to

(4.2) IF (1)) < —log(2 — €*") = log( %) = log(v2).
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Next we calculate F’(t) with the goal to obtain the BCH formula as

F(1) = F(0) + fo F'(t)dt. For the derivative of the curve ¢t — exp F(t) we
get with Propos1t10n II 4 2:

(dexp)(F(t))F'(t) = %exp(F(t)) = %expxexp ty

= (expzexpty)y = (exp F(t))y.
Using Proposition I1.4.2 again, we obtain

1 _e—adF(t)

i) L O

(4.3) y = (exp F(t)) " (dexp) (F (1)) F'(t) =

The next step is to rewrite (4.3) with the function ® from Lemma I1.4.3
as

®(ad F(t))F'(t) = y.
We claim that || ad(F(t))|| < log2. From |lab— bal| < 2|/a|| ||b|| we derive

|ladal <2||al]| for a€ M,(K).

Therefore
lad F(t)]| < 2||F(t)] < 2log(V2) = log2,

so that the discussion above and (4.3) lead to
(4.4) F'(t) = ¥(exp(ad F(t)))y.

Proposition I1.4.4.  For z,y € M,(K) with |z|, |lyl| < 5log(2 — @) we
have

1
log(exprexpy) = x + / U (exp(ad z) exp(tady))y dt,
0

with ¥ as in Lemma 11.4.3.
Proof. With (4.4) and the preceding remarks we get

F'(t) = ¥(exp(ad F(t)))y
U(Ad(exp F(t))y = U(Ad(expzexpty))y
v

(Ad(expz) Ad(expty))y = ¥ (exp(ad z) exp(ad ty))y.

Moreover, we have
F(0) =log(expz) = x.

By integration we therefore obtain the formula. ]
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Proposition 11.4.5.  For z,y € M,(K) and |z,|y| < %log(2 — V2 e
have

x *xy := log(exp rexpy)

=+

Z (—1)k (adz)P(ady)? ... (ad x)P* (ad y)?* (ad )™
= D+ e+ 1) pilqi!. .. prlgp!m! v
pi+q; >0

Proof. We only have to rewrite the expression in Proposition 11.4.4:

/O\I/(exp(adx)exp(adty))ydt

/1 2. (—=1)*(exp(ad z) exp(ad ty) — id)k
0 o (k+1)

B ! (—=1)* (adx)Pr(adty) ... (ad )P+ (ad ty)*

N /0 2 (k+1)

+ pila! ... prlas!

(exp(ad z) exp(ad ty))y dt

exp(ad x)y dt

k>0
p;+q;>0

S D (@) ady) . ad 2 d ) o 2] / b g
(k+1) prlgr! .. prlgelm! s

k,m>0
p;+q;>0

B Z (—=1)*(ad z)P* (ad y)@ ... (ad x)P* (ad y)9* (ad )™y
(k+ (@1 +...+a+ Dpilar! . opelgg!m!

k,m>0
p;+aq;>0

The power series in Proposition 11.4.5 is called the Dynkin Series. We
observe that it does not depend on the size n of the matrices we consider. For
practical purposes it often suffices to know the first terms of the Dynkin series:

Corollary I1.4.6.  Let 2,y € M, (K) and ||z, ||y| < 4 log(2— ‘/75) Then we

have
1 1 1
rxy=a+y+ eyl + Sl vyl + Sl +..
Proof. One has to collect the summands in Proposition 11.4.5 corresponding
topl—l—ql—l——l—pk—i—qk—l—mSQ ||

Product and Commutator Formula

We have seen in Lemma II.1.1 that the exponential image of a sum = + y
can be computed easily if x and y commute. In this case we also have for the
commutator [z,y] := xy — yz = 0 the formula exp[z,y] = 1. The following
proposition gives a formula for exp(z + y) and exp([z,y]) in the general case.
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If g,h are elements of a group G, then (g, h) := ghg='h™?! is called their
commutator. On the other hand we call for two matrices A, B € M, (K) the
expression

[A,B] := AB — BA
their commautator bracket.

Proposition I1.4.7.  For x,y € My(K) the following assertions hold:
(i) (Trotter Product Formula)

k
lim (e%‘re%y> = 1Y,

k—o0

(ii) (Commutator Formula)

1 1 1 1 2
lim (ewewe_? e_Ey)k = e"VTyT,
k—o0

Proof. (i) From Corollary I1.4.6 we derive

(4.5) kg&k(%*%):x+y

Applying the exponential function, we obtain (i).
(ii) We consider the function

v(t) = tx * ty x (—tx) * (—ty),
which is defined for sufficiently small ¢ € R and smooth. In view of

(eadm

exp(z * y * (—x)) = expzexpyexp(—z) = exp ( Ad(exp x)y) = exp Y)

(Lemma I1.4.1), we have

(4.6) zxy* (—x) = ey,
and therefore the Chain Rule for Taylor Polynomials yields

Y(t) = ta * ty * (—tx) * (—ty) = ' *I %ty x (—ty)
3
= (ty+ Pl + Sl o)) + ) (—t)

=ty + [z, y] — ty + [ty, —ty] + 2r(t) = [z, y] + 20(2),

where lim;_,o7(t) = 0. We therefore have

10 =70 =0 aa Ty
This leads to
(4.7) klingo k2 - (%x) * (%y) (= %az) * (— %y) =7 2(0) = [z,y].

Applying exp leads to the Commutator Formula. (]



I1.4. The Baker—Campbell-Hausdorff~Dynkin Formula 49

Exercises for Section I1.4.

Exercise 11.4.1. If (V,-) is an associative algebra, then we have Aut(V,-) C
Aut(v7 ['7 ]) u

Exercise I1.4.2. (a) Ad : GL,,(K) — Aut (M, (K)) is a group homomorphism.
(b) For each Lie algebra g the map ad:g — der(g), adx(y) := [z,y] is a
homomorphism of Lie algebras. u

Exercise 11.4.3. Let V be a finite-dimensional vector space, F' C V a sub-
space and v : [0,7] — V a continuous curve with v([0,7]) C F. Then for all
te[0,7T]:

t
I, :z/ ~v(T)dr € F.
0

Hint: Use the linearity of the integral to see that every linear functional vanishing
on F' vanishes on I;. Why does this imply the assertion? [ ]

Exercise 11.4.4. On each finite-dimensional Lie algebra g there exists a norm
with
Iz, 9l < llzllllyll Yo,y €,

i.e, ||adz| < |«|. Hint: If || - ||; is any norm on g, then the continuity of the
bracket implies that ||[z,y]||1 < C||lz|1||ly]l1. Modify || - |1 to obtain || - ||. n

Exercise 11.4.5. Let g be a Lie algebra with a norm as in Exercise 11.4.4.
Then for ||z| + |ly|]| < In2 the Dynkin series

Tr*xy =T+
Z (—1)k (adz)P(ady)? ... (ad x)P* (ad y)?* (ad )™
o (et g+ 1) pilad! .. prlg!m! Y
pi+aq;>0

converges absolutely. Hint: Show that
1

|z yll < llz ) + el Myl D T (el — 1), m
k>0
Exercise 11.4.6. Prove Corollary I1.4.6. [ ]

Exercise 11.4.7. Let V and W be vector spaces and ¢ : V xV — W a
skew-symmetric bilinear map. Then

[(U7w)’ (U/7w/)] = (07Q(U=UI))

is a Lie bracket on g:=V x W. For z,y,z € g we have [z,[y,z]] =0. [
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Exercise I1.4.8. Let g be a Lie algebra with [z,[y,2]] = 0 for z,y,2 € g.
Then

1
x*y:=x+y+§[w,y]

defines a group structure on g. An example for such a Lie algebra is the three-
dimensional Heisenberg algebra

rx,y,z € K ». [ ]
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