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Lie Groups and Matrix Groups

Introduction

To locate the theory of Lie groups within mathematics, one can say that
Lie groups are groups with some additional structure that permits us to apply
analytic techniques such as differentiation in a group theoretic context.

In the elementary courses on one variable calculus one studies functions on
three levels:
(1) abstract functions between sets,
(2) continuous functions, and
(3) differentiable functions.
Going from level (1) to level (3), we refine the available tools at each step.
At level (1) we have no structure at all to do anything, at level (2) we obtain
results like the Intermediate Value Theorem (Zwischenwertsatz) or the Maximal
Value Theorem that each function on a compact interval takes a maximal value.
The latter result is a useful existence theorem, but it provides no help at all to
calculate maximal values. For that we need refined tools such as the derivative
of a function and a translation mechanism between properties of a function and
its derivative.

The situation is quite similar when we study groups. There is a level (1)
consisting of abstract group theory which is particularly interesting for finite
groups because the finiteness assumption is a powerful tool in the structure
theory of finite groups. For infinite groups G it is good to have a topology
on G which is compatible with the group structure in the sense that the group
operations are continuous, so that we are at level (2), which we could call the level
of continuous groups. If we want to apply calculus techniques to study a group,
we need something like a differentiable group, and this means a Lie group 1 . We
shall see that for Lie groups we shall also need a translation mechanism telling us
how to pass from group theoretic properties of G to properties of its “derivative”
L(G), the Lie algebra of G . We think of L(G) as a “linear” object attached
to the “non-linear” object G , because L(G) is a vector space endowed with
an additional algebraic structure [·, ·] , the Lie bracket. This is a bilinear map
L(G)× L(G) → L(G) satisfying the axioms

[x, x] = 0 and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for x, y, z ∈ L(G),

which can be considered as linearized versions of the group axioms of G .
Historically abstract groups arose first in the setting of Galois theory in

the early 19th century, where they arose as automorphism groups of fields. The
groups considered in Galois theory at these times were all finite. Later in the

1 The norwegian mathematician Marius Sophus Lie (1842–1899) was the first to study

differentiability properties of groups in a systematic way.
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19th century “continuous” groups became important in geometric contexts to
the extent that a geometry on a space S was considered as the same structure as
a group acting on this space. Then the geometric properties are those invariant
under the action of the group. This is the content of Felix Klein’s “Erlanger
Programm” from 18722 . A typical example is the group Mot(E2) of motions
(orientation preserving isometries) of the euclidean plane. The length of an
interval or the area of a triangle are properties preserved by this group, hence a
geometric quantity. It was an important conceptual step to observe that changing
the group means changing the notion of a geometric quantity. For example the
automorphism group Aff(A2) of the two-dimensional affine plane A2 does not
preserve the area of a triangle (it is larger than the euclidean group), hence the
area of a triangle cannot be considered as an affine geometric quantity. In the
1890s Sophus Lie developed his theory of differentiable groups (called continuous
groups at a time when the concept of a topological space was not yet clarified)
to study symmetries of differential equations.

In this course we shall approach the general concept of a Lie group by first
discussing certain groups of matrices and groups arising in geometric contexts
(Chapter I). All these groups will later turn out to be Lie groups. In Chapter II
we study the central tool in the theory of Lie groups that permits us to reverse
the differentiation process from a Lie group G to its Lie algebra L(G): the
exponential function expG:L(G) → G , which is a generalization of the matrix
exponential function used in the theory of linear differential equations with
constant coefficients.

In Chapter III we then turn to the question which kind of structure on a
group G turns it into a Lie group. Here we shall see that there is an intermediate
level given by a group topology on G . The essential feature of a Lie group G is
that there is an open identity neighborhood U ⊆ G which is homeomorphic to
an open subset of Rn such that the group operations are smooth mappings in a
neighborhood of the identity element.

After Chapters I-III the concept of a Lie group is essentially clarified, so
that we can move on and have a closer look at constructions producing new Lie
groups from given ones. In particular, we turn to covering groups of Lie groups,
which already leads us beyond the class of linear Lie groups and discuss the
general concept of a Lie group.

2 Christian Felix Klein (1849–1925) held the chair of geometry in Erlangen for a few years

and the “Erlanger Programm” was his “Programmschrift,” where he formulated his research

plans when he came to Erlangen.
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I. Concrete matrix groups
In this section K denotes the field R of real numbers or the field C of

complex numbers. First we mainly study the group GLn(K) of invertible n×n -
matrices and introduce some of its subgroups.

I.1. The general linear group

First we introduce some notation. We write Mn(K) for the ring of (n×n)-
matrices with entries in K and 1 for the identity matrix. Then

GLn(K) := {g ∈Mn(K): (∃h ∈Mn(K))hg = gh = 1}

is the set of invertible elements in Mn(K), and we know from Linear Algebra
that invertibility of a matrix can be tested with its determinant. Therefore we
have

GLn(K) = {g ∈Mn(K): det g 6= 0}.

This group is called the general linear group.
On the vector space Kn we consider the euclidean norm

‖x‖ :=
√
|x1|2 + . . .+ |xn|2, x ∈ Kn,

and on Mn(K) the corresponding operator norm

‖A‖ := sup{‖Ax‖:x ∈ Kn, ‖x‖ ≤ 1}

which turns Mn(K) into a Banach space. On every subset S ⊆ Mn(K) we
shall always consider the subspace topology inherited from Mn(K) (otherwise
we shall say so). In this sense GLn(K) and all subgroups of GLn(K) carry a
natural topology.

Lemma I.1.1. The group GLn(K) has the following properties:
(i) GLn(K) is open in Mn(K) .
(ii) The multiplication map m: GLn(K)×GLn(K) → GLn(K) and the inversion

map η: GLn(K) → GLn(K) are smooth and in particular continuous.

Proof. (i) Since the determinant function

det:Mn(K) → K, det(aij) =
∑

σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n)
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is continuous and K× := K \ {0} is open in K , the set

GLn(K) = det−1(K×)

is open in Mn(K).
(ii) For g ∈ GLn(K) we define bij(g) := det(gmk)m6=j,k 6=i . Then Cramer’s

Rule says that the inverse of g is given by

(g−1)ij =
(−1)i+j

det g
bij(g).

The smoothness of the inversion therefore follows from the smoothness of the
determinant (which is a polynomial) and the polynomial functions bij :Mn(K) →
K .

For the smoothness of the multiplication map, it suffices to observe that

(ab)ik =
n∑

j=1

aijbjk

is the (ik)-entry in the product matrix. Since all these entries are polynomials
in the entries of a and b , the product is a smooth map.

Put in more abstract terms, Lemma I.1.1(ii) says that GLn(K) is a topo-
logical group, a concept that we shall study more thoroughly in a later chapter.
It is clear that the continuity of group multiplication and inversion is inherited
by every subgroup G ⊆ GLn(K), so that every subgroup G of GLn(K) also is a
topological group.

We write a matrix A = (aij)i,j=1,...,n also as (aij) and define

A> := (aji), A := (aij) and A∗ := A
>

= (aji).

Note that A∗ = A> is equivalent to A = A , which means that all entries of A
are real. Now we can easily define the most important classes of matrix groups.

Definition I.1.2. One easily verifies that the following sets are indeed groups.
One simply has to use that (ab)> = b>a> , ab = ab and that

det:GLn(K) → (K×, ·)

is a group homomorphism.
(1) The special linear group: SLn(K) := {g ∈ GLn(K): det g = 1} .
(2) The orthogonal group: On(K) := {g ∈ GLn(K): g> = g−1} .
(3) The special orthogonal group: SOn(K) := SLn(K) ∩On(K).
(4) The unitary group: Un(K) := {g ∈ GLn(K): g∗ = g−1} . Note that Un(R) =

On(R) but that On(C) 6= Un(C).
(5) The special unitary group: SUn(K) := SLn(K) ∩Un(K).
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We write Hermn(K) := {A ∈Mn(K):A∗ = A} for the set of hermitian matrices.
For K = C this is not a vector subspace of Mn(K), but it is always a real
subspace. A matrix A ∈ Hermn(K) is called positive definite if for each 0 6= z ∈
Kn we have 〈A.z, z〉 > 0, where

〈z, w〉 :=
n∑

j=1

zjwj

is the natural scalar product on Kn . We write Pdn(K) ⊆ Hermn(K) for the
subset of positive definite matrices.

Lemma I.1.3. The groups

Un(C), SUn(C), On(R) and SOn(R)

are compact.

Proof. Since all these groups are subsets of Mn(C) ∼= Cn2
, we have to show

that they are closed and bounded.
Boundedness: In view of

SOn(R) ⊆ On(R) ⊆ Un(C) and SUn(C) ⊆ Un(C),

it suffices to see that Un(C) is bounded. Let g1, . . . , gn denote the rows of the
matrix g ∈Mn(C). Then g∗ = g−1 is equivalent to gg∗ = 1 , which means that
g1, . . . , gn form an orthonormal basis of Cn with respect to the scalar product

〈z, w〉 =
n∑

j=1

zjwj

which induces the norm ‖z‖ =
√
〈z, z〉 . Therefore g ∈ Un(C) implies ‖gj‖ = 1

for each j , and therefore Un(C) is bounded.
Closedness: The functions

f :Mn(K) →Mn(K), A 7→ AA∗ − 1, h:Mn(K) →Mn(K), A 7→ AA> − 1

are continuous. Therefore the groups

Un(K) := f−1(0) and On(K) := h−1(0)

are closed. Likewise SLn(K) is closed, and therefore the groups SUn(C) and
SOn(R) are also closed because they are intersections of closed subsets.



6 I. Concrete matrix groups 14. April 2007

Proposition I.1.4. (Polar decomposition) The multiplication map

m: Un(K)× Pdn(K) → GLn(K), (u, p) 7→ up

is a homeomorphism. In particular each invertible matrix g can be written in a
unique way as a product g = up with u unitary and p positive definite.

Proof. We know from Linear Algebra that for each hermitian matrix A there
exists an orthonormal basis v1, . . . , vn of Kn consisting of eigenvectors of A ,
and that all the corresponding eigenvalues λ1, . . . , λn are real. From that it is
obvious that A is positive definite if and only if λj > 0 holds for each j . For a
positive definite matrix A this has two important consequences:

(1) A is invertible, and A−1 is given with respect to the basis (v1, . . . , vn)
by A−1.vj = λ−1

j vj .
(2) There exists a unique positive definite matrix B with B2 = A which

will be denoted
√
A : We define B with respect to the basis (v1, . . . , vn) by

B.vj =
√
λjvj . Then B2 = A is obvious and since all λj are real and the vj

are orthonormal, B is positive definite because

〈
B.(

∑
i

µivi),
∑

j

µjvj

〉
=

∑
i,j

µiµj〈B.vi, vj〉 =
n∑

j=1

|µj |2
√
λj > 0

for
∑

j µjvj 6= 0. It remains to verify the uniqueness. So assume that C is
positive definite with C2 = A . Then CA = C3 = AC implies that C preserves
all eigenspaces of A , so that we find an orthonormal basis w1, . . . , wn consisting
of simultaneous eigenvectors of C and A (cf. Exercise I.1.1). If Cwj = αjwj ,
we have Awj = α2

jwj , which implies that C acts on the λ -eigenspace of A by
multiplication with

√
λ , which shows that C = B .

From (1) we derive that the image of the map m is contained in GLn(K).
m is surjective: Let g ∈ GLn(K). For 0 6= v ∈ Kn we then have

0 < 〈g.v, g.v〉 = 〈g∗g.v, v〉,

showing that g∗g is positive definite. Let p :=
√
g∗g and define u := gp−1 .

Then

uu∗ = gp−1p−1g∗ = gp−2g∗ = g(g∗g)−1g∗ = gg−1(g∗)−1g∗ = 1

implies that u ∈ Un(K), and it is clear that m(u, p) = g .
m is injective: If m(u, p) = m(w, q) = g , then g = up = wq implies that

p2 = p∗p = (up)∗up = g∗g = (wq)∗wq = q2,

so that p and q are positive definite square roots of the same positive definite
matrix g∗g , hence coincide by (2) above. Now p = q , and therefore u = gp−1 =
gq−1 = w .
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It remains to show that m is a homeomorphism. Its continuity is obvious,
so that it remains to prove the continuity of m−1: GLn(K) → Un(K)× Pdn(K).
Let gm = umpm → g = up . We have to show that um → u and pm → p . Since
Un(K) is compact, the sequence (um) has a subsequence (umk

) converging to
some w ∈ Un(K). Then pmk

= u−1
mk
gmk

→ w−1g =: q ∈ Hermn(K) and g = wq .
For each v ∈ Kn we then have

0 ≤ 〈pmk
.v, v〉 → 〈q.v, v〉,

showing that all eigenvalues of q are ≥ 0. Moreover, q = w−1g is invertible,
and therefore q is positive definite. Now m(u, p) = m(w, q) yields u = w and
p = q . Since each convergent subsequence of (um) converges to u , the sequence
itself converges to u (Exercise I.1.8), and therefore pm = u−1

m gm → u−1g = p .

We shall see later that the set Pdn(K) is homeomorphic to a vector space,
so that topologically the group GLn(K) is a product of the compact group Un(K)
and a vector space. Therefore the “interesting” part of the topology of GLn(K)
is contained in the compact group Un(K).

Remark I.1.5. (Normal forms of unitary and orthogonal matrices) We recall
some facts from Linear Algebra:

(a) For each u ∈ Un(C) there exists an orthonormal basis v1, . . . , vn

consisting of eigenvectors of g . This means that the unitary matrix s whose
columns are the vectors v1, . . . , vn satisfies

s−1us = diag(λ1, . . . , λn),

where u.vj = λjv and |λj | = 1.
The proof of this normal form is based on the existence of an eigenvector

v1 of u which in turn follows from the existence of a zero of the characteristic
polynomial. Since u is unitary, it preserves the hyperplane v⊥1 of dimension n−1.
Now one uses induction to obtain an orthonormal basis v2, . . . , vn consisting of
eigenvectors.

(b) For elements of On(R) the situation is more complicated because real
matrices do not always have eigenvectors.

Let A ∈Mn(R) and consider it as an element on Mn(C). We assume that
A does not have a real eigenvector. Then there exists an eigenvector z ∈ Cn

corresponding to some eigenvalue λ ∈ C . We write z = x+ iy and λ = a+ ib .
Then

Az = Ax+ iAy = λz = (ax− by) + i(ay + bx).

Comparing real and imaginary part yields

Ax = ax− by and Ay = ay + bx.

Therefore the two-dimensional subspace generated by x and y in Rn is invariant
under A .
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This can be applied to g ∈ On(R) as follows. The argument above implies
that there exists an invariant subspace W1 ⊆ Rn of dimW1 ∈ {1, 2} . Then

W⊥
1 := {v ∈ Rn: 〈v,W1〉 = {0}}

is a subspace of dimension n− dimW1 which is also invariant (Exercise I.1.13),
and we apply induction to see that Rn is a direct sum of g -invariant subspaces
W1, . . . ,Wk of dimension ≤ 2. Therefore the matrix g is conjugate by an
orthogonal matrix s to a block matrix of the form

d = diag(d1, . . . , dk),

where dj is the matrix of the restriction of the linear map corresponding to g to
Wj .

To understand the structure of the dj , we have to take a closer look at the
case n ≤ 2. For n = 1 the group O1(R) = {±1} consists of two elements, and
for n = 2 an element r ∈ O2(R) can be written as

r =
(
a ∓b
b ±a

)
with det r = ±(a2 + b2) = ±1.

because the second column contains a unit vector orthogonal to the first one.
With a = cosα and b = sinα we get

r =
(

cosα ∓ sinα
sinα ± cosα

)
.

If det r = −1, then we obtain

r2 =
(
a b
b −a

) (
a b
b −a

)
= 1,

but this implies that r is an orthogonal reflection with the two eigenvalues ±1
(Exercise I.1.12), hence has two orthogonal eigenvectors.

In view of the preceding discussion, we may therefore assume that the first
m of the matrices dj are of the rotation form

dj =
(

cosαj − sinαj

sinαj cosαj

)
,

that dm+1, . . . , d` are −1, and that d`+1, . . . , dn are 1:
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

cosα1 − sinα1

sinα1 cosα1

. . .
cosαm − sinαm

sinαm cosαm

−1
. . .

−1
1

. . .
1



.

For n = 3 we obtain in particular the normal form

d =

 cosα − sinα 0
sinα cosα 0

0 0 ±1

 .

From this normal form we immediately read off that det d = 1 is equivalent to
d describing a rotation around an axis consisting of fixed points (the axis is Re3
for the normal form matrix).

Proposition I.1.6. (a) The group Un(C) is arcwise connected.
(b) The group On(R) has the two arc components

SOn(R) and On(R)− := {g ∈ On(R): det g = −1}.

Proof. (a) First we consider Un(C). To see that this group is arcwise
connected, let u ∈ Un(C). Then there exists an orthonormal basis v1, . . . , vn

of eigenvectors of u (Remark I.5(a)). Let λ1, . . . , λn denote the corresponding
eigenvectors. Then the unitarity of u implies that |λj | = 1, and we therefore
find θj ∈ R with λj = eθji . Now we define a continuous curve

γ: [0, 1] → Un(C), γ(t).vj := etθjivj , j = 1, . . . , n.

We then have γ(0) = 1 and γ(1) = u . Moreover, each γ(t) is unitary because
the basis (v1, . . . , vn) is orthonormal.

(b) For g ∈ On(R) we have gg> = 1 and therefore 1 = det(gg>) =
(det g)2 . This shows that

On(R) = SOn(R)∪̇On(R)−
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and both sets are open because det is continuous. Therefore On(R) is not
connected and hence not arcwise connected. If we show that SOn(R) is arcwise
connected and x, y ∈ On(R)− , then 1, x−1y ∈ SOn(R) can be connected by an
arc γ: [0, 1] → SOn(R), and then t 7→ xγ(t) defines an arc [0, 1] → On(R)−
connecting x to y . So it remains to show that SOn(R) is connected.

Let g ∈ SOn(R). In the normal form of g discussed in Remark I.1.5, the
determinant of each two-dimensional block is 1, so that the determinant is the
product of all −1-eigenvalues. Hence their number is even, and we can write
each consecutive pair as a block(

−1 0
0 −1

)
=

(
cosπ − sinπ
sinπ cosπ

)
.

This shows that with respect to some orthonormal basis of Rn the linear map
defined by g has a matrix of the form

g =



cosα1 − sinα1

sinα1 cosα1

. . .
cosαm − sinαm

sinαm cosαm

1
. . .

1


.

Now we obtain an arc γ: [0, 1] → SOn(R) with γ(0) = 1 and γ(1) = g by

γ(t) :=



cos tα1 − sin tα1

sin tα1 cos tα1

. . .
cos tαm − sin tαm

sin tαm cos tαm

1
. . .

1


.

Corollary I.1.7. The group GLn(C) is arcwise connected and the group
GLn(R) has two arc-components given by

GLn(R)± := {g ∈ GLn(R):±det g > 0}.
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Proof. If X = A× B is a product space, then the arc-components of X are
the sets of the form C×D , where C ⊆ A and D ⊆ B are arc-components (easy
Exercise!). The polar decomposition of GLn(K) shows that

GLn(K) ∼= Un(K)× Pdn(K)

as topological spaces (this means that ∼= stands for a topological isomorphism,
i.e., a homeomorphism). Since Pdn(K) is an open convex set, it is arcwise
connected (Exercise I.1.5). Therefore the arc-components of GLn(K) are in
one-to-one correspondence with those of Un(K) which have been determined in
Proposition I.1.6.

Normal subgroups of GLn(K)

We shall frequently need some basic concepts from group theory which we
recall in the following definition.

Definition I.1.8. Let G be a group with identity element e .
(a) A subgroup N ⊆ G is called normal if gN = Ng holds for all g ∈ G .

We write this as N E G . The normality implies that the quotient set G/N (the
set of all cosets of the subgroup N ) inherits a natural group structure by

gN · hN := ghN

for which eN is the identity element and the quotient map q:G → G/N is a
surjective group homomorphism with kernel N = ker q = q−1(eN).

On the other hand, all kernels of group homomorphisms are normal sub-
groups, so that the normal subgroups are precisely those which are kernels of
group homomorphisms.

It is clear that G and {e} are normal subgroups. We call G simple if these
are the only normal subgroups.

(b) The subgroup Z(G) := {g ∈ G: (∀x ∈ G)gx = xg} is called the center
of G . It obviously is a normal subgroup of G . For x ∈ G the subgroup

ZG(x) := {g ∈ G: gx = xg}

is called its centralizer. Note that Z(G) =
⋂

x∈G ZG(x).
(c) If G1, . . . , Gn are groups, then the product set G := G1× . . .×Gn has

a natural group structure given by

(g1, . . . , gn)(g′1, . . . , g
′
n) := (g1g′1, . . . , gng

′
n).

The group G is called the direct product of the groups Gj , j = 1, . . . , n . We
identify Gj with a subgroup of G . Then all subgroups Gj are normal subgroups
and we have G = G1 · · ·Gn .

In the following we write R×+ :=]0,∞[ .
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Proposition I.1.9. (a) For any field K we have Z(GLn(K)) = K×1 .
(b) The multiplication map

ϕ: (R×+, ·)× SLn(R) → GLn(R)+, (λ, g) 7→ λg

is a homeomorphism and a group isomorphism, i.e., an isomorphism of topolog-
ical groups.

Proof. (a) It is clear that K×1 is contained in the center of GLn(K). To see
that each matrix g ∈ Z(GLn(K)) is a multiple of 1 , we consider the elementary
matrix Eij := (δij) with the only non-zero entry 1 in position (i, j). For
i 6= j we then have E2

ij = 0, so that (1 + Eij)(1 − Eij) = 1 implies that
Tij := 1 + Eij ∈ GLn(K). From the relation gTij = Tijg we immediately get
gEij = Eijg for i 6= j , so that for k, l ∈ {1, . . . , n} we get

gkiδjl = (gEij)kl = (Eijg)kl = δikgjl.

For k = i and l = j we obtain gii = gjj and for k = j = l , we get gji = 0.
Therefore g = λ1 for some λ ∈ K .

(b) It is obvious that ϕ is a group homomorphism and that ϕ is continuous.
Moreover, the map

ψ: GLn(R)+ → R×+ × SLn(R), g 7→ ((det g)
1
n , (det g)−

1
n g)

is continuous and satisfies ϕ ◦ ψ = id and ψ ◦ ϕ = id. Hence ϕ is a homeomor-
phism.

Remark I.1.10. The subgroups

Z(GLn(K)) and SLn(K)

are normal subgroups of GLn(K). Moreover, for GLn(R) the subgroup GLn(R)+
is a proper normal subgroup and the same holds for R×+1 . One can show that
these examples exhaust all normal arcwise connected subgroups of GLn(K).

Exercises for Section I.1.

Exercise I.1.1. (a) Let V be a K-vector space and A ∈ End(V ). We write
V λ(A) := ker(A−λ1) for the eigenspace of A corresponding to the eigenvalue λ .

(b) If A,B ∈ End(V ) commute, then

B.V λ(A) ⊆ V λ(A)

holds for each λ ∈ K .
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(c) If A,B ∈ End(V ) commute and both are diagonalizable, then they are
simultaneously diagonalizable, i.e., there exists a basis of V which consists of
eigenvectors of A and B .

(c) If dimV < ∞ and A ⊆ End(V ) is a commuting set of diagonalizable
endomorphisms, then A can be simultaneously diagonalized.

(d) If A ⊆ End(V ) is a finite commuting set of diagonalizable endomor-
phisms, then A can be simultaneously diagonalized.

(e)∗ Find a commuting set A of diagonalizable endomorphisms of a vector
space V which cannot be simultaneously diagonalized.

Exercise I.1.2. SOn(K) is a closed normal subgroup of On(K) of index 2.
For every g ∈ On(K) with det(g) = −1, we have

On(K) = SOn(K) ∪ g SOn(K).

Exercise I.1.3. For each subset M ⊆Mn(K) the centralizer

ZGLn(K)(M) := {g ∈ GLn(K) : (∀m ∈M)gm = mg}

is a closed subgroup of GLn(K).

Exercise I.1.4. We identify Cn with R2n by the map z = x+ iy 7→ (x, y) and
write I for the real linear map x 7→ ix,R2n → R2n . Then

GLn(C) = ZGL2n(R)({I})

is a closed subgroup of GL2n(R).

Exercise I.1.5. A subset C of a real vector space V is called a convex cone if
C is convex and for each λ > 0 we have λC ⊆ C .

Show that Pdn(K) is an open convex cone in Hermn(K). Hint: The
verification of the convexity is easy. To see that Pdn(K) is open, show first
that for each r > 0 we have Br(r1) = rB1(1) ⊆ Pdn(K) (here Br(x) denotes
the open ball of radius r around x) by considering the eigenvalues and using
that for A ∈ Hermn(K) we have

‖A‖ = max{|λ|: det(A− λ1) = 0}.

Now observe that Pdn(K) =
⋃

r>0Br(r1) because for A ∈ Pdn(K) with maximal
eigenvalue r we have A ∈ Br(r1).

Exercise I.1.6. Show that

γ : (R,+) → GL2(R), t 7→
(

cos t sin t
− sin t cos t

)

is a continuous group homomorphism with γ(π) =
(
−1 0
0 −1

)
and im γ =

SO2(R).
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Exercise I.1.7. Show that the group On(C) is homeomorphic to the topolog-
ical product of the subgroup

On(R) ∼= Un(C) ∩On(C) and the set Pdn(C) ∩On(C).

Hint: Show that for g ∈ On(C) with polar decomposition g = up both compo-
nents u and p are contained in On(C). Compare the polar decomposition of
(g>)−1 and g . Why is (p>)−1 ∈ Pdn(C)?

Exercise I.1.8. Let (X, d) be a compact metric space and (xn)n∈N a sequence
in X . Show that limn→∞ xn is equivalent to the condition that each convergent
subsequence (xnk

)k∈N converges to x . Hint: For metric spaces compactness is
equivalent to sequential compactness, which means that every sequence has a
convergent subsequence.

Exercise I.1.9. If A ∈ Hermn(K) satisfies 〈A.v, v〉 = 0 for each v ∈ Kn , then
A = 0. Hint: The hermitian form b(x, y) := 〈A.x, y〉 satisfies the polarization
identity

b(x, y) = 1
4

(
b(x+ y, x+ y)− b(x− y, x− y)+ ib(x+ iy, x+ iy)− ib(x− iy, x− iy)

)
for K = C , and for K = R we have

b(x, y) = 1
4

(
b(x+ y, x+ y)− b(x− y, x− y)

)
.

Exercise I.1.10. Show that for a complex matrix A ∈ Mn(C) the following
are equivalent:
(1) A∗ = A .
(2) 〈A.v, v〉 ∈ R for each v ∈ Cn .
Hint: Write A = B + iC with B,C hermitian and use Exercise I.1.9 to show
that C = 0 if (2) holds.

Exercise I.1.11. (a) Show that a matrix A ∈ Hermn(K) is hermitian if and
only if there exists an orthonormal basis v1, . . . , vn of Kn and real numbers
λ1, . . . , λn with Avj = λjvj .

(b) Show that a complex matrix A ∈Mn(C) is unitary if and only if there
exists an orthonormal basis v1, . . . , vn of Kn and λj ∈ C with |λj | = 1 and
Avj = λjvj .

(c) Show that a complex matrix A ∈ Mn(C) is normal, i.e., satisfies
A∗A = AA∗ , if and only if there exists an orthonormal basis v1, . . . , vn of Kn

and λj ∈ C with Avj = λjvj .

Exercise I.1.12. (a) Let V be a vector space and E ∈ End(V ) with A2 = 1 .
Show that

V = ker(A− 1)⊕ ker(A+ 1).
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(b) Let V be a vector space and A ∈ End(V ) with A3 = A . Show that

V = ker(A− 1)⊕ ker(A+ 1)⊕ kerA.

(c)∗ Let V be a vector space and A ∈ End(V ) an endomorphism for which
there exists a polynomial p of degree n with n different zeros λ1, . . . , λn ∈ K
and p(A) = 0. Show that A is diagonalizable with eigenvalues λ1, . . . , λn .
Hint: The subalgebra K[A] := span{Ak: k ∈ N0} ⊆ End(V ) is isomorphic to Kn

with pointwise multiplication and the basis vectors ej ∈ Kn correspond to the
projections onto the eigenspace of A .

Exercise I.1.13. Let β:V × V → K be a bilinear map and g ∈ O(V, β) an
isometry. For a subspace E ⊆ V we write

E⊥ := {v ∈ V : (∀w ∈ E) β(v, w) = 0}

for its orthogonal space. Show that g(E) = E implies that g(E>) = E> .

I.2. Groups and geometry

In Definition I.1.2 we have defined certain matrix groups by concrete con-
ditions on the matrices. If we think of matrices as linear maps, described with
respect to a basis, we have to adopt a more abstract point of view. Similarly one
can study symmetry groups of bilinear forms on a vector space V without fixing
a certain basis a priori. Actually it is much more convenient to choose a basis
for which the structure of the bilinear form is as simple as possible.

Definition I.2.1. (Groups and bilinear forms)
(a) (The abstract general linear group) Let V be a K-vector space, where

K ∈ {R,C} . We write GL(V ) for the group of linear automorphisms of V . This
is the group of invertible elements in the ring End(V ) of all linear endomorphisms
of V .

If V is an n -dimensional K-vector space and v1, . . . , vn is a basis of V ,
then the map

Φ:Mn(K) → End(V ), Φ(A).vk :=
n∑

j=1

ajkvj

is a linear isomorphism which describes the passage between linear maps and
matrices. In view of Φ(1) = idV and Φ(AB) = Φ(A)Φ(B), we obtain a group
isomorphism

Φ |GLn(K): GLn(K) → GL(V ).

(b) Let V be an n -dimensional vector space with basis v1, . . . , vn and
β:V × V → K a bilinear map. Then B = (bjk) := (β(vj , vk))j,k=1,...,n is an
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(n × n)-matrix, but this matrix should NOT be interpreted as the matrix of a
linear map. It is the matrix of a bilinear map to K , which is something different.
It describes β in the sense that

β
( ∑

j

xjvj ,
∑

k

ykvk

)
=

n∑
j,k=1

xjbjkyk = x>By,

where x>By with column vectors x, y ∈ Kn is viewed as a matrix product whose
result is a (1× 1)-matrix, i.e., an element of K .

We write

O(V, β) := {g ∈ GL(V ): (∀v, w ∈ V )β(g.v, g.w) = β(v, w)}

for the isometry group of the bilinear form β . Then it is easy to see that

Φ−1(O(V, β)) = {g ∈ GLn(K): g>Bg = B}.

If v1, . . . , vn is an orthonormal basis for β , i.e., B = 1 , then

Φ−1(O(V, β)) = On(K)

is the orthogonal group defined in Section I.1. Note that orthonormal bases can
only exist for symmetric bilinear forms (Why?).

For V = K2n and the block (2× 2)-matrix

B :=
(

0 1n

−1n 0

)
we see that B> = −B , and the group

Sp2n(K) := {g ∈ GL2n(K): g>Bg = B}

is called the symplectic group. The corresponding skew-symmetric bilinear form
on K2n is given by

β(x, y) = x>By =
n∑

i=1

xiyn+i − xn+iyi.

(c) A symmetric bilinear form β on V is called non-degenerate if β(v, V ) =
{0} implies v = 0. For K = C every non-degenerate symmetric bilinear form
β possesses an orthonormal basis (this builds on the existence of square roots of
non-zero complex numbers; see Exercise I.2.1), so that for every such form β we
get

O(V, β) ∼= On(C).

For K = R the situation is more complicated, since negative real numbers
do not have a square root in R , there might not be an orthonormal basis, but
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if β is non-degenerate, there always exists an orthogonal basis v1, . . . , vn and
p ∈ {1, . . . , n} such that β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = −1 for
j = p+ 1, . . . , n . Let q := n− p and Ip,q denote the corresponding matrix

Ip,q =
(

1p 0
0 −1q

)
∈Mp+q(R).

Then O(V, β) is isomorphic to the group

Op,q(R) := {g ∈ GLn(R): g>Ip,qg = Ip,q},

where On,0(R) = On(R).
(d) Let V be an n -dimensional complex vector space and β:V × V → C

a sesquilinear form, i.e., β is linear in the first and antilinear in the second
argument. Then we also choose a basis v1, . . . , vn in V and define B = (bjk) :=
(β(vj , vk))j,k=1,...,n , but now we obtain

β
( ∑

j

xjvj ,
∑

k

ykvk

)
=

n∑
j,k=1

xjbjkyk = x>By.

We write

U(V, β) := {g ∈ GL(V ): (∀v, w ∈ V )β(g.v, g.w) = β(v, w)}

for the corresponding unitary group and find

Φ−1(U(V, β)) = {g ∈ GLn(C): g>Bg = B}.

If v1, . . . , vn is an orthonormal basis for β , i.e., B = 1 , then

Φ−1(U(V, β)) = Un(C) = {g ∈ GLn(C): g∗ = g−1}

is the unitary group over C . We call β hermitian if it is sesquilinear and satisfies
β(y, x) = β(x, y). In this case one has to face the same problems as for symmetric
forms on real vector spaces, but there always exists an orthogonal basis v1, . . . , vn

and p ∈ {1, . . . , n} with β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = −1 for
j = p+ 1, . . . , n . With q := n− p and

Ip,q =
(

1p 0
0 −1q

)
∈Mn(C)

we then define the indefinite unitary groups by

Up,q(C) := {g ∈ GLn(C): g>Ip,qg = Ip,q}.

Since Ip,q has real entries, we have

Up,q(C) = {g ∈ GLn(C): g∗Ip,qg = Ip,q},

where Un,0(C) = Un(C).
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Definition I.2.2. (a) Let V be a vector space. We consider the affine group
Aff(V ) of all maps V → V of the form

ϕv,g(x) = gx+ v, g ∈ GL(V ), v ∈ V.

We write elements ϕ(v,g) of Aff(V ) simply as pairs (v, g). Then the composition
in Aff(V ) is given by

(v, g)(w, h) = (v + g.w, gh),

(0,1) is the identity, and inversion is given by

(v, g)−1 = (−g−1.v, g−1).

For V = Kn we put Affn(K) := Aff(Kn). Then the map

Φ: Affn(K) → GLn+1(K), Φ(v, g) =
(

[g] v
0 1

)
is an injective group homomorphism, where [g] denotes the matrix of the linear
map with respect to the canonical basis of Kn .

(b) (The euclidean isometry group) Let V = Rn and consider the euclidean
metric d(x, y) := ‖x− y‖2 on Rn . We define

Ison(R) := {g ∈ Aff(Rn): (∀x, y ∈ V ) d(g.v, g.w) = d(v, w)}.

This is the group of affine isometries of the euclidean n -space. Actually one
can show that every isometry of a normed space (V, ‖ · ‖) is an affine map
(Exercise I.2.5). This implies that

Iso(Rn) = {g: Rn → Rn: (∀x, y ∈ Rn) d(g.v, g.w) = d(v, w)}.

We have seen in Definition I.1.8 how to form direct products of groups. If
G = G1 ×G2 is a direct product of the groups G1 and G2 , then we identify G1

and G2 with the corresponding subgroups of G1 ×G2 , i.e., we identify g1 ∈ G1

with (g1, e) and g2 ∈ G2 with (e, g2). Then G1 and G2 are normal subgroups
of G and the product map

m:G1 ×G2 → G, (g1, g2) 7→ g1g2 = (g1, g2)

is a group isomorphism, i.e., each element g ∈ G has a unique decomposition
g = g1g2 with g1 ∈ G1 and g2 ∈ G2 .

The affine group Aff(V ) has a structure which is similar. The translation
group V ∼= {(v,1): v ∈ V } and the linear group GL(V ) ∼= {(0, g): g ∈ GL(V )}
are subgroups, and each element (v, g) has a unique representation as a product
(v,1)(0, g), but in this case GL(V ) is not a normal subgroup, whereas V is nor-
mal. The following lemma introduces a concept that is important to understand
the structure of groups which have similar decompositions.

In the following we write Aut(G) for the set of automorphisms of the group
G and note that this set is a group under composition of maps. In particular the
inverse of a group automorphism is an automorphism.
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Lemma I.2.3. (a) Let N and H be groups, write Aut(N) for the group of all
automorphisms of N , and suppose that δ:H → Aut(N) is a group homomor-
phism. Then we define a multiplication on N ×H by

(2.1) (n, h)(n′, h′) := (nδ(h)(n′), hh′).

This multiplication turns N ×H into a group denoted by N oδ H , where N ∼=
N × {e} is a normal subgroup, H ∼= {e} × H is a subgroup, and each element
g ∈ N oδ H has a unique representation as g = nh , n ∈ N , h ∈ H .

(b) If, conversely, G is a group, N E G a normal subgroup and H ⊆ G a
subgroup with the property that the multiplication map m:N×H → G is bijective,
i.e., NH = G and N ∩H = {e} , then

(2.2) δ:H → Aut(N), δ(h)(n) := hnh−1

is a group homomorphism, and the map

m:N oδ H → G, (n, h) 7→ nh

is a group isomorphism.

Proof. (a) We have to verify the associativity of the multiplication and the
existence of an inverse. The associativity follows from(

(n, h)(n′, h′)
)
(n′′, h′′)

= (nδ(h)(n′), hh′)(n′′, h′′) = (nδ(h)(n′)δ(hh′)(n′′), hh′h′′)

= (nδ(h)(n′)δ(h)
(
δ(h′)(n′′)

)
, hh′h′′) = (nδ(h)

(
n′δ(h′)(n′′)

)
, hh′h′′)

= (n, h)(n′δ(h′)(n′′), h′h′′) = (n, h)
(
(n′, h′)(n′′, h′′)

)
.

With (2.1) we immediately get the formula for the inverse

(2.2) (n, h)−1 = (δ(h−1)(n−1), h−1).

(b) Since

δ(h1h2)(n) = h1h2n(h1h2)−1 = h1(h2nh
−1
2 )h−1

1 = δ(h1)δ(h2)(n),

the map δ:H → Aut(N) is a group homomorphism. Moreover, the multiplica-
tion map m satisfies

m(n, h)m(n′, h′) = nhn′h′ = (nhn′h−1)hh′ = m((n, h)(n′, h′)),

hence is a group homomorphism. It is bijective by assumption.
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Definition I.2.4. The group N oδ H constructed in Lemma I.2.3 from the
data (N,H, δ) is called the semidirect product of N and H with respect to δ .
If it is clear from the context what δ is, then we simply write N oH instead of
N oδ H .

If δ is trivial, i.e., δ(h) = idN for each h ∈ H , then N oδ H ∼= N × H
is a direct product. In this sense semidirect products generalize direct products.
Below we shall see several concrete examples of groups which can most naturally
be described as semidirect products of known groups.

One major point in studying semidirect products is that for any normal
subgroup N E G , we think of the groups N and G/N as building blocks of the
group G . For each semidirect product G = N oH we have G/N ∼= H , so that
the two building blocks N and G/N ∼= H are the same, although the groups
might be quite different, f.i. Aff(V ) and V × GL(V ) are very different groups:
In the latter group N = V × {0} is a central subgroup and in the first group it
is not. On the other hand there are situations where G cannot be build from N
and H := G/N as a semidirect product. This works if and only if there exists
a group homomorphism σ:G/N → G with σ(gN) ∈ gN for each g ∈ G . An
example where such a homomorphism does not exist is

G = C4 := {z ∈ C×: z4 = 1} and N := C2 := {z ∈ C×: z2 = 1} E G.

In this case G 6∼= N o H for any group H because then H ∼= G/N ∼= C2 , so
that the fact that G is abelian would lead to G ∼= C2 × C2 , contradicting the
existence of elements of order 4 in G .

Example I.2.5. (a) We know already the following examples of semidirect
products from Definition I.2.2. The affine group Aff(V ) of a vector space is
isomorphic to the semidirect product

Aff(V ) ∼= V oδ GL(V ), δ(g)(v) = gv.

Similarly we have

Affn(R) ∼= Rn oδ GLn(R), δ(g)(v) = gv.

We furthermore have the subgroup Ison(R), which, in view of

On(R) = {g ∈ GLn(R): (∀x ∈ Rn)‖g.x‖ = ‖x‖}

(cf. Exercise I.2.6) satisfies

Iso(Rn) ∼= Rn o On(R).

The group of euclidean motions of Rn is the subgroup

Motn(R) := Rn o SOn(R)
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of those isometries preserving orientation.
(b) For each group G we can form the semidirect product group

Goδ Aut(G), δ(ϕ)(g) = ϕ(g).

Example I.2.6. (The concrete Galilei group1 ) We consider the vector space

M := R4 ∼= R3 × R

as the space of pairs (q, t) describing events in a four-dimensional (non-relativistic)
spacetime. Here q stands for the spatial coordinate of the event and t for the
(absolute) time of the event. The set M is called Galilei spacetime. There are
three types of symmetries of this spacetime:

(1) The special Galilei transformations:

Gv: R3 × R → R3 × R, (q, t) 7→ (q + vt, t) =
(

1 v
0 1

) (
q
t

)
,

describing movements with constant velocity v .
(2) Rotations:

R3 × R → R3 × R, (q, t) 7→ (Aq, t), A ∈ SO3(R),

(3) Space translations

Tv: R3 × R → R3 × R, (q, t) 7→ (q + v, t),

and time translations

Tβ : R3 × R → R3 × R, (q, t) 7→ (q, t+ β).

All these maps are affine maps on R4 . The subgroup Γ ⊆ Aff(4,R)
generated by the maps in (1), (2) and (3) is called the proper (orthochrone)
Galilei group. The full Galilei group Γext is obtained if we add the time reversion
T (q, t) := (q,−t) and the space reflection S(q, t) := (−q, t). Both are not
contained in Γ.

Roughly stated, Galilei’s relativity principle states that the basic physical
laws of closed systems are invariant under transformations of the proper Galilei
group (see [Sch95, Sect. II.2] for more information on this perspective). It means
that Γ is the natural symmetry group of non-relativistic mechanics.

1 Galileo Galilei, 1564–1642, was an italian mathematician and philosopher. He held

professorships in Pisa and Padua, later he was mathematician and -philosopher at the court

in Florence. The Galilei group is the symmetry group of non-relativistic kinematics in three

dimensions.
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To describe the structure of the group Γ, we first observe that by (3) it
contains the subgroup Γt

∼= (R4,+) of all spacetime translations. The maps
under (1) and (2) are linear maps on R4 . They generate the group

Γ` := {(v,A):A ∈ SO3(R), v ∈ R3},

where we write (v,A) for the affine map given by (q, t) 7→ (Aq + vt, t). The
composition of two such maps is given by

(v,A).
(
(v′, A′).(q, t)

)
= (A(A′q + v′t) + vt, t) = (AA′q + (Av′ + v)t, t),

so that the product in Γ` is

(v,A)(v′, A′) = (v +Av′, AA′).

We conclude that
Γ`
∼= R3 o SO3(R)

is isomorphic to the group Mot3(R) of motions of euclidean space. We thus
obtain the description

Γ ∼= R4 o (R3 o SO3(R)) ∼= R4 o Mot3(R),

where Mot3(R) acts on R4 by (v,A).(q, t) := (Aq+ vt, t), which corresponds to
the natural embedding Aff3(R) → GL4(R) discussed in Example I.2.2.

For the extended Galilei group one easily obtains

Γext
∼= Γ o {S, T, ST,1} ∼= Γ o (C2 × C2),

because the group {S, T, ST,1} generated by S and T is a four element group
intersecting the normal subgroup Γ trivially. Therefore the description as a
semidirect product follows from the second part of Lemma I.2.3.

Example I.2.7. (The concrete Poincaré group) In the preceding example we
have viewed four-dimensional spacetime as a product of space R3 with time R .
This picture changes if one wants to incorporate special relativity. Here the
underlying spacetime is Minkowski space, which is M = R4 , endowed with the
Lorentz form

β(x, y) := x1y1 + x2y2 + x3y3 − x4y4.

The group
L := O3,1(R) ∼= O(R4, β)

is called the Lorentz group. This is the symmetry group of relativistic (classical)
mechanics.

The Lorentz group has several important subgroups:

L+ := SO3,1(R) := L ∩ SL4(R) and L↑ := {g ∈ L: g44 ≤ −1}.



I.2. Groups and geometry 23

The condition g44 ≥ 1 comes from the observation that for e4 = (0, 0, 0, 1)> we
have

−1 = β(e4, e4) = β(g.e4, g.e4) = g2
14 + g2

24 + g2
34 − g2

44,

so that g2
44 ≥ 1. Therefore either g44 ≥ 1 or g44 ≤ −1. To understand

geometrically why L↑ is a subgroup, we consider the quadratic form

q(x) := β(x, x) = x2
1 + x2

2 + x2
3 − x2

4

on R4 . Since q is invariant under L , the action of the group L on R4 preserves
the double cone

C := {x ∈ R4: q(x) ≤ 0} = {x ∈ R4: |x4| ≥ ‖(x1, x2, x3)‖}.

Let
C± := {x ∈ C:±x4 ≥ 0} = {x ∈ R4:±x4 ≥ ‖(x1, x2, x3)‖}.

Then C = C+∪C− with C+∩C− = {0} and the sets C± are both convex cones,
as follows easily from the convexity of the norm function on R3 (Exercise). Each
element g ∈ L preserves the set C \ {0} which has the two arc-components
C± \ {0} . The continuity of the map g:C \ {0} → C \ {0} now implies that we
have two possibilities. Either g.C+ = C+ or g.C+ = C− . In the first case we
have g44 ≥ 1 and in the latter case we have g44 ≤ −1.

In the physical literature one sometimes finds SO3,1(R) as the notation
for L↑+ := L+ ∩ L↑ , which is inconsistent with the standard notation for matrix
groups.

The (proper) Poincaré group is the corresponding affine group

P := R4 o L↑+.

This group is the identity component of the inhomogeneous Lorentz group R4 o
L . Some people use the name Poincaré group only for the universal covering
group P̃ of P which is isomorphic to R4 o SL2(C), as we shall see below in
Example V.4.6(3).

The topological structure of the Poincaré- and Lorentz group will be dis-
cussed after Chapter II, when we have refined information on the polar decompo-
sition obtained from the exponential function. Then we shall see that the Lorentz
group L has four arc-components

L↑+, L↓+, L↑− and L↓−,

where
L± := {g ∈ L: det g = ±1}, L↓ := {g ∈ L: g44 ≤ −1}

and
L↑± := L± ∩ L↑, L↓± := L± ∩ L↓.
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Exercises for Section I.2.

Exercise I.2.1. (a) Let β be a symmetric bilinear form on a finite-dimensional
complex vector space V . Show that there exists an orthogonal basis v1, . . . , vn

with β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = 0 for j > p . Hint: Use
induction on dimV . If β 6= 0, then there exists v1 ∈ V with β(v1, v1) = 1
(polarization identity). Now proceed with the space v⊥1 := {v ∈ V :β(v1, v) = 0} .

(b) Show that each invertible symmetric matrix B ∈ GLn(C) can be
written as B = AA> for some A ∈ GLn(C). Hint: Consider the symmetric
bilinear form β(x, y) = x>By .

Exercise I.2.2. Let β be a symmetric bilinear form on a finite-dimensional
real vector space V . Show that there exists an orthogonal basis v1, . . . , vn

with β(vj , vj) = 1 for j = 1, . . . , p , β(vj , vj) = −1 for j = p + 1, . . . , q , and
β(vj , vj) = 0 for j > q .

Exercise I.2.3. Let β be a skew-symmetric bilinear form on a finite-dimen-
sional vector space V which is non-degenerate in the sense that β(v, V ) = {0}
implies v = 0. Show that there exists a basis v1, . . . , vn , w1, . . . , wn of V with

β(vi, wj) = δij and β(vi, vj) = β(wi, wj) = 0.

Hint: Pick v1 ∈ V \ {0} and find w1 ∈ V with β(v1, w1) = 1. Then consider the
restriction β1 of β to the subspace

V1 := {v1, w1}⊥ = {x ∈ V :β(x, v1) = β(x, v2) = 0}

and argue by induction. Why is β1 non-degenerate?

Exercise I.2.4. (Metric characterization of midpoints) Let (X, ‖ · ‖) be a
normed space and x, y ∈ X distinct points. Let

M0 := {z ∈ X : ‖z − x‖ = ‖z − y‖ = 1
2‖x− y‖} and m :=

x+ y

2
.

For a subset A ⊆ X we define its diameter

δ(A) := sup{‖a− b‖ : a, b ∈ A}.

Show that:
(1) If X is a pre-Hilbert space (i.e., a vector space with a hermitian scalar

product), then M0 = {m} is a one-element set.
(2) For z ∈M0 we have ‖z −m‖ ≤ 1

2δ(M0) ≤ 1
2‖x− y‖ .

(3) For n ∈ N we define inductively:

Mn := {p ∈Mn−1 : (∀z ∈Mn−1) ‖z − p‖ ≤ 1
2δ(Mn−1)}.
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Then we have for each n ∈ N :
(a) Mn is a convex set.
(b) Mn is invariant under the point reflection sm(a) := 2m− a in m .
(c) m ∈Mn .
(d) δ(Mn) ≤ 1

2δ(Mn−1).
(4)

⋂
n∈N Mn = {m} .

Exercise I.2.5. (Isometries of normed spaces are affine maps) Let (X, ‖ · ‖)
be a normed space endowed with the metric d(x, y) := ‖x− y‖ . Show that each
isometry ϕ: (X, d) → (X, d) is an affine map by using the following steps:
(1) It suffices to assume that ϕ(0) = 0 and to show that this implies that ϕ is

a linear map.
(2) ϕ(x+y

2 ) = 1
2 (ϕ(x) + ϕ(y)) for x, y ∈ X . Hint: Exercise I.2.4.

(3) ϕ is continuous.
(4) ϕ(λx) = λϕ(x) for λ ∈ 2Z ⊆ R .
(5) ϕ(x+ y) = ϕ(x) + ϕ(y) for x, y ∈ X .
(6) ϕ(λx) = λϕ(x) for λ ∈ R .

Exercise I.2.6. Let β:V ×V → V be a symmetric bilinear form on the vector
space V and

q:V → V, v 7→ β(v, v)

the corresponding quadratic form. Then for ϕ ∈ End(V ) the following are
equivalent:
(1) (∀v ∈ V ) q(ϕ(v)) = q(v).
(2) (∀v, w ∈ V ) β(ϕ(v), ϕ(w)) = β(v, w).
Hint: Use the polarization identity β(v, w) = 1

4

(
q(v + w)− q(v − w)

)
.

Exercise I.2.7. We consider R4 = R3 × R , where the elements of R4 are
considered as space time events (q, t), q ∈ R3 , t ∈ R . On R4 we have the linear
(time) functional

∆: R4 → R, (x, t) 7→ t

and we endow ker ∆ ∼= R3 with the euclidean scalar product

β(x, y) := x1y1 + x2y2 + x3y3.

Show that

H := {g ∈ GL4(R): g. ker ∆ ⊆ ker ∆, g |ker ∆ ∈ O3(R)} ∼= R3 o (O3(R)× R×)

and
G := {g ∈ H:∆ ◦ g = ∆} ∼= R3 o O3(R).

In this sense the linear part of the Galilei group (extended by the space reflec-
tion S ) is isomorphic to the symmetry group of the triple (R4, β,∆), where ∆
represents a universal time function and β is the scalar product on ker∆. In
the relativistic picture (Example I.2.7), the time function is combined with the
scalar product in the Lorentz form.
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Exercise I.2.8. On the four-dimensional real vector space V := Herm2(C) we
consider the symmetric bilinear form β given by

β(A,B) := tr(AB)− trA trB.

Show that:
(1) The corresponding quadratic form is given by q(A) := β(A,A) = −2 detA .
(2) Show that (V, β) ∼= R3,1 by finding a basis E1, . . . , E4 of Herm2(C) with

q(a1E1 + . . .+ a4E4) = a2
1 + a2

2 + a2
3 − a2

4.

(3) For g ∈ GL2(C) and A ∈ Herm2(C) the matrix gAg∗ is hermitian and
satisfies

q(gAg∗) = |det(g)|2q(A).

(4) For g ∈ SL2(C) we define a linear map ρ(g) ∈ GL(Herm2(C)) by
ρ(g)(A) := gAg∗ . Then we obtain a homomorphism

ρ: SL2(C) → O(V, β) ∼= O3,1(R).

(5) Show that ker ρ = {±1} .

Exercise I.2.9. Let β:V × V → K be a bilinear form.
(1) Show that there exists a symmetric bilinear form β+ and a skew-symmetric
bilinear form β− with β = β+ + β− .
(2) O(V, β) = O(V, β+) ∩O(V, β−).

Exercise I.2.10. (a) Let G be a group, N ⊆ G a normal subgroup and
q:G→ G/N, g 7→ gN the quotient homomorphism. Show that:
(1) If G ∼= N oδ H for a subgroup H , then H ∼= G/N .
(2) There exists a subgroup H ⊆ G with G ∼= N oδ H if and only if there exists
a group homomorphism σ:G/N → G with q ◦ σ = idG/N .

(b) Show that
GLn(K) ∼= SLn(K) oδ K×

for a suitable homomorphism δ: K× → Aut(SLn(K)). Hint: Consider the homo-
morphism

ϕ: K× → GLn(K), λ 7→ diag(λ, 1, . . . , 1).

Exercise I.2.11. Show that Op,q(C) ∼= Op+q(C) for p, q ∈ N0 , p+ q > 0.


