Fachbereich Mathematik PD Dr. P. Neff Nada Sissouno

SS 2007 03./05.07.2007

6.Übungsblatt zur "Mathematik II für Chemiker und LaB"

Gruppenübung

Aufgabe G1 (Iterierte Integrale)

- (a) Sei $G = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2, 3 \le y \le 5\}$ und $f(x, y) = \cos(2\pi x)e^{3y}$.
 - (i) Skizzieren Sie den Bereich G und entscheiden Sie, ob $\int_G f(x,y)d(x,y)$ existiert.
 - (ii) Prüfen Sie, ob die iterierten Integrale

$$\int_{1}^{2} \left[\int_{3}^{5} f(x,y) \, dy \right] dx \quad \text{und} \quad \int_{3}^{5} \left[\int_{1}^{2} f(x,y) \, dx \right] dy$$

übereinstimmen.

(b) Sei $G=\left\{(x,y,z)\in\mathbb{R}^3:\,1\leq x\leq 4,\,-1\leq y\leq 2,\,0\leq z\leq\pi\right\}$. Berechnen Sie

$$\int_C (x^3 y \cos(z) - 3e^x y^2 + 2xy \sin(z)) d(x, y, z).$$

Aufgabe G2 (Integration eindimensional)

- (a) (i) Skizzieren Sie die Funktion $f: [-1,1] \to \mathbb{R}, f(x) = \sqrt{1-x^2}$. Wie groß ist die Fläche, die von dem Graphen der Funktion und der x-Achse eingeschlossen wird?
 - (ii) Bestimmen Sie mit Hilfe der Substitution $x = \sin(t)$ das Integral

$$\int_{-1}^{1} f(x) dx.$$

(b) Verwenden Sie die Substitutionsregel, um die folgenden Integrale zu berechnen.

(i)
$$\int_{1}^{4} e^{\sqrt{x}} dx$$
 (ii) $\int_{0}^{2} \frac{x+1}{\sqrt{x^{2}+2x+2}} dx$

Hinweis: Für die Berechnung der Integrale in (a, ii) und (b, i) ist es sinnvoll nach der Substitution noch partielle Integration anzuwenden.

Aufgabe G3 (Volumenberechnung)

Berechnen Sie das Volumen des Raumstückes, welches den beiden Zylindern $x^2 + y^2 \le 1$ und $x^2 + z^2 \le 1$ gemeinsam ist. Berechnen Sie anschließend den Schwerpunkt des Raumstückes.

Hinweis: Die Schwerpunktberechnung im Zweidimensionalen wird in Kapitel 36 in Beispiel (32) gezeigt.

Aufgabe G4 (Integrationsgebiet und Polarkoordinaten)

Bestimmen Sie den Wert des Integrals

$$\int_G (x^2 + y^2) d(x, y)$$

für den Integrationsbereich

$$G = \{(x, y) \in \mathbb{R}^2 : |x| \ge 1 \text{ oder } |y| \ge 1, x^2 + y^2 \le 2\}.$$

Skizzieren Sie dazu zuerst den Integrationsbereich G. Verwenden Sie weiterhin Polarkoordinaten.

Hinweis: Wenn Sie G skizziert haben, werden Sie sehen, dass man den Bereich durch die Differenz zweier wohlbekannter Bereiche darstellen kann. Nutzen Sie dies bei der Integration aus.

Hausübung

Aufgabe H1 (Volumen des Torus)

(4 Punkte)

Für $a, b \in \mathbb{R}$, b > a > 0, wird durch die Gleichungen

$$x = (b + r\cos v)\cos u$$
, $y = (b + r\cos v)\sin u$, $z = r\sin v$,

mit $0 \le u \le 2\pi$, $0 \le v \le 2\pi$, $0 \le r \le a$, ein sogenannter Torus T beschrieben. Berechnen Sie $\int_T d(x,y,z)$.

Aufgabe H2 (Projizierbarkeit und Integration)

(4 Punkte)

Es sei G das abgeschlossene Flächenstück im 1. Quadranten, das durch die Gerade y=2x und die Parabel $y=x^2$ begrenzt wird.

- (a) Skizzieren Sie G.
- (b) Ist G sowohl x- als auch y-projizierbar?
- (c) Berechnen Sie $\int_G \frac{1}{8}(x^2+y^2) d(x,y)$.

Aufgabe H3 (Funktionaldeterminante)

(4 Punkte)

Bestimmen Sie das Volumen des Ellipsoides

$$E := \left\{ (x, y, z) \in \mathbb{R}^3 : \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 \le 1 \right\}$$

für a,b,c>0. Wählen Sie hierzu die Koordinatentransformation $x=ar\sin\theta\cos\varphi,\,y=br\sin\theta\sin\varphi$ und $z=cr\cos\theta$. Geben Sie explizit die Funktionaldeterminante an.

Hinweis: Die Berechnung einer Ellipse mit den Halbachsen a und b im Zweidimensionalen finden Sie in Kapitel 36.