Fachbereich Mathematik PD Dr. P. Neff Nada Sissouno

SS 2007 22./24.05.2007

3.Übungsblatt zur "Mathematik II für Chemiker und LaB"

Gruppenübung

Aufgabe G1 (Lineare Abbildungen und Matrizen)

a) Sei $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ eine lineare Abbildung. Weiter sei

$$b_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad b_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad b_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 und $\varphi(b_1) = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \quad \varphi(b_2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \varphi(b_3) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$.

- (i) Bestimmen Sie das Bild des Vektors $x = (2, 0, 1)^T$, der bezüglich der Basis $\{b_1, b_2, b_3\}$ gegeben ist.
- (ii) Bestimmen Sie die Abbildungsvorschrift bezüglich der Basisvektoren $\{b_1, b_2, b_3\}$. D.h. geben Sie an, wie ein bezüglich $\{b_1, b_2, b_3\}$ gegebenes, beliebiges $x \in \mathbb{R}^3$ durch φ in den \mathbb{R}^2 abgebildet wird.
- (iii) Versuchen Sie nun wie in (ii) die Abbildungsvorschrift bezüglich der kanonischen Basis $\{e_1, e_2, e_3\}$ anzugeben.

Hinweis: Stellen Sie zuerst die Koordinatene
inheitsvektoren als Linearkombinationen der b_i dar.

b) Wir betrachten die linearen Abbildungen $\varphi:\mathbb{R}^2\to\mathbb{R}^3$ und $\psi:\mathbb{R}^3\to\mathbb{R}$ mit

$$\varphi(x_1, x_2) = (x_2, x_1, 3x_1 - x_2)^T, \qquad \psi(y_1, y_2, y_3) = y_2 + y_3 - y_1.$$

- (i) Bestimmen Sie die zu φ , ψ und $\psi \circ \varphi$ gehörigen Matrizen.
- (ii) Bestimmen Sie Kern (φ) und Bild (φ) und geben Sie jeweils eine Basis an.

Aufgabe G2 (Matrizenrechnung)

Berechnen Sie für

$$A = \left(egin{array}{ccc} 4 & -1 \ -2 & 1 \end{array}
ight), \;\; B = \left(egin{array}{ccc} 2 & 1 & -1 \end{array}
ight), \;\; C = \left(egin{array}{ccc} -1 & 2 \ 3 & 0 \ 0 & 1 \end{array}
ight) \;\; {
m und} \;\; D = \left(egin{array}{ccc} 2 & 5 & 0 \ 0 & 3 & 1 \end{array}
ight)$$

die Produkte AB, AC, BC, BA, CA, CD, DC und AC^T , falls diese definiert sind. Welche der Summen A + B, A + C und B + C können Sie bilden?

Aufgabe G3 (Spiegelungen)

Sei $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ die Spiegelung an der x_1 -Achse und $\psi: \mathbb{R}^2 \to \mathbb{R}^2$ die Spiegelung an der Winkelhalbierenden $x_2 = x_1$.

Bestimmen Sie die Matrizen der linearen Abbildungen φ , ψ , $\varphi \circ \psi$ und $\psi \circ \varphi$. Machen Sie sich geometrisch klar, was die beiden letzten Abbildungen beschreiben.

Aufgabe G4 (Determinanten)

Für die Determinante $\det A$ einer 2×2 -Matrix gilt,

$$det \, A = det egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Die Determinante einer 3×3 -Matrix läßt sich wie folgt berechnen:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Gegeben seien die Matrizen

$$A = \begin{pmatrix} 4 & 8 \\ -3 & -5 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 5 \\ 4 & 2 & 7 \end{pmatrix} \quad C = \begin{pmatrix} -1 & 3 & 4 \\ 3 & 2 & 8 \\ 2 & -6 & -8 \end{pmatrix}$$

- a) Bestimmen Sie die Determinanten der Matrizen.
- b) Bestimmen Sie Rang, Dimension des Kerns und Dimension des Bildes der Matrizen.

Hausübung

Aufgabe H1 (Lineare Abbildungen und Matrizen)

(4 Punkte)

Bestimmen Sie die Funktionsgleichungen der linearen Abbildungen, die zu den folgenden Matrizen gehören:

$$A_1:=\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight), \quad A_2:=\left(egin{array}{cc} \lambda & 0 \ 0 & \mu \end{array}
ight), \quad A_3:=rac{1}{\sqrt{2}}\left(egin{array}{cc} 1 & -1 \ 1 & 1 \end{array}
ight), \quad A_4:=\left(egin{array}{cc} 1 & \lambda \ 0 & 1 \end{array}
ight),$$

wobei λ und μ reelle Zahlen sind. Welche geometrische Bedeutung haben diese Abbildungen?

Hinweis: Mit Funktionsgleichungen sind die Gleichungen gemeint, die entstehen, wenn man auf einen beliebigen Vektor $x \in \mathbb{R}^2$ die Matrix A_k , k = 1, ..., 4 anwendet. Also:

$$f_k(x) = A_k \cdot x \qquad ext{mit } x = \left(egin{array}{c} x_1 \ x_2 \end{array}
ight)$$

Aufgabe H2 (Matrizenrechnung)

(6 Punkte)

a) Gegeben seien die Matrizen

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 2 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}.$$

Untersuchen Sie bei jeder möglichen Kombination von Matrizen, ob die Summe bzw. das Produkt definiert sind, und berechnen Sie dieses falls möglich, also:

$$A + A$$
, $A + B$, $A + C$, $B + A$, $B + B$, $B + C$, $C + A$, $C + B$, $C + C$, AA , AB , AC , BA , BB , BC , CA , CB , CC .

b) Weiter seien

$$D = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, \qquad F = \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix}.$$

Berechnen Sie auch BD, DB, CF und FC.

c) Es seien $n \in \mathbb{N}$ und $A, B \in \mathbb{R}^{n \times n}$. Gilt dann immer

$$(A+B)^2 = A^2 + 2AB + B^2?$$

(Wir schreiben auch bei Matrizen $A^2 := AA, A^3 := AAA, \ldots$)

Aufgabe H3 (Rotationsmatrizen)

(4 Punkte)

Sei $0 \le \alpha < 2\pi$ ein fester Winkel. Die Matrix

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

beschreibt eine Rotation/Drehung der Ebene um den Winkel α mit dem Ursprung als Drehzentrum.

- a) Was ergibt $A \cdot e_1$ bzw. $A \cdot e_2$? Machen Sie sich anhand einer Skizze klar, dass dies wirklich eine Rotation um den Winkel α ist.
- b) Zeigen Sie, dass diese Abbildung die euklidische Länge eines Vektors und das Skalarprodukt von je zwei Vektoren unverändert lässt. Berechnen Sie außerdem das Skalarprodukt zwischen einem Vektor $v \in \mathbb{R}^2$ und seinem rotierten Vektor $(v' = A \cdot v)$.
- c) Wie sieht die Rotationsmatrix um die z-Achse im \mathbb{R}^3 aus?