

8. Zahlenfolgen II.

36. Sei

$$a_n := \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + \dots + (n-2)\sqrt{1 + (n-1)\sqrt{1 + n}}}}}$$

Zeigen Sie $\lim a_n = 3$.

Hinweis: zeigen Sie, dass für jedes
$$n \in \mathbb{N}$$
 die Identität
$$\sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + \dots + (n-2)\sqrt{1 + (n-1)\sqrt{(1+n)^2}}}} = 3 \quad gilt.$$

Vergleichen Sie a_n und b_n .

37. Sei $\varepsilon_n \in \{-1,0,1\}$ für jedes $n \in \mathbb{N}$. Beweisen Sie die Formel

$$a_n := \varepsilon_1 \sqrt{2 + \varepsilon_2 \sqrt{2 + \varepsilon_3 \sqrt{2 + \dots + \varepsilon_n \sqrt{2}}}} = 2 \sin \left(\frac{\pi}{4} \sum_{i=1}^n \frac{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_i}{2^{i-1}} \right).$$

Bestimmen Sie den Grenzwert von a_n (abhängig on der Folge ε_n).

- Berechnen Sie das Limes $\lim_{n\to\infty} n\sin(2n!\pi e)$. Hinweis: betrachten Sie die Reihendarstellung von e.
- 39. Zeigen Sie, dass die Folge

$$a_n := \sum_{k=0}^n \binom{n}{k}^{-1}$$

gegen 2 konvergiert. Hinweis: zeigen Sie zunächst die rekursive Formel $a_{n+1} =$ $\frac{n+2}{2(n+1)}a_n + 1 \ f\ddot{u}r \ n \ge 1.$

Für $a \in \mathbb{R}$ berechnen Sie den Grenzwert

$$\lim_{n\to\infty}\frac{1}{n}\left(\left(a+\frac{1}{n}\right)^2+\left(a+\frac{2}{n}\right)^2+\cdots+\left(a+\frac{n-1}{n}\right)^2\right).$$