

7. Rekursive Folgen

Die Fibonacci–Zahlen sind durch die Rekursion

$$a_1 := 1, \ a_2 := 1, \quad a_{n+1} := a_n + a_{n-1} \text{ für } n \ge 2$$

definiert. Zeigen Sie, dass

$$a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 gilt

mit α, β die zwei Nullstellen des Polynoms $p(x) = x^2 - x - 1$. Bestimmen sie den Grenzwert von $\sqrt[n]{a_n}$.

Bestimmen Sie den Grenzwert $\lim_{n\to\infty} a_n$ für 32.

$$a_n = \frac{1}{1 + \frac{1}{1 + \cdots \frac{1}{1}}}$$

$$\underbrace{1 + \cdots \frac{1}{1}}_{n\text{-mal}}$$

33. Zeigen Sie die Konvergenz und bestimmen Sie den Grenzwert folgender. rekursiv definierter Folgen:

a)
$$a_1 = 0$$
, $a_2 = \frac{1}{2}$, $a_{n+1} = \frac{1}{3}(1 + a_n + a_{n-1}^3)$ $1 < n \in \mathbb{N}$.

b)
$$a_1 > 0$$
, $a_{n+1} = 2 + \frac{1}{a}$ $n \in \mathbb{N}$.

b)
$$a_1 > 0$$
, $a_{n+1} = 2 + \frac{1}{a_n}$ $n \in \mathbb{N}$.
c) $a_1 = \sqrt{2}$, $a_{n+1} := \sqrt{2 + a_n}$ für $n \in \mathbb{N}$.

34. Sei a_n eine Folge mit den Eigenschaften

$$0 < a_n < 1, \quad a_n(1 - a_{n+1}) > \frac{1}{4} \quad \text{für } n \in \mathbb{N}.$$

Zeigen Sie die Konvergenz dieser Folge und bestimmen Sie ihren Grenzwert.

35. Sei $0 < a_1 < 1$. Wir definieren rekursiv

$$a_{n+1} := \cos a_n$$
 für $n \ge 1$.

Zeigen Sie, dass die Folge a_n konvergent ist, und dass ihre Grenzwert die eindeutige Lösung der Gleichung $\cos x = x$ ist.