Satz über implizite Funktionen. Es sei $F: U \times V \to \mathbb{R}^q$ stetig differenzierbar, wobei $U \subset \mathbb{R}^\ell$, $V \subset \mathbb{R}^q$ offene Teilmengen sind. Weiterhin sei $(\boldsymbol{x}_0, \boldsymbol{y}_0) \in U \times V$ mit $F(\boldsymbol{x}_0, \boldsymbol{y}_0) = 0$. Wenn die Matrix

$$\frac{\partial F}{\partial \boldsymbol{y}}(\boldsymbol{x}_0, \boldsymbol{y}_0) = \left(\frac{\partial F_j}{\partial y_k}(\boldsymbol{x}_0, \boldsymbol{y}_0)\right)_{\substack{1 \le j \le q \\ 1 \le k \le q}}$$

invertierbar ist, gibt es Umgebungen $U' \subset U$ von x_0 und $V' \subset V$ von y_0 und genau eine stetig differenzierbare Abbildung $\varphi: U' \to V'$ mit $F(x, \varphi(x)) = 0$ für alle $x \in U'$. Es gilt dann

$$D\varphi_{\boldsymbol{x}_0} = -\left(\frac{\partial F}{\partial \boldsymbol{y}}(\boldsymbol{x}_0, \boldsymbol{y}_0)\right)^{-1} \frac{\partial F}{\partial \boldsymbol{x}}(\boldsymbol{x}_0, \boldsymbol{y}_0)$$

In den meisten Anwendungen ist q=1; es wird also eine reellwertige Funktion φ gesucht welche die Gleichung $F(x_1,\ldots,x_\ell,\varphi(x_1,\ldots,x_\ell))=0$ löst. Die folgende Aussage ist eine Folgerung aus dem vorhergehenden Satz: Falls die Gleichung $\frac{\partial F}{\partial y}(x_0,y_0)\neq 0$ erfüllt ist existieren Umgebungen $U'\subset U$ von x_0 und $B_\epsilon(y_0)\subset V$ von y_0 sowie genau eine stetig differenzierbare reellwertige Funktion $\varphi:U'\to B_\epsilon(y_0)\subset \mathbb{R}$ mit $F(x,\varphi(x))=0$. Es gilt ferner

$$\frac{\partial \varphi}{\partial x_j}(\boldsymbol{x}_0, y_0) = -\frac{\frac{\partial F}{\partial x_j}(\boldsymbol{x}_0, y_0)}{\frac{\partial F}{\partial y}(\boldsymbol{x}_0, y_0)} \quad j = 1, \dots, \ell$$

Lokale Extrema. Eine auf einer offenen Menge $U \subset E$ definierte Funktion $f: U \to \mathbb{R}$ hat $a \in U$ ein *lokales Minimum* bzw. *lokales Maximum* falls es eine offene Kugel $B_{\epsilon(a)} \subset U$ um a gibt, so dass $f(x) \geq f(a)$ (bzw. $f(x) \leq f(a)$) für alle $x \in B_{\epsilon}(a)$ gilt.

Notwendige Bedingung für eine Extremstelle. Es sei $f: U \to \mathbb{R}$ eine C^1 -Funktion. Ist $a \in U$ eine lokale Extremstelle von f so folgt $Df_a = 0$ (oder grad f(a) = 0).

Diese Bedingung ist i.A. nicht hinreichend für ein lokales Extremum von f.

Extremstellentest mit der Hesse-Matrix Sei $f:U\to\mathbb{R}$ eine C^2 -Funktion. Die Hesse-Matrix von f in $a\in U$ is die $m\times m$ Matrix

$$H_f(a) := \left(\frac{\partial^2 f}{\partial x_i \partial x_k}(a)\right)$$

Aus dem Satz von Schwarz folgt, dass diese Matrix symmetrisch ist. Es macht also Sinn von der Signatur von $H_f(a)$ zu sprechen.

Satz. Sei $f:U\to\mathbb{R}$ eine C^2 -Funktion $a\in U$ mit $Df_a=0$. Angenommen, die Hesse-Matrix $F_f(a)$ ist invertierbar. Dann gilt:

- $H_f(a)$ ist positiv definit (alle Eigenwerte sind positiv) $\implies f$ besitzt in a ein lokales Minimum.
- $H_f(a)$ ist negativ definit (alle Eigenwerte sind negativ) $\implies f$ besitzt in a ein lokales Maximum.
- $H_f(a)$ hat so wohl negative als auch positive Eigenwerte $\implies f$ besitzt in a kein Extremum (a is ein Sattelpunkt)

Spezialfälle von Berechnung der Extrema einer Funktion.

Globales Maximum oder Minimum auf einer kompakten Teilmenge K: Lokale Extrema auf K° + Extrema auf Rand(K) (K° = Menge der inneren Punkte von $K = \{x \in K : \exists \epsilon > 0 \text{ mit } B_{\epsilon}(x) \subset K\}$.)

Extrema mit Nebenbedingungen: Lagrange-Multiplikatorregel

Seien $f: U \to \mathbb{R}$ $g: U \to \mathbb{R}$ zwei Abbildungen. Man sagt, dass f in a ein lokales Extremum (lok. Min. o. lok. Max) unter der Nebenbedingung g=0 hat falls g(a)=0 gilt und es eine offene Kugel $B_{\epsilon}(a) \subset U$ gibt, so dass $f(x) \geq f(a)$ (bzw. $f(x) \leq f(a)$) für alle $x \in B_{\epsilon}(a) \cap \{x \in U : g(x) = 0\}$ gilt.

Satz. Es seien $f, g: U \to \mathbb{R}$ zwei C^1 -Funktionen. Ist a ein lokales Extremum von f unter der Nebenbedingung g = 0 und gilt $\operatorname{grad} g(a) \neq 0$, so gibt es $\lambda \in \mathbb{R}$ (ein sog. Lagrange-Multiplikator), so dass

grad
$$f(a) = \lambda \cdot \operatorname{grad} q(a)$$
 gilt