Höhere partielle Ableitungen. Ist eine Funktion $f:U\to\mathbb{R}$ partiell differenzierbar, so ist $f_{x_j}:=\frac{\partial f}{\partial x_j}$ wieder eine \mathbb{R} -wertige Funktion $U\to\mathbb{R}$. Also läßt sich die Frage nach der partiellen Differenzierbarkeit von $\frac{\partial f}{\partial x_j}$ stellen. Falls $\frac{\partial f}{\partial x_j}:U\to\mathbb{R}$ partiell, z.B. nach x_k differenzierbar ist, so schreibt man

$$\frac{\partial^2 f}{\partial x_i \partial x_k}$$

für diese zweite partielle Ableitung. Dieser Vorgang kann beliebig iteriert werden. Man schreibt dan für die k-te partielle Ableitung von f nach x_{j_1}, \dots, x_{j_k} (abgeleitet in dieser Reihenfolge)

$$\frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}$$

$$C^k(U) := \{ f : U \to \mathbb{R} : f \text{ } k\text{-fach } \underline{\text{stetig}} \text{ partial } differential \} \}$$

Die Stetigkeit der ersten partiellen Ableitungen hat die folgende Konsequenz:

Satz. Existieren alle partielle Ableitungen $\frac{\partial f_j}{\partial x_k}$ und sind stetig [in x] so ist $f = (f_1, \dots, f_n)$ (total) differenzierbar [in x]. Im Allgemeinen gilt die Umkehrung nicht.

Bei höheren partiellen Ableitungen ist die Reihenfolge der Differenziation wichtig:

Beispiel.
$$f(x_1, x_2) = \begin{cases} x_1 x_2 \frac{x_1^2 - x_2^2}{x_1^2 + x_2^2} & \text{für } (x_1, x_2) \neq (0, 0) \\ 0 & \text{für } (x_1, x_2) = (0, 0) \end{cases}$$
 $\frac{\partial^2 f}{\partial x_1 \partial x_2}(0, 0) = -1, \quad \frac{\partial^2 f}{\partial x_2 \partial x_1}(0, 0) = 1$

Satz von Schwarz. Sei $f \in C^k(U)$. Dann hängt

$$\frac{\partial^k f}{\partial x_{j_1} \partial x_{j_2} \cdots \partial x_{j_k}}$$

nicht von der Reihenfolge der partiellen Differenziation ab.

Die beiden folgenden Sätze ergeben sich unmittelbar aus den entsprechenden Aussagen in einer Variable und der Kettenregel:

Mittelwertsatz für reellwertige Funktionen. Sei $f: U \to \mathbb{R}$ (total) differenzierbar, $U \subset \mathbb{R}^m$ offen. Liegt die Verbindungsstrecke zwischen x und x + h in U, so gilt

$$f(x+h) - f(x) = Df_{x+\xi h} \cdot h$$
 für ein $\xi \in [0,1]$

Satz von Taylor. Sei $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^m$ offen und $f \in C^{n+1}(U)$. Liegt die Verbindungsstrecke zwischen x und x + h in U, so gilt

$$f(x+h) = \sum_{k=0}^{n} \frac{1}{k!} \left(h_1 \frac{\partial}{\partial x_1} + \dots + h_m \frac{\partial}{\partial x_1} \right)^k f(x) + \frac{1}{(n+1)!} \left(h_1 \frac{\partial}{\partial x_1} + \dots + h_m \frac{\partial}{\partial x_1} \right)^{n+1} f(x+\xi h)$$

$$= \sum_{K=0}^{n} \frac{1}{K!} \sum_{\sum k_j = K} {K \choose k_1, \dots, k_m} h_1^{k_1} \dots h_m^{k_m} \frac{\partial^K f}{\partial x_1^{k_1} \dots \partial x_m^{k_m}} (x) + \frac{1}{(n+1)!} \sum_{\sum k_j = n+1} {n+1 \choose k_1, \dots, k_m} h_1^{k_1} \dots h_m^{k_m} \frac{\partial^{n+1} f}{\partial x_1^{k_1} \dots \partial x_m^{k_m}} (x+\xi h)$$

für ein geeignetes $\xi \in [0,1]$. Hierbei ist $\binom{K}{k_1,\ldots,k_m} = \frac{K!}{k_1!k_2!\cdots k_m!}$.

Insbesondere gilt für n = 2

$$f(x+h) = f(x) + Df_x \cdot h + \frac{1}{2}h^t \cdot \left(\frac{\partial^2 f}{\partial x \cdot \partial x_h}(x)\right) \cdot h + o(\|h\|^2)$$

Implizite Funktionen sind, grob gesagt, Zuordnungen, die nicht explizit durch eine Zuordnugsvorschrift $f: x \mapsto y = f(x)$ gegeben sind, sondern implizit aus einer Gleichung f(x,y) = c bestimmt werden müssen (falls dies überhaupt möglich ist). Einige Vorbemerkungen:

Der Geschwindigkeitsvektor einer Kurve $\gamma: \dot{\gamma}(t) := \begin{pmatrix} \gamma_1'(t) \\ \vdots \\ \gamma_m'(t) \end{pmatrix}$.

Der Gradient einer reellwertigen Funktion: grad $f(x) := (Df_x)^T$.

Sei $f: U \to \mathbb{R}$ eine differenzierbare Funktion. Dann steht der Gradient senkrecht auf den Niveauflächen: Sei $N_c := \{x \in U: f(x) = c\}$ und $\gamma: (-r,r) \to N_c$ eine beliebige differenzierbare Kurve. Die Kettenregel, angewendet auf $f \circ \gamma = c$ ergibt dann die Identität $Df_{\gamma(t)} \cdot \dot{\gamma}(t) = 0$, d.h., grad f und $\dot{\gamma}$ sind orthogonal bezüglich des kanonischen Skalarproduktes in \mathbb{R}^m .