Prof. Dr. Fels Martin Fuchssteiner

SS 2007

13. August 2007

Mathe II

6. Übung mit Lösungshinweisen

Gruppenübungen

(G 1) Konvergenz

- (a) Es sei $(x_n)_{n\in\mathbb{N}}$ eine konvergente Folge im normierten Raum V und $(x_k)_{k\in\mathbb{N}}$ eine Teilfolge von $(x_n)_{n\in\mathbb{N}}$. Konvergiert auch die Teilfolge $(x_{n_k})_{k\in\mathbb{N}}$?
- (b) Es sei sei $(x_n)_{n\in\mathbb{N}}$ eine Folge im normierten Raum V mit konvergenter Teilfolge $(x_k)_{k\in\mathbb{N}}$. Konvergiert dann auch die Folge $(x_n)_{n\in\mathbb{N}}$?

LÖSUNG:

- (a) Da die Folge $(x_n)_{n\in\mathbb{N}}$ in V konvergiert, gibt es einen Punkt $x\in V$ (den Grenzwert), so daß folgendes gilt: Für alle $\epsilon>0$ exisiert ein N_{ϵ} mit $\|x_n-x\|<\epsilon$ für alle $n>N_{\epsilon}$. Dies gilt auch für $n_k>N_{\epsilon}$. Somit exisiert ein $K_{\epsilon}\in\mathbb{N}$ mit $n_k>N_{\epsilon}$ für alle $k>K_{\epsilon}$. Es folgt $\|x_{n_k}-x\|<\epsilon$ für alle $k>K_{\epsilon}$, d.h. die Teilfolge $(x_k)_{k\in\mathbb{N}}$ konvergiert auch gegen x.
- (b) Nein, wie das Gegenbeispiel $x_n = (-1)^n$ mit der Teilfolge x_{2n} zeigt.

(G 2) Normen

Es sei $\|\cdot\|_p : \mathbb{R}^n \to \mathbb{R}$ die durch $\|\vec{x}\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$ gegebene **p-Norm** $(p \ge 1)$. Für $p = \infty$ setzt man $\|\vec{x}\|_{\infty} = \max_{1 \le i \le n} \{|x_i|\}$.

- (a) Skizziere die Einheitskugeln bezüglich der 1-Norm, der 2-Norm und der Norm $\|\cdot\|_{\infty}$.
- (b) Beweisen Sie, daß die obigen 3 Normen äquivalent sind.

LÖSUNG:

- (a)
- (b) Es gilt $\|\vec{x}\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p} \le \sqrt[p]{\sum_{i=1}^n \|\vec{x}\|_\infty^p} \le \sqrt[p]{n} \|\vec{x}\|_\infty$ und $\|\vec{x}\|_\infty^p \le \sum_{i=1}^n |x_i|^p$ bzw. $\|\vec{x}\|_\infty \le \|\vec{x}\|_p$. Somit sind alle p-Normen zur Maximumsnorm äquivalent. Insbesondere sind damit auch alle p-Normen äquivalent.

(G 3)

Wir betrachten die Potenzreihe $\sum_{n} x^{n}$.

- (a) Bestimmen Sie den Konvergenzradius.
- (b) Konvergiert die Reihe punktweise auf dem Intervall [0, 1]? Konvergiert sie dort gleichmäßig?
- (c) Konvergiert die Reihe punktweise auf dem Intervall $[0, \frac{1}{2}]$? Konvergiert sie dort gleichmäßig?

LÖSUNG:

- (a) R = 1.
- (b) Da die Reihe für x = 1 divergiert, konvergiert sie auf dem Intervall [0, 1] weder punktweise noch gleichmäßig.
- (c) Die geometrische Reihe hat auf dem offenen Intervall (-1,1) die Funktion $\frac{1}{1-x}$ als Grenzwert. Da die Reihe für $x=\frac{3}{4}>\frac{1}{2}$ absolut konvergiert, Es gilt

$$\left| \sum_{n=0}^{N} x^n - \frac{1}{1-x} \right| = \left| \sum_{n=N}^{\infty} x^n \right| \le \sum_{n=N}^{\infty} \left(\frac{3}{4} \right)^n.$$

Da die Reihe für $x = \frac{3}{4} > \frac{1}{2}$ absolut konvergiert, konvergiert sie auf dem Intervall $[0, \frac{1}{2}]$ sogar gleichmäßig (und somit auch punktweise).

(G 4) Punktweise und gleichmäßige Konvergenz

Bestimmen Sie für die Funktionenfolgen $(f_k)_{k\in\mathbb{N}}$ und $(g_k)_{k\in\mathbb{N}}$ jeweils den Grenzwert bezüglich punktweiser Konvergenz und entscheiden Sie, ob sie gleichmäßig konvergieren:

(a)
$$f_k \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto \sqrt{x^2 + \frac{1}{k}}$$
 (b) $g_k \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto \sum_{j=0}^k \frac{1}{j!} x^j$

LÖSUNG:

(a) Der punktweise Limes der Funktionenfolge $(f_n)_n$ kann wie folgt bestimmt werden:

$$\lim_{k \to \infty} \sqrt{x^2 + \frac{1}{k}} = \sqrt{x^2} = |x|.$$

Als Grenzwert erhalten wir also die Funktion $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|. Nun schätzen wir den Abstand von $|f_k(x) - f(x)|$ unabhängig von x von oben ab und zeigen so, daß die Folge auch gleichmäßig gegen f konvergiert:

$$\left| \sqrt{x^2 + \frac{1}{k}} - \sqrt{x^2} \right| = \left| \frac{\left(\sqrt{x^2 + \frac{1}{k}} - \sqrt{x^2} \right) \cdot \left(\sqrt{x^2 + \frac{1}{k}} + \sqrt{x^2} \right)}{\left(\sqrt{x^2 + \frac{1}{k}} + \sqrt{x^2} \right)} \right|$$

$$= \left| \frac{x^2 + \frac{1}{k} - x^2}{\left(\sqrt{x^2 + \frac{1}{k}} + \sqrt{x^2} \right)} \right| \le \frac{\frac{1}{k}}{\frac{1}{\sqrt{k}}} = \frac{1}{\sqrt{k}}.$$

Sei also $\varepsilon > 0$. Wir müssen zeigen, daß es ein N gibt, so daß $|f_k(x) - f(x)| < \varepsilon$ für alle k > N. Da aber $\lim_{k \to \infty} \frac{1}{\sqrt{k}} = 0$, existiert ein N mit $\frac{1}{\sqrt{N}} < \varepsilon$, also gilt $|f_k(x) - f(x)| < \varepsilon$ für alle k > N.

(b) Der Grenzwert der zweiten Folge entspricht gerade der Exponentialfunktion:

$$\lim_{k \to \infty} g_k = \lim_{k \to \infty} \sum_{j=0}^k \frac{1}{j!} x^j = e^x.$$

Diese Folge ist nicht gleichmäßig konvergent auf \mathbb{R} . Wieder betrachten wir $|g_k(x) - g(x)|$, nur schätzen wir es diesmal von unten ab: Sei x > 0. Dann gilt

$$|e^x - \sum_{j=0}^k \frac{1}{j!} x^j| = |\sum_{j=k+1}^k \frac{1}{j!} x^j| = \sum_{j=k+1}^k \frac{1}{j!} x^j \ge \frac{1}{(k+1)!} x^{k+1}.$$

Für $x = \sqrt[k+1]{(k+1)!}$ gilt also $|e^x - h_k(x)| \ge 1$, d.h. für $\varepsilon = \frac{1}{2}$ gibt es kein $k \in \mathbb{N}$ so daß $|e^x - h_k(x)| \le \varepsilon$ für alle $x \in \mathbb{R}$.

(G 5) Punktweise/Gleichmäßige Konvergenz

Wir betrachten eine Funktionenfolge $(f_n)_{n\in\mathbb{N}}$:

$$f_n: \mathbb{R} \to \mathbb{R}, \quad f_n(x) := \left\{ \begin{array}{cc} x - n & \text{falls} & n \le x \le n+1 \\ n + 2 - x & \text{falls} & n+1 \le x \le n+2 \\ 0 & \text{sonst} \end{array} \right.$$

- (a) Skizzieren Sie die ersten Folgeglieder.
- (b) Konvergiert die Folge f_n punktweise oder sogar gleichmäßig?

LÖSUNG:

- (a)
- (b) Die Folge konvergiert punktweise gegen die Nullfunktion: Für alle $x \in \mathbb{R}$ gibt es eine natürliche Zahl N > x; es folgt $f_k(x) = 0$ für alle k > N. Da $||f_n||_{\infty} = 1$ für alle $n \in \mathbb{N}$ aber $||0||_{\infty} = 0$ gilt, kann die Folge f_n nicht gegen die Nullfolge konvergieren.

Hausübungen

(A 17) Funktionenräume (10 Punkte)

Es seien $a, b \in \mathbb{R}$ reelle Zahlen, so daß a < b gilt. Auf dem Vektorraum $C([a, b], \mathbb{R})$ der stetigen reellwertigen Funktionen auf [a, b] definieren wir eine Abbildung $\|\cdot\|_{\infty} : C([a, b], \mathbb{R}) \to \mathbb{R}$ durch $\|f\|_{\infty} = \sup\{|f(x)| \mid x \in [a, b]\}.$

- (a) Warum existiert das Supremum in obiger Definition?
- (b) Zeigen Sie, daß $\|\cdot\|_{\infty}$ eine Norm ist.
- (c) Es sei P die Menge aller Polynomfunktionen auf [a, b]. Ist P ein Untervektorraum von $C([a, b], \mathbb{R})$?
- (d) Beweisen Sie, daß die Einschränkung exp $|_{[a,b]}$ nicht in P liegt.
- (e) Ist P abgeschlossen in $C([a, b], \mathbb{R})$?

Hinweis: Benutze (d)

LÖSUNG:

- (a) Weil stetige Funktionen auf abgeschlossenen beschränkten (=kompakten) Mengen ihr Maximum annehmen. Man hätte hier also auch max statt sup schreiben dürfen.
- (b) Siehe Vorlesung Analysis I.
- (c) Ja, natürlich.
- (d) Da es für jedes Polynom f eine höhere Ableitung f^n gibt, welche die Nullfunktion ist, aber $\exp' = \exp$ gilt, kann die Exponentialfunktion auf keinem Intervall [a, b] mit a < b mit einem Polynom übereinstimmen.
- (e) Da $\exp|_{[a,b]}$ ein Grenzwert einer Folge von Polynomfunktionen (nämlich der Partialsummen) ist, welcher nicht in P liegt, kann P nicht abgeschlossen sein.

(A 18) (10 Punkte)

(a) Gegeben sei die Potenzreihe

$$\sum_{n=0}^{\infty} (-1)^n n 2^n \cdot (x-2)^n .$$

- (i) Bestimmen Sie den Konvergenzradius der Potenzreihe.
- (ii) Bestimmen Sie alle $x \in \mathbb{R}$, für die die Potenzreihe konvergiert.
- (b) Zeigen Sie, daß die folgende Funktionenreihe

$$\sum_{n=0}^{\infty} \left[x^n (1-x) \right] \quad , \ x \in \mathbb{R},$$

auf dem Intervall [0, 1] punktweise, aber nicht gleichmäßig konvergiert.

LÖSUNG:

(a) (i) Berechnung des Konvergenzradius R:

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|(-1)^n n 2^n|} = \limsup_{n \to \infty} \underbrace{\sqrt[n]{n}}_{n \to \infty} \sqrt[n]{2^n} = 1 \cdot 2$$

Wir erhalten $R = \frac{1}{2}$.

(ii) Aus Aufgabenteil (i) folgt, daß die Potenzreihe für $x \in (2 - \frac{1}{2}, 2 + \frac{1}{2})$ konvergiert. Untersuchung der Randstelle x = 1.5:

$$\sum_{n=0}^{\infty} (-1)^n \cdot 2^n \cdot n \cdot (1.5 - 2)^n = \sum_{n=0}^{\infty} (-1)^n \cdot 2^n \cdot n \cdot \left(-\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} n$$

existiert nicht.

Randstelle x = 2.5:

$$\sum_{n=0}^{\infty} (-1)^n \cdot 2^n \cdot n \cdot (2.5 - 2)^n = \sum_{n=0}^{\infty} (-1)^n \cdot 2^n \cdot n \cdot \left(\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} (-1)^n n$$

existiert nicht.

Fazit: Die Potenzreihe konvergiert nur für $x \in (1.5, 2.5)$.

(b) Für x < 1 ist $\sum_{n=0}^{\infty} x^n \cdot (1-x) = (1-x) \sum_{n=0}^{\infty} x^n = (1-x) \cdot \frac{1}{1-x} = 1$ (geometrische Reihe). Für x = 1 erhalten wir $\sum_{n=0}^{\infty} 1^n \cdot (1-1) = 0$. Die Reihe konvergiert demnach punktweise gegen die Funktion

$$f(x) = \begin{cases} 1 & \text{falls } x < 1, \\ 0 & \text{falls } x = 1. \end{cases}$$

Die Konvergenz kann nicht gleichmäßig sein, da die Grenzfunktion unstetig ist. (vgl. Satz über gleichmäßige Konvergenz stetiger Funktionen.)

(A 19) Punktweise/Gleichmäßige Konvergenz (10 Punkte)

Wir betrachten die Funktionenreihe

$$\sum_{n=1}^{\infty} f_n \text{ mit } f_n(x) = \frac{x^{n-1}}{n}.$$

- (a) Zeigen Sie, dass diese Reihe für alle $x \in (-1,1)$ konvergiert.
- (b) Beweisen Sie, dass für jedes $\lambda \in (0,1)$ die Konvergenz auf dem Intervall $[-\lambda, \lambda]$ sogar gleichmäßig ist.

LÖSUNG:

(a) Wir untersuchen $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}$ mit dem Wurzelkriterium auf Konvergenz; betrachten also

1. Fall:
$$x = 0 \Rightarrow a_n = 0 \to 0 \quad (n \to \infty)$$

2. Fall: $x \neq 0 \Rightarrow a_n = \frac{\sqrt[n]{|x|^n}}{\sqrt[n]{n}} = \frac{|x|}{\sqrt[n]{|x|}} \to |x| \quad (n \to \infty)$
Damit ist $\lim_{n \to \infty} a_n < 1$ für alle $x \in (-1, 1)$, also die Reihe konvergent.

(b) Sei $\lambda \in (0,1)$. Für alle $x \in [-\lambda, \lambda]$ gilt

$$\sum_{n=1}^{\infty} \left| \frac{x^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{|x|^{n-1}}{n} \le \sum_{n=1}^{\infty} \frac{\lambda^{n-1}}{n}$$

und diese Summe ist nach (a) konvergent. Also konvergiert die Reihe auf $[-\lambda,\lambda]$ gleichmäßig.