Blatt 1

Übungen zur Vorlesung Optimierung bei partiellen Differentialgleichungen

G1. Berechnung des Gradienten der reduzierten Zielfunktion

Wir betrachten das endlichdimensionale Optimalsteuerungsproblem

$$\min_{y \in \mathbb{R}^n, u \in \mathbb{R}^q} f(y, u) \quad \text{u.d.N.} \quad E(y, u) = 0$$

mit C^1 -Funktionen $f:\mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}$, $E:\mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}^n$. Es sei bekannt, dass die Gleichung E(y,u)=0 für jedes $u\in\mathbb{R}^q$ genau eine zugehörige Lösung $y(u)\in\mathbb{R}^n$ besitzt. Das Problem ist dann offensichtlich äquivalent zu dem reduzierten reduzierten reduzierten

$$\min_{u \in \mathbb{R}^q} f^r(u) \quad \text{mit} \quad f^r(u) := f(y(u), u).$$

Ferner sei $E_y'(y(u), u)$ für jedes $u \in \mathbb{R}^q$ invertierbar.

- a) Differenzieren Sie die Gleichung E(y(u), u) = 0 (total) nach u und berechnen Sie daraus die Ableitung y'(u) der Abbildung $u \mapsto y(u)$.
- b) Leiten Sie, ähnlich wie in a), zu gegebenem $v \in \mathbb{R}^q$ ein lineares Gleichungssystem zur Berechnung der Richtungsableitung (Sensitivität) $d_v y(u) := y'(u)v$ her. Nutzen Sie $d_v y(u)$, um die Richtungsableitung $(f^r)'(u)v$ zu bestimmen.
- c) Zeigen Sie

$$\nabla f^{r}(u) = (f^{r})'(u)^{T} = y'(u)^{T} \nabla_{y} f(y(u), u) + \nabla_{u} f(y(u), u)$$
$$= E'_{u}(y(u), u)^{T} p + \nabla_{u} f(y(u), u),$$

wobei der adjungierte Zustand $p = p(u) \in \mathbb{R}^n$ die adjungierte Gleichung löst

$$E'_y(y(u), u)^T p = -\nabla_y f(y(u), u).$$

d) Vergleichen Sie den Aufwand der Berechnung von $\nabla f^r(u)$ bei Verwendung der *Sensitivitätsmethode* aus b) und der *Adjungiertenmethode* aus c).

G2. Funktionalanalytische Grundlagen

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Betrachte den Vektorraum stetiger Funktionen

$$C(\bar{\Omega}) := \{v : \bar{\Omega} \to \mathbb{R}; v \text{ stetig}\}.$$

Definiere für $u, v \in C(\bar{\Omega})$

$$||u||_{L^{\infty}} := \sup_{x \in \bar{\Omega}} |u(x)|, \quad (u, v)_{L^2} = \int_{\Omega} u(x)v(x) dx, \quad ||u||_{L^2} := \sqrt{(u, u)_{L^2}}.$$

- a) Sei X der Banachraum $(C(\bar{\Omega}), \|\cdot\|_{L^{\infty}})$. Entscheiden Sie, welche der folgenden linearen Funktionale in X^* liegen und schätzen Sie gegebenenfalls deren X^* -Norm ab:
 - $u_1^*: u \in X \mapsto u(y)$ mit festem $y \in \Omega$,

- $u_2^*: u \in X \mapsto \int_{\Omega} v(x)u(x) dx$ mit festem $v \in C(\bar{\Omega})$,
- $u_3^*: u \in X \mapsto \int_{\Omega \setminus \{y\}} \frac{u(x)}{\|x-y\|_2} dx$ mit festem $y \in \Omega$.
- b) Zeigen Sie, dass eine Konstante C>0 existiert mit $||u||_{L^2}\leq C||u||_{L^\infty}$ für alle $u\in C(\bar\Omega)$.
- c) Sei H der Prä-Hilbertraum aller Funktionen aus $C(\bar{\Omega})$ mit dem Skalarprodukt $(\cdot,\cdot)_{L^2}$. Zeigen Sie, dass H kein Hilbertraum ist. Welche der Funktionale aus a) sind beschränkt auf H?

G3. Existenz von Minima

Haben die folgenden Optimierungsprobleme Lösungen? Begründen Sie Ihre Antwort.

a)
$$\min_{u \in C([0,1])} \int_0^1 u(x)^2 dx$$
 s.t. $u(1) = 1$.

b)
$$\min_{u \in L^2((0,1))} - \int_0^1 x u(x)^2 dx$$
 s.t. $||u||_{L^2} \le 1$.

Hierbei sei $L^2((0,1))$ der übliche Lebesgue-Raum, also die Vervollständigung des Prä-Hilbertraums $(C([0,1]),(\cdot,\cdot)_{L^2})$.

H1. Rund um Differentialoperatoren

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Sei H der Prä-Hilbertraum aller Funktionen aus $C(\bar{\Omega})$ mit dem Skalarprodukt

$$(u,v)_{L^2} := \int_{\Omega} u(x)v(x) dx.$$

Weiter sei V der Prä-Hilbertraum aller Funktionen aus $C^1(\bar{\Omega})$ mit dem Skalarprodukt

$$(u,v)_{H^1} := \int_{\Omega} (u(x)v(x) + \nabla u(x)^T \nabla v(x)) dx.$$

a) Zeigen Sie, dass die Abbildung

$$u \in V \mapsto u_{x_i} \in H, \quad 1 \le i \le n,$$

linear und stetig ist.

b) Finden Sie Funktionen $u_k \in C^2(\bar{\Omega}), k \in \mathbb{N}$, mit

$$||u_k||_{H^1} \le 1, \quad ||\Delta u_k||_{L^2} \ge k.$$

c) Zeigen Sie, dass die Abbildung

$$(u,v) \in V^2 \mapsto \int_{\Omega} \nabla u(x)^T \nabla v(x) \, dx \in \mathbb{R}$$

bilinear und stetig ist.

d) Rufen Sie sich den Gaußschen Integralsatz in Erinnerung und zeigen Sie: Hat Ω hinreichend glatten Rand, so gilt für alle $u \in C^2(\bar{\Omega}), v \in C^1(\bar{\Omega}), v|_{\partial\Omega} = 0$:

$$\int_{\Omega} -\Delta u(x)v(x) dx = \int_{\Omega} \nabla u(x)^{T} \nabla v(x) dx.$$

e) Zeigen Sie, nochmals mit dem Gaußschen Integralsatz: Ist $y \in C^2(\bar{\Omega})$ Lösung von

$$-\Delta y = g$$
 auf Ω , $\frac{\partial y}{\partial \nu} = h$ auf $\partial \Omega$,

mit Funktionen $g\in L^2(\Omega)$ und $h\in L^2(\partial\Omega)$, dann gilt:

$$\int_{\Omega} \nabla y(x)^T \nabla v(x) \, dx = \int_{\Omega} g(x) v(x) \, dx + \int_{\partial \Omega} h(x) v(x) \, dS(x) \quad \forall \, v \in C^1(\bar{\Omega}).$$

Abgabetermin für Hausaufgaben: Mittwoch, 09.05.07 in der Übung.