4. Übung Lineare Algebra II für M

- Lösungsvorschläge -

Hausübungen

(H6)

a) Ist $p \in \mathbb{R}^{\binom{n}{r}}$ ein Punkt im Schnitt aller Flächen, so erfüllt er alle Gleichungen. Jede dieser Gleichung besteht aus Summanden, die jeweils aus dem Produkt von 2 Koordinaten von p bestehen. Setzen wir λp anstatt p ein, erhalten wir in jedem Summanden den Faktor λ^2 , welcher sich rauskürzt, da $\lambda \neq 0$ ist.

Somit liegt auch λp im Schnitt aller Flächen und dieser Schnitt ist ein Kegel.

b) Das Chirotop legt fest, in welchem verallgemeinerten Orthanten des $\mathbb{R}^{\binom{n}{r}}$ der Punkt p liegt.

(H7)

Wir betrachten zuerst die Gerade durch die Punkte p_1 und p_2 . Das Chirotop liefert uns dazu folgende Informationen:

$$[1,2,3] = +1$$

$$[1,2,4] = +1$$

$$[1,2,5] = +1$$

$$[1,2,6] = +1$$

$$[1,2,7] = +1$$

D.h. die Punkte p_3, \ldots, p_7 liegen alle auf einer Seite der Geraden durch p_1 und p_2 . Damit ist diese Gerade eine äussere Gerade, d.h. die Punkte p_1 und p_2 sind Eckpunkte.

Wir betrachten nun die Gerade durch p_1 und p_3 . Wir erhalten

$$[1,3,2] = -[1,2,3] = -1$$

 $[1,3,4] = +1.$

Damit liegen die Punke p_2 und p_4 auf unterschiedlichen Seiten der Gerade durch p_1 und p_3 , d.h. p_3 kann kein Eckpunkt sein.

Stellen wir diese Relationen für alle $\binom{7}{2} = 21$ möglichen Kombinationen auf, so stellen wir fest, das die Punkte p_1, p_2, p_4, p_6 und p_7 Eckpunkte sind.

1