Fachbereich Mathematik Prof. J. Bokowski Dennis Frisch, Nicole Nowak

9. Übungsblatt zur "Linearen Algebra II"

Gruppenübung

Aufgabe G14 (Skalarprodukt)

Zeigen Sie, dass es sich bei der in der Vorlesung angegebenen Abbildung für den Vektorraum der reellen Polynome vom Höchstgrad 3 (P_3) um ein Skalarprodukt handelt. Die Abbildung ist folgendermaßen definiert:

$$\langle .,. \rangle := P_3 \times P_3 \to \mathbb{R}, \quad \langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$$

Aufgabe G15 (Dreiecksungleichung)

Beweisen Sie die Dreiecksungleichung:

Für alle v, w aus einem euklidischen oder unitären Vektorraum gilt:

$$||v + w|| \le ||v|| + ||w||$$

wobei, wie in der Vorlesung definiert, gilt $||v|| := \sqrt{\langle v, v \rangle}$.

Aufgabe G16 (Orthogonalsysteme)

Zeigen Sie, dass jedes Orthogonalsystem (also auch jedes Orthonormalsystem) linear unabhängig ist.

Aufgabe G17 (Orthogonale Gruppe)

Zeigen Sie, dass die orthogonalen bzw. unitären Abbildungen eines euklidischen, bzw. unitären endlichdimensionalen Vektorraums V eine Gruppe O(V) bzw. U(V) bilden.

Hausübung

Aufgabe H15 (Skalarprodukt)

(4 Punkte)

Zeigen sie, dass für jede reelle symmetrische, positiv definite Matrix A durch die Abbildung $(x,y) \mapsto x^T A y$, mit $x,y \in \mathbb{R}^n$ (für passendes n) ein reelles Skalarprodukt definiert ist. Man nennt dieses Skalarprodukt auch das von der Matrix A induzierte Skalarprodukt.

Aufgabe H16 (Orthonormalbasis, Gram-Schmidt)

(6 Punkte)

Für den Vektorraum P_2 ist die Basis $\{1, x, x^2\}$ gegeben. Finden Sie mit dem Gram-Schmidtschen Orthogonalisierungsverfahren eine Orthogonalbasis für diesen Vektorraum in Bezug auf das in G14 für den Vektorraum P_3 angegebene Skalarprodukt.

Aufgabe H17 (Der Hilbertraum ℓ_2 (ohne Analysis nur Teil (b) und (c) unter Annahme von Teil (a)) (5 Punkte)

Sei ℓ_2 die Menge aller komplexen Folgen

$$v = (\alpha_i)_{i=0,1,2,\dots} = (\alpha_0, \alpha_1, \alpha_2, \dots)$$
 mit $\alpha_i \in \mathbb{C}$, so dass

$$\sum_{i=0}^{\infty} |\alpha_i|^2 < +\infty \text{ gilt.}$$

Für zwei Folgen $v = (\alpha_i)_i$ und $w = (\beta_i)_i$ in ℓ_2 definieren wir:

$$v + w = (\alpha_i + \beta_i)_i$$
 und $\lambda v = (\lambda \alpha_i)_i$ für $\lambda \in \mathbb{C}$

- (a) Machen Sie sich klar, dass ℓ_2 ein Vektorraum ist. Begründen Sie alles Nichtoffensichtliche (im Zweifelsfall also alles).
- (b) Klären Sie weiterhin, dass die Reihe $\sum_{i=0}^{\infty} \alpha_i \beta_i$ für $(\alpha_i)_i, (\beta_i)_i \in \ell_2$ absolut konvergiert (Beweis erforderlich).

Hinweis: Zeigen Sie hierfür zunächst die Ungleichung $xy \leq \frac{1}{2}(x^2 + y^2)$

(c) Wir können nun für alle $v,w\in\ell_2$ ein Skalarprodukt folgendermaßen definieren:

$$\langle v, w \rangle := \sum_{i=0}^{\infty} \bar{\alpha}_i \beta_i$$

Zeigen Sie, dass der Shift Operator: $S: \ell_2 \to \ell_2$, $(\alpha_0, \alpha_1, \alpha_2, \ldots) \mapsto (0, \alpha_0, \alpha_1, \alpha_2, \ldots)$ in ℓ_2 zwar das Skalarprodukt erhält, jedoch nicht bijektiv ist. Damit ist diese Abbildung auch keine unitäre Abbildung.