Mathematics with Computer Science
Technische Universität Darmstadt
Introductory Course
Winter Semester 2008/2009

Exercises Unit 8

1. Determine the tangent at x_{0} :
(a) $f(x)=2 x^{3}-7, \quad x_{0}=-1$.
(b) $f(x)=\frac{1}{x}, \quad x_{0}=\frac{1}{2}$.
2. Does $\lim _{x \rightarrow x_{0}} \frac{f\left(x_{0}\right)-f(x)}{x_{0}-x}$ exist for the following function?

$$
f(x)=\left|x^{3}\right|, \quad x_{0}=0
$$

Use the definition of differentiability to decide if the function is differentiable in $x_{0}=0$.
3. Write the following function as a composition of simpler functions and calculate their derivatives using the chain rule: $f(x)=\sqrt{\left(2 x^{2}+x\right)^{3}+1}$
4. Show, that $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$.
5. Use the product rule and the chain rule to prove the quotient rule.
6. Decompose a fixed real number c into two summands such that their product is maximal.

