Mathematics with Computer Science

Introductory Course Winter Semester 2008/2009 Technische Universität Darmstadt Fachbereich Mathematik Dennis Frisch

Exercises Unit 7

- 1. Consider the function $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x$. Show that for all $c \in \mathbb{R}$ the limit $\lim_{x \to c} f(x)$ exists and that f is continuous in \mathbb{R} .
- 2. For what values of the real number c is the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} cx+1 & \text{if } x \le 3\\ cx^2 - 1 & \text{if } x > 3 \end{cases}$$

continuous?

- 3. Use the Intermediate Value Theorem to show that there exists a positive number c such that $c^2 = 2$. (This proves the existence of the number $\sqrt{2}$.)
- 4. Show that the following equations have a root in the given interval:
 - (a) $x^3 3x + 1 = 0$ in [0, 1]
 - (b) $x^5 2x^4 x 3 = 0$ in [2, 3]
 - (c) $x^2 = \sqrt{x+1}$ in [1,2]
- 5. Show with the ε - δ -condition, that the following function is continous in $x_0 = 0$.

$$\begin{array}{cccc} f: \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & x^2 \end{array}$$

Hint: $|a+b| \le 2|a| + 1$ *if* $|a-b| \le 1$.

- 6. Show, that for continous functions f and g the functions
 - $f \pm g$
 - $f \cdot g$
 - $\frac{f}{g}$
 - $f \circ g$

are continous (if defined).