Mathematics with Computer Science
Technische Universität Darmstadt
Fachbereich Mathematik
Dennis Frisch

Exercises Unit 7

1. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x$. Show that for all $c \in \mathbb{R}$ the limit $\lim _{x \rightarrow c} f(x)$ exists and that f is continuous in \mathbb{R}.
2. For what values of the real number c is the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}c x+1 & \text { if } x \leq 3 \\ c x^{2}-1 & \text { if } x>3\end{cases}
$$

continuous?
3. Use the Intermediate Value Theorem to show that there exists a positive number c such that $c^{2}=2$. (This proves the existence of the number $\sqrt{2}$.)
4. Show that the following equations have a root in the given interval:
(a) $x^{3}-3 x+1=0$ in $[0,1]$
(b) $x^{5}-2 x^{4}-x-3=0$ in $[2,3]$
(c) $x^{2}=\sqrt{x+1}$ in $[1,2]$
5. Show with the $\varepsilon-\delta$-condition, that the following function is continous in $x_{0}=0$.

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto x^{2}
\end{aligned}
$$

Hint: $|a+b| \leq 2|a|+1$ if $|a-b| \leq 1$.
6. Show, that for continous functions f and g the functions

- $f \pm g$
- $f \cdot g$
- $\frac{f}{g}$
- $f \circ g$
are continous (if defined).

