Mathematics with Computer Science

Technische Universität Darmstadt
Introductory Course
Winter Semester 2008/2009

Exercises Unit 6

1. Prove, if the following series are convergent:
(i) $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}}$
(ii) $\sum_{n=0}^{\infty} \frac{n!}{3^{n}}$
(iii) $\sum_{k=1}^{\infty} \frac{n!}{n^{n}}$

Hint: You can use, that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
2. a) Show, that for the geometric sum the following is true:

$$
\sum_{k=0}^{n} x^{n}=\frac{1-x^{n+1}}{1-x}
$$

Hint: Multiply a usefull term and use the telescope sum trick.
b) Determine the value of the geometric series for $x=\frac{2}{3}$.
3. Suppose for a real series $\sum_{n=0}^{\infty} a_{n}$ there exists a sequence $\left(x_{n}\right)$ with $a_{n} \geq x_{n} \geq 0$ such that $\sum_{n=0}^{\infty} x_{n}$ is divergent. Prove that $\sum_{n=0}^{\infty} a_{n}$ diverges as well.
4. Prove, if the following series are convergent:
(i) $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+8}$
(ii) $\sum_{n=2}^{\infty} \frac{1}{n-1}$
(iii) $\sum_{n=0}^{\infty} \frac{1}{n^{2}-n+1}$
5. Show, that for the alternating harmonic series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}
$$

the commutative law does not hold.

