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Exercises Unit 6

1. Prove, if the following series are convergent:
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Hint: You can use, that the series
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n2 is convergent.

2. a) Show, that for the geometric sum the following is true:
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Hint: Multiply a usefull term and use the telescope sum trick.

b) Determine the value of the geometric series for x = 2

3
.

3. Suppose for a real series
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an there exists a sequence (xn) with an ≥ xn ≥ 0 such that∑
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xn is divergent. Prove that
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an diverges as well.

4. Prove, if the following series are convergent:
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5. Show, that for the alternating harmonic series
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the commutative law does not hold.


