Mathematics with Computer Science

Introductory Course Winter Semester 2008/2009 Technische Universität Darmstadt Fachbereich Mathematik Dennis Frisch

Exercises Unit 6

1. Prove, if the following series are convergent:

$$(i)\sum_{n=1}^{\infty} \frac{n+1}{n^3} \qquad (ii)\sum_{n=0}^{\infty} \frac{n!}{3^n} \qquad (iii)\sum_{k=1}^{\infty} \frac{n!}{n^n}$$

Hint: You can use, that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ *is convergent.*

2. a) Show, that for the geometric sum the following is true:

$$\sum_{k=0}^{n} x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

Hint: Multiply a usefull term and use the telescope sum trick.

- b) Determine the value of the geometric series for $x = \frac{2}{3}$.
- 3. Suppose for a real series $\sum_{n=0}^{\infty} a_n$ there exists a sequence (x_n) with $a_n \ge x_n \ge 0$ such that $\sum_{n=0}^{\infty} x_n$ is divergent. Prove that $\sum_{n=0}^{\infty} a_n$ diverges as well.
- 4. Prove, if the following series are convergent:

$$(i)\sum_{n=0}^{\infty}\frac{2^n}{3^n+8} \qquad (ii)\sum_{n=2}^{\infty}\frac{1}{n-1} \qquad (iii)\sum_{n=0}^{\infty}\frac{1}{n^2-n+1}$$

5. Show, that for the alternating harmonic series

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

the commutative law does not hold.