Mathematics with Computer Science

Technische Universität Darmstadt
Fachbereich Mathematik
Dennis Frisch

Exercises Unit 4

1. Which of the following functions are injective, surjective, bijective?

$$
\begin{aligned}
f_{1}: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2} \\
f_{2}: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2} \\
f_{3}: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R}_{\geq 0}
\end{aligned}
$$

$$
\begin{aligned}
f_{4}: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{3} \\
f_{5}: \mathbb{R} \backslash\{0\} & \rightarrow \mathbb{R} \\
x & \mapsto \frac{1}{x} \\
f_{6}: \mathbb{R} \backslash\{0\} & \rightarrow \mathbb{R}_{>0} \\
x & \mapsto \frac{1}{x^{2}}
\end{aligned}
$$

2. Find a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ which is
(a) injective but not surjective,
(b) surjective but not injective.
3. Find functions f and g such that the following functions can be written as $f \circ g$.

$$
\begin{array}{ll}
F_{1}(x)=\sqrt{x+9} & F_{3}(x)=\sqrt{x}+2 \\
F_{2}(x)=(x-5)^{2} & F_{4}(x)=\frac{1}{x-1}
\end{array}
$$

4. (a) Consider the functions f and g from \mathbb{R} to \mathbb{R} given by $f(x)=x^{2}$ and $g(x)=x-3$. Find the composite functions $f \circ f, f \circ g, g \circ f$ and $g \circ g$ and determine the domain of each function. Demonstrate that $f \circ g$ is not necessarily the same as $g \circ f$.
(b) Find $f \circ g \circ h$ where $f(x)=x /(x+1), g(x)=x^{2}$ and $h(x)=x+3$. Find the maximal subset of \mathbb{R} on which $f \circ g \circ h$ is defined.
5. Find all zeros of the following functions:

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto x^{3}-6 x^{2}+11 x-6 \\
g: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto x^{4}-4 x^{3}+6 x^{2}-4 x+1 \\
h: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto x^{4}-1
\end{aligned}
$$

6. Determine the set

$$
\{x \in \mathbb{R}: f(x)=1\},
$$

with

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto x^{3}-x^{2}-4 x+5
\end{aligned}
$$

