Mathematics with Computer Science
Technische Universität Darmstadt

Exercises Unit 3

1. Show by a direct proof that for all $a, b \in \mathbb{R}$ the equation $a+\frac{1}{a}=b$ implies $a^{3}+\frac{1}{a^{3}}=b^{3}-3 b$.
2. Show, that $\frac{3 x-4}{2 x+4}+1 \leq 0$ implies $x \leq 0$.
3. (a) Let n be a natural number. Show that n^{2} is even if and only if n is even.
(b) Show that $x^{2}=6$ does not have a rational solution.
(c) Show that $1+\sqrt{2}$ is not a rational number. Show that $a+b \sqrt{2}$ is not rational for rational numbers a and b with $b \neq 0$.
(d) Show that $x^{3}=2$ does not have a rational solution.
4. Prove by induction that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

5. Show, that for each $n \in \mathbb{N}$ with $n>3$ the following is true:
(a) $2 n+1<n^{2}$,
(b) $n^{2} \leq 2^{n}$.

6. What is wrong?

Assume the following equation for a complex number x :

$$
x^{2}+x+1=0
$$

Then

$$
x^{2}=-1-x
$$

If we assume that $x \neq 0$, we can divide by x which yields to

$$
x=-\frac{1}{x}-1
$$

Substituting this expression in the original equation leads to

$$
\begin{aligned}
x^{2}-\frac{1}{x}-1+1 & =0 \\
x^{2}-\frac{1}{x} & =0 \\
x^{2} & =\frac{1}{x} \\
x^{3} & =1 \\
x & =1
\end{aligned}
$$

Substituting $x=1$ in the original equation yields to

$$
3=0
$$

