Mathematics with Computer Science

Introductory Course Winter Semester 2008/2009 Technische Universität Darmstadt Fachbereich Mathematik Dennis Frisch

Exercises Unit 3

- 1. Show by a direct proof that for all $a, b \in \mathbb{R}$ the equation $a + \frac{1}{a} = b$ implies $a^3 + \frac{1}{a^3} = b^3 3b$.
- 2. Show, that $\frac{3x-4}{2x+4} + 1 \le 0$ implies $x \le 0$.
- 3. (a) Let n be a natural number. Show that n^2 is even if and only if n is even.
 - (b) Show that $x^2 = 6$ does not have a rational solution.
 - (c) Show that $1 + \sqrt{2}$ is not a rational number. Show that $a + b\sqrt{2}$ is not rational for rational numbers a and b with $b \neq 0$.
 - (d) Show that $x^3 = 2$ does not have a rational solution.
- 4. Prove by induction that

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

- 5. Show, that for each $n \in \mathbb{N}$ with n > 3 the following is true:
 - (a) $2n + 1 < n^2$, (b) $n^2 \le 2^n$.

6. What is wrong?

Assume the following equation for a complex number x:

$$x^2 + x + 1 = 0$$

Then

$$x^2 = -1 - x$$

If we assume that $x \neq 0$, we can divide by x which yields to

$$x = -\frac{1}{x} - 1.$$

Substituting this expression in the original equation leads to

$$x^{2} - \frac{1}{x} - 1 + 1 = 0$$

$$x^{2} - \frac{1}{x} = 0$$

$$x^{2} = \frac{1}{x}$$

$$x^{3} = 1$$

$$x = 1.$$

Substituting x = 1 in the original equation yields to

3 = 0.