Mathematics with Computer Science

Introductory Course
Winter Semester 2008/2009

Exercises Unit 2

1. (a) Verify that the inversion formula

$$
(a+b i)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i
$$

is correct.
(b) Compute $\frac{5-3 i}{3+2 i}$.
(c) Try to find the solution of $(2-i) \cdot(2-2 i)$ geometrically.
(d) Let $c=a+b i$ be a complex number. Compute $(x-c)(x-\bar{c})$. Can you guess a solution for $x^{2}-2 x+2$?
2. Let A and B be propositions. Show that the following statments are true by setting up truth tables in each case:
(a) A is the same as $\neg(\neg A)$.
(b) $\neg(A \wedge B)$ is the same as $\neg A \vee \neg B$.
(c) $\neg(A \vee B)$ is the same as $\neg A \wedge \neg B$.
(d) $A \Rightarrow B$ is the same as $\neg A \vee B$.
3. Show: For propositions A and B we have that $A \wedge(A \Rightarrow B)$ implies B. Interpret this rule.
4. Find examples of implications that are not equivalences and explain why the conclusion works in one direction only.
5. Prove the proposition

$$
(A \Longrightarrow B) \Longleftrightarrow(\neg B \Longrightarrow \neg A)
$$

6. Negate the following propositions:
(a) All mathematicians are smokers.
(b) No students like to go to parties.
(c) All bananas are yellow.
(d) There exists a black swan.
7. Negate the following propositions:
(a) $\exists x \in S: A(x) \wedge B(x)$
(b) $\forall x \in S: A(x) \Rightarrow B(x)$
8. Write the following propositions as a formal expression using quantors, negate the formal expression and convert the negation back into everyday language.
(a) For every real number x there exists a natural number n such that $n>x$.
(b) There is no rational number x satisfying the equation $x^{2}=0$.
